88教案网

你的位置: 教案 > 高中教案 > 导航 > 函数的周期性

高中函数的应用教案

发表时间:2020-12-01

函数的周期性。

一名优秀的教师就要对每一课堂负责,高中教师要准备好教案为之后的教学做准备。教案可以让学生能够在教学期间跟着互动起来,有效的提高课堂的教学效率。关于好的高中教案要怎么样去写呢?以下是小编为大家精心整理的“函数的周期性”,仅供您在工作和学习中参考。

2.7函数的周期性
——函数的周期性不仅存在于三角函数中,在其它函数或者数列中“突然”出现的周期性问题更能考查你的功底和灵活性,本讲重点复习一般函数的周期性问题
一.明确复习目标
1.理解函数周期性的概念,会用定义判定函数的周期;
2.理解函数的周期性与图象的对称性之间的关系,会运用函数的周期性处理一些简单问题。
二、建构知识网络
1.函数的周期性定义:
若T为非零常数,对于定义域内的任一x,使恒成立,则f(x)叫做周期函数,T叫做这个函数的一个周期。
周期函数定义域必是无界的
2.若T是周期,则kT(k≠0,k∈Z)也是周期,所有周期中最小的正数叫最小正周期。一般所说的周期是指函数的最小正周期。
周期函数并非所都有最小正周期。如常函数f(x)=C;
3.若函数f(x)对定义域内的任意x满足:f(x+a)=f(x-a),则2a为函数f(x)的周期。
(若f(x)满足f(a+x)=f(a-x)则f(x)的图象以x=a为图象的对称轴,应注意二者的区别)
4.若函数f(x)图象有两条对称轴x=a和x=b,(ab),则2(b-a)是f(x)的一个周期
5.若函数f(x)图象有两个对称中心(a,0),(b,0)(ab),则2(b-a)是f(x)的一个周期。(证一证)
6.若函数f(x)有一条对称轴x=a和一个对称中心(b,0)(ab),则4(b-a)是f(x)的周期。
举例:y=sinx,等.
三.双基题目练练手
1.f(x)是定义在R上的以3为周期的偶函数,且f(1)=0,则方程f(x)=0在区间(0,6)内解的个数的最小值是()
A.5B.4C.3D.2
2.若函数y=f(x)是周期为2的奇函数,且当x∈(0,1)时f(x)=x+1,则f(π)的值为()
A.π-5B.5-πC.4-πD.π-4
3.是偶函数,且为奇函数,则f(1992)=
4.设存在常数p0,使,则的一个周期是,f(px)的一个正周期是;
5.数列中
简答精讲:1、B;2、A;3、993;因(-1,0)是中心,x=0是对称轴,则周期是4;4、,;5、;由已知,周期为6。
四.经典例题做一做
【例1】已知f(x)是以2为周期的偶函数,且当x∈(0,1)时,f(x)=x+1.求f(x)在(1,2)上的解析式。
解法1:(从解析式入手,由奇偶性结合周期性,将要求区间上问题转化为已知解析式的区间上。)
∵x∈(1,2),则-x∈(-2,-1),
∴2-x∈(0,1),∵T=2,是偶函数
∴f(x)=f(-x)=f(2-x)=2-x+1=3-x.
x∈(1,2).
解法2(从图象入手也可解决,且较直观)f(x)=f(x+2)
如图:x∈(0,1),f(x)=x+1.∵是偶函数
∴x∈(-1,0)时f(x)=f(-x)=-x+1.
又周期为2,x∈(1,2)时x-2∈(-1,0)
∴f(x)=f(x-2)=-(x-2)+1=3-x.
提炼方法:1.解题体现了化归转化的思想,即把未知的(1,2)上向已知的(0,1)上转化;
2.用好数形结合,对解题很有帮助.

【例2】f(x)的定义域是R,且f(x+2)[1-f(x)]=1+f(x),若f(0)=2008,求f(2008)的值。
解:
周期为8,
法二:依次计算f(2、4、6、8)知周期为8,须再验证。

方法提炼:
1.求周期只需要弄出一个常数;
2.注意既得关系式的连续使用.
【例3】若函数在R上是奇函数,且在上是增函数,且.
①求的周期;
②证明f(x)的图象关于点(2k,0)中心对称;关于直线x=2k+1轴对称,(k∈Z);
③讨论f(x)在(1,2)上的单调性;

解:①由已知f(x)=-f(x+2)=f(x+2+2)=f(x+4),故周期T=4.
②设P(x,y)是图象上任意一点,则y=f(x),且P关于点(2k,0)对称的点为P1(4k-x,-y).P关于直线x=2k+1对称的点为P2(4k+2-x,y).
∵f(4k-x)=f(-x)=-f(x)=-y,∴点P1在图象上,图象关于点(2k,0)对称.
又f(x)是奇函数,f(x+2)=-f(x)=f(-x)
∴f(4k+2-x)=f(2-x)=f(x)=y,∴点P2在图象上,图象关于直线2k+1对称.
③设1x1x22,则-2-x2-x1-1,02-x22-x11.
∵f(x)在(-1,0)上递增,∴f(2-x1)f(2-x2)……(*)
又f(x+2)=-f(x)=f(-x)∴f(2-x1)=f(x1),f(2-x2)=f(x2).
(*)为f(x2)f(x1),f(x)在(1,2)上是减函数.
提炼方法:总结解周期性、单调性及图象对称性的方法。
【研究.欣赏】已知函数y=f(x)是定义在R上的周期函数,周期T=5,函数y=f(x)(-1≤x≤1)是奇函数.又知y=f(x)在[0,1]上是一次函数,在[1,4]上是二次函数,且在x=2时函数取得最小值-5.
①证明:;②求的解析式;
③求在上的解析式.
解:∵是以为周期的周期函数,且在[-1,1]上是奇函数,∴,∴.
②当时,由题意可设,
由得,∴,
∴.
③∵是奇函数,∴,
又知在上是一次函数,∴可设,而,
∴,∴当时,,
从而时,,故时,.
∴当时,有,∴.
当时,,

∴.

五.提炼总结以为师
1.函数的周期性及有关概念;
2.用周期的定义求函数的周期;
3.函数的周期性与图象的对称性之间的关系;

同步练习2.7函数的周期性
【选择题】
1.f(x)是定义在R上的奇函数,它的最小正周期为T,则f(-)的值为
A.0B.C.TD.-
2.(2004天津)定义在R上的函数f(x)既是偶函数又是周期函数.若f(x)的最小正周期是π,且当x∈[0,]时,f(x)=sinx,则f()的值为
A.-B.C.-D.
【填空题】
3.设是定义在上,以2为周期的周期函数,且为偶函数,在区间[2,3]上,=,则=
4.已知函数f(x)是偶函数,且等式f(4+x)=f(4-x),对一切实数x成立,写出f(x)的一个最小正周
5.对任意x∈R,f(x)=f(x-1)+f(x+1)且f(0)=6,f(4)=3,则f(69)=
6.设f(x)定义在R上的偶函数,且,又当x∈(0,3]时,f(x)=2x,则f(2007)=。
答案提示:1、A;由f()=f(-+T)=f(-)=-f(),知f()=0.(或取特殊函数f(x)=sinx)
2、D;f()=f(-2π)=f(-)=f()=sin=.
3、;4、8;
5、f(x-1)=f(x)-f(x+1),∴f(x)=f(x+1)-f(x+2)=f(x+2)-f(x+3)-f(x+2)=-f(x+3)
∴f(x)=-f(x+3)=f(x+6).周期是6;f(69)=f(3)=f(-3)=-f(-3+3)=-6
6、,周期T=6,F(2007)=f(3)=6

【解答题】
7.设函数f(x)的最小正周期为2002,并且f(1001+x)=f(1001-x)对一切x∈R均成立,试讨论f(x)的奇偶性.
解:∵周期是2002,∴f(2002+x)=f(x),
又由f(1001+x)=f(1001-x)得f(2002-x)=f(x)
∴对任意的x都有f(x)=f(2002-x)=f(-x),f(x)是偶函数.
8.设f(x)为定义在实数集上周期为2的函数,且为偶函数,已知x∈[2,3]时f(x)=x,求x∈[-2,0]时f(x)的解析式。
分析:由T=2可得x∈[-2,-1]和x∈[0,1]时的解析式;再由奇偶性可得[-1,0]上的解析式。
解:因为函数f(x)是T=2的周期函数,所以f(x+2)=f(x).
又由于f(x)为偶函数,故
所以解析式为

9.设f(x)是定义在(-∞,+∞)上的函数,对一切x∈R均有f(x)+f(x+2)=0,当-1x≤1时,f(x)=2x-1,求当1x≤3时,函数f(x)的解析式。
思路分析:∵f(x)+f(x+2)=0∴f(x)=-f(x+2)
∵该式对一切x∈R成立,
∴以x-2代x得:f(x-2)=-f[(x-2)+2]=-f(x)
当1x≤3时,-1x-2≤1,∴f(x-2)=2(x-2)-1=2x-5
∴f(x)=-f(x-2)=-2x+5,∴f(x)=-2x+5(1x≤3)
评注:在化归过程中,一方面要转化自变量到已知解析式的定义域,另一方面要保持对应的函数值有一定关系。在化归过程中还体现了整体思想。
10.(2005广东)设函数在上满足,f(7-x)=f(7+x),且在闭区间[0,7]上,只有f(1)=f(3)=0。
(Ⅰ)试判断函数y=f(x)的奇偶性;
(Ⅱ)试求方程f(x)=0在闭区间[-2005,2005]上的根的个数,并证明你的结论.
解:由得即
由已知易得,所以,而,从而且
故函数是非奇非偶函数;
(II)由
,从而知函数的周期为
当时,,由已知,又,则
∴当时,只有
∴方程=0在一个周期内只有两个解
而函数在闭区间[-2005,2005]共含有401个周期,所以方程=0在闭区间[-2005,2005]共含有802个解
【探索题】对于k∈Z,用Ik表示区间(2k-1,2k+1]。已知x∈Ik时,f(x)=(x-2k)2,
(1)当k∈N*时,求集合Mk={a|使方程f(x)=ax在Ik上有两个不相等的实根的a的值}
(2)并讨论f(x)的周期性。
解:y=f(x)图像就是将y=x2(x∈(-1,1])向右平移2k个单位所得,其中k∈N
设y1=f(x),y2=ax,由集合Mk可知,若a∈M,则函数y1=f(x)与y2=ax图像有两个交点,即当x=2k+1时,0<y2≤1
∴0<a≤
∴Mk={a|0<a≤,k∈N},即Mk=(0,]
对任意

所以f(x)是2为周期的周期函数。
思路点拔:化简集合,弄清图像变换规律,数形结合求解;周期性的的讨论注要是看你运用定义的意识和能力

扩展阅读

单位圆与周期性


俗话说,凡事预则立,不预则废。教师要准备好教案,这是教师需要精心准备的。教案可以让讲的知识能够轻松被学生吸收,使教师有一个简单易懂的教学思路。那么怎么才能写出优秀的教案呢?为此,小编从网络上为大家精心整理了《单位圆与周期性》,仅供参考,大家一起来看看吧。

单位圆与周期性
年级高一学科数学课题单位圆与周期性
授课时间撰写人刘报时间
学习重点单位圆与正弦线、余弦线、正切线
学习难点正弦线、余弦线、正切线的应用
学习目标
1.理解正弦线、余弦线、正切线的概念;

2.掌握作已知角α的正弦线、余弦线和正切线;

3.会利用三角函数线比较两个同名三角函数值的大小及求解简单的三角不等式.

教学过程
一自主学习
1.当角的终边上一点的坐标满足_______________时,有三角函数正弦、余弦、正切值的几何表示——三角函数线。设角α的终边与单位圆交点P(x,y),过P作x轴的垂线,垂足为M,则有向线段MP为正弦线,OM为余弦线.过点A(1,0)作单位圆的切线,与终边或延长线交于T,则有向线段叫角α的正切线.
我们把这三条与单位圆有关的有向线段,分别叫做角的正弦线、余弦线、正切线,统称为三角函数线.
2.①正弦值对于第、象限为正(),对于第、象限为负();
②余弦值对于第、象限为正(),对于第、象限为负();
③正切值对于第、象限为正(同号),对于第、象限为负(异号).

3.周期函数与周期

二师生互动
例1已知,比较的大小.

变式:,结果又如何?

例2利用单位圆求适合下列条件的0到360的角.
(1)sin≥;(2)tan.

变式:利用单位圆写出符合下列条件的角的范围.
(1);(2).

三巩固练习
1.下列大小关系正确的是().
A.B.
C.D.以上都不正确
2.利用余弦线,比较的大小关系为().
A.B.
C.D.无法比较
3.利用正弦线,求得满足条件,且在0到360的角为().
A.或C.或
C.或C.或
4.不等式的解集为.

5.根据下列已知,判别θ所在象限:
(1)sinθ0且tanθ0;(2)tanθcosθ0.
6.求函数的值域.

四课后反思

五课后巩固练习
1.已知角的终边上一点,且,求的值.

2.作出下列各角的正弦线、余弦线、正切线.
(1);(2);(3);(4).

3.利用单位圆写出符合下列条件的角x的范围:
(1)sinx=;(2)tanx;(3).

高一数学教案:《函数图象对称性与周期性的关联》教学设计


高一数学教案:《函数图象对称性与周期性的关联》教学设计

【教学目标】:

1.掌握特殊到一般的分析方法:学会从特殊化中发现性质结论,再证明一般化性质结论.

2.更好地认知建构数学知识的过程:能从自己已有的数学知识和认知经验出发,经过思考研究,得出新的数学结论.

3.训练抽象能力,提高目标推理能力.

重点:掌握研究抽象问题的一种方法.

难点:周期性的代数推导.

【回顾复习】(提问式复习)

提问:奇、偶函数有什么特点?(图象特点、代数表达式)

进一步提问,更一般的关于x=a或M(a,0)对称的代数表达式是什么呢?

【引申问题】

刚才说的函数图象都是一条对称轴或一个对称点的问题。那么我们是否可以引申问题呢?学生积极思考提出想法,进而引申出新的问题:

两条对称轴(两线)、一条对称轴一个对称中心(一点一线)、两个对称中心(两点)

从中选取一个问题(如:两线)具体化,提出思考:

定义在R上的偶函数的图象关于x=1对称,那么会具有什么样的性质呢?

【迁移问题】

一般结论1:设是定义在上的函数,其图像关于直线和对称,探究的性质.(学生讨论研究,自行展示研究结果)

一般结论2:是定义在上的函数,其图像关于点中心对称,且其图像关于直线对称,探究的性质

(学生讨论研究,自行展示研究结果)

一般结论3:

设是定义在上的函数,其图像关于点和()对称,的周期(类比,留作课后思考)

【解决问题】

1.定义在R上的偶函数,其图象关于x=2对称,当时,,则当时,.

2.已知是偶函数,是奇函数,且,则。

【小结】

本讲展示了解决一些抽象数学问题的研究方法:先特殊化(如本讲先具体化函数图象),再从特殊情形中找到结论性质,再加以严格的推理证明。另一方面,也诠释了数学知识构建的过程,即通过已有知识和经验,经过思考和研究得出新的数学结论性质.

2012届高考数学知识梳理函数的奇偶性与周期性复习教案


一名优秀的教师在每次教学前有自己的事先计划,作为高中教师就要精心准备好合适的教案。教案可以让学生更好地进入课堂环境中来,帮助高中教师更好的完成实现教学目标。那么,你知道高中教案要怎么写呢?为满足您的需求,小编特地编辑了“2012届高考数学知识梳理函数的奇偶性与周期性复习教案”,仅供参考,希望能为您提供参考!

教案17函数的奇偶性与周期性
一、课前检测
1.下列函数中,在其定义域内即是奇函数又是减函数的是(A)
A.B.C.D.

2.(08辽宁)若函数为偶函数,则(C)
A.B.C.D.

3.已知在R上是奇函数,且(A)
A.B.2C.-98D.98

二、知识梳理
1.函数的奇偶性:
(1)对于函数,其定义域关于原点对称:
如果______________________________________,那么函数为奇函数;
如果______________________________________,那么函数为偶函数.
(2)奇函数的图象关于__________对称,偶函数的图象关于_________对称.
(3)奇函数在对称区间的增减性;偶函数在对称区间的增减性.
(4)若奇函数在处有定义,则必有
解读:

2.函数的周期性
对于函数,如果存在一个非零常数T,使得当取定义域内的每一个值时,都有,则为周期函数,T为这个函数的周期.
解读:

3.与函数周期有关的结论:
①已知条件中如果出现、或(、均为非零常数,),都可以得出的周期为;
②的图象关于点中心对称或的图象关于直线轴对称,均可以得到周期
解读:
三、典型例题分析
例1判断下列函数的奇偶性:
(1)答案:定义域不关于原点对称,非奇非偶

(2)
解:定义域为:
所以,是奇函数。
(3)
解法一:当,,
当,,
所以,对,都有,
所以是偶函数
解法二:画出函数图象
解法三:还可写成,故为偶函数。
(4)
解:定义域为,对,都有,
所以既奇又偶
变式训练:判断函数的奇偶性。
解:当时,是偶函数
当时,,即,
且,
所以非奇非偶
小结与拓展:几个常见的奇函数:
(1)(2)(3)(4)

小结与拓展:定义域关于原点对称是函数具有奇偶性的必要条件

例2已知定义在上的函数,当时,
(1)若函数是奇函数,当时,求函数的解析式;答案:

(2)若函数是偶函数,当时,求函数的解析式;答案:
变式训练:已知奇函数,当时,,求函数在R上的解析式;
解:函数是定义在R上的奇函数,

当时,,

小结与拓展:奇偶性在求函数解析式上的应用

例3设函数是定义在R上的奇函数,对于都有成立。
(1)证明是周期函数,并指出周期;
(2)若,求的值。
证明:(1)
所以,是周期函数,且
(2),

变式训练1:设是上的奇函数,,当时,,
则等于(B)
A.0.5B.C.1.5D.

变式训练2:(06安徽)函数对于任意实数满足条件,若
则__________。
解:由得,所以,
则。

小结与拓展:只需证明,即是以为周期的周期函数

四、归纳与总结(以学生为主,师生共同完成)
1.知识:
2.思想与方法:
3.易错点:
4.教学反思(不足并查漏):

高考数学(理科)一轮复习函数的奇偶性与周期性学案附答案


学案6函数的奇偶性与周期性
导学目标:1.了解函数奇偶性、周期性的含义.2.会判断奇偶性,会求函数的周期.3.会做有关函数单调性、奇偶性、周期性的综合问题.
自主梳理
1.函数奇偶性的定义
如果对于函数f(x)定义域内任意一个x,都有______________,则称f(x)为奇函数;如果对于函数f(x)定义域内任意一个x,都有____________,则称f(x)为偶函数.
2.奇偶函数的性质
(1)f(x)为奇函数f(-x)=-f(x)f(-x)+f(x)=____;
f(x)为偶函数f(x)=f(-x)=f(|x|)f(x)-f(-x)=____.
(2)f(x)是偶函数f(x)的图象关于____轴对称;f(x)是奇函数f(x)的图象关于________
对称.
(3)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有________的单调性.
3.函数的周期性
(1)定义:如果存在一个非零常数T,使得对于函数定义域内的任意x,都有f(x+T)=________,则称f(x)为________函数,其中T称作f(x)的周期.若T存在一个最小的正数,则称它为f(x)的________________.
(2)性质:①f(x+T)=f(x)常常写作f(x+T2)=f(x-T2).
②如果T是函数y=f(x)的周期,则kT(k∈Z且k≠0)也是y=f(x)的周期,即f(x+kT)=f(x).
③若对于函数f(x)的定义域内任一个自变量的值x都有f(x+a)=-f(x)或f(x+a)=1fx或f(x+a)=-1fx(a是常数且a≠0),则f(x)是以______为一个周期的周期函数.
自我检测
1.已知函数f(x)=(m-1)x2+(m-2)x+(m2-7m+12)为偶函数,则m的值是()
A.1B.2C.3D.4
2.(2011茂名月考)如果奇函数f(x)在区间[3,7]上是增函数且最大值为5,那么f(x)在区间[-7,-3]上是()
A.增函数且最小值是-5
B.增函数且最大值是-5
C.减函数且最大值是-5
D.减函数且最小值是-5
3.函数y=x-1x的图象()
A.关于原点对称
B.关于直线y=-x对称
C.关于y轴对称
D.关于直线y=x对称
4.(2009江西改编)已知函数f(x)是(-∞,+∞)上的偶函数,若对于x≥0,都有f(x+2)=f(x),且当x∈[0,2)时,f(x)=log2(x+1),则f(-2012)+f(2011)的值为()
A.-2B.-1C.1D.2
5.(2011开封模拟)设函数f(x)=x+1x+ax为奇函数,则a=________.
探究点一函数奇偶性的判定
例1判断下列函数的奇偶性.
(1)f(x)=(x+1)1-x1+x;(2)f(x)=x(12x-1+12);
(3)f(x)=log2(x+x2+1);(4)f(x)=x2+x,x0,-x2+x,x0.

变式迁移1判断下列函数的奇偶性.
(1)f(x)=x2-x3;
(2)f(x)=x2-1+1-x2;
(3)f(x)=4-x2|x+3|-3.

探究点二函数单调性与奇偶性的综合应用
例2函数y=f(x)(x≠0)是奇函数,且当x∈(0,+∞)时是增函数,若f(1)=0,求不等式f[x(x-12)]0的解集.

变式迁移2(2011承德模拟)已知函数f(x)=x3+x,对任意的m∈[-2,2],f(mx-2)+f(x)0恒成立,则x的取值范围为________.
探究点三函数性质的综合应用
例3(2009山东)已知定义在R上的奇函数f(x),满足f(x-4)=-f(x),且在区间[0,2]上是增函数,若方程f(x)=m(m0),在区间[-8,8]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4=________.
变式迁移3定义在R上的函数f(x)是偶函数,且f(x)=f(2-x).若f(x)在区间[1,2]上是减函数,则f(x)()
A.在区间[-2,-1]上是增函数,在区间[3,4]上是增函数
B.在区间[-2,-1]上是增函数,在区间[3,4]上是减函数
C.在区间[-2,-1]上是减函数,在区间[3,4]上是增函数
D.在区间[-2,-1]上是减函数,在区间[3,4]上是减函数
转化与化归思想的应用
例(12分)函数f(x)的定义域为D={x|x≠0},且满足对于任意x1,x2∈D,有f(x1x2)=f(x1)+f(x2).
(1)求f(1)的值;
(2)判断f(x)的奇偶性并证明你的结论;
(3)如果f(4)=1,f(3x+1)+f(2x-6)≤3,且f(x)在(0,+∞)上是增函数,求x的取值范围.
【答题模板】
解(1)∵对于任意x1,x2∈D,有f(x1x2)=f(x1)+f(x2),
∴令x1=x2=1,得f(1)=2f(1),∴f(1)=0.[2分]
(2)令x1=x2=-1,有f(1)=f(-1)+f(-1),
∴f(-1)=12f(1)=0.[4分]
令x1=-1,x2=x有f(-x)=f(-1)+f(x),
∴f(-x)=f(x),∴f(x)为偶函数.[6分]
(3)依题设有f(4×4)=f(4)+f(4)=2,
f(16×4)=f(16)+f(4)=3,[7分]
∵f(3x+1)+f(2x-6)≤3,
即f((3x+1)(2x-6))≤f(64)[8分]
∵f(x)为偶函数,
∴f(|(3x+1)(2x-6|)≤f(64).[10分]
又∵f(x)在(0,+∞)上是增函数,f(x)的定义域为D.
∴0|(3x+1)(2x-6)|≤64.[11分]
解上式,得3x≤5或-73≤x-13或-13x3.
∴x的取值范围为{x|-73≤x-13或-13x3或3x≤5}.[12分]
【突破思维障碍】
在(3)中,通过变换已知条件,能变形出f(g(x))≤f(a)的形式,但思维障碍在于f(x)在(0,+∞)上是增函数,g(x)是否大于0不可而知,这样就无法脱掉“f”,若能结合(2)中f(x)是偶函数的结论,则有f(g(x))=f(|g(x)|),又若能注意到f(x)的定义域为{x|x≠0},这才能有|g(x)|0,从而得出0|g(x)|≤a,解之得x的范围.
【易错点剖析】
在(3)中,由f(|(3x+1)(2x-6)|)≤f(64)脱掉“f”的过程中,如果思维不缜密,不能及时回顾已知条件中函数的定义域中{x|x≠0},易出现0≤|(3x+1)(2x-6)|≤64,导致结果错误.
1.正确理解奇函数和偶函数的定义,必须把握好两个问题:①定义域在数轴上关于原点对称是函数f(x)为奇函数或偶函数的必要非充分条件;②f(-x)=-f(x)或f(-x)=f(x)是定义域上的恒等式.
2.奇偶函数的定义是判断函数奇偶性的主要依据.为了便于判断函数的奇偶性,有时需要先将函数进行化简,或应用定义的等价形式:f(-x)=±f(x)f(-x)±f(x)=0f-xfx=±1(f(x)≠0).
3.奇函数的图象关于原点对称,偶函数的图象关于y轴对称,反之也真.利用这一性质可简化一些函数图象的画法,也可以利用它判断函数的奇偶性.
4.关于函数周期性常用的结论:对于函数f(x),若有f(x+a)=-f(x)或f(x+a)=1fx或f(x+a)=-1fx(a为常数且a≠0),则f(x)的一个周期为2a
(满分:75分)

一、选择题(每小题5分,共25分)
1.(2011吉林模拟)已知f(x)=ax2+bx是定义在[a-1,2a]上的偶函数,那么a+b的值为()
A.-13B.13
C.12D.-12
2.(2010银川一中高三年级第四次月考)已知定义域为{x|x≠0}的函数f(x)为偶函数,且f(x)在区间(-∞,0)上是增函数,若f(-3)=0,则fxx0的解集为()
A.(-3,0)∪(0,3)
B.(-∞,-3)∪(0,3)
C.(-∞,-3)∪(3,+∞)
D.(-3,0)∪(3,+∞)
3.(2011鞍山月考)已知f(x)是定义在R上的偶函数,并满足f(x+2)=-1fx,当1≤x≤2时,f(x)=x-2,则f(6.5)等于()
A.4.5B.-4.5
C.0.5D.-0.5
4.(2010山东)设f(x)为定义在R上的奇函数.当x≥0时,f(x)=2x+2x+b(b为常数),则f(-1)等于()
A.3B.1C.-1D.-3
5.设函数f(x)满足:①y=f(x+1)是偶函数;②在[1,+∞)上为增函数,则f(-1)与f(2)大小关系是()
A.f(-1)f(2)B.f(-1)f(2)
C.f(-1)=f(2)D.无法确定
题号12345
答案
二、填空题(每小题4分,共12分)
6.(2010辽宁部分重点中学5月联考)若函数f(x)=x-1,x0,a,x=0,x+b,x0是奇函数,则a+b=________.
7.(2011咸阳月考)设函数f(x)是定义在R上的奇函数,若f(x)满足f(x+3)=f(x),且f(1)1,f(2)=2m-3m+1,则m的取值范围是________.
8.已知函数f(x)是R上的偶函数,g(x)是R上的奇函数,且g(x)=f(x-1),若f(2)=2,则f(2010)的值为________.
三、解答题(共38分)
9.(12分)(2011汕头模拟)已知f(x)是定义在[-6,6]上的奇函数,且f(x)在[0,3]上是x的一次式,在[3,6]上是x的二次式,且当3≤x≤6时,f(x)≤f(5)=3,f(6)=2,求f(x)的表达式.

10.(12分)设函数f(x)=x2-2|x|-1(-3≤x≤3)
(1)证明f(x)是偶函数;
(2)画出这个函数的图象;
(3)指出函数f(x)的单调区间,并说明在各个单调区间上f(x)是增函数还是减函数;
(4)求函数的值域.

11.(14分)(2011舟山调研)已知函数f(x)=x2+ax(x≠0,常数a∈R).
(1)讨论函数f(x)的奇偶性,并说明理由;
(2)若函数f(x)在[2,+∞)上为增函数,求实数a的取值范围.

答案自主梳理
1.f(-x)=-f(x)f(-x)=f(x)
2.(1)00(2)y原点(3)相反
3.(1)f(x)周期最小正周期(2)③2a
自我检测
1.B[因为f(x)为偶函数,所以奇次项系数为0,即m-2=0,m=2.]
2.A[奇函数的图象关于原点对称,对称区间上有相同的单调性.]
3.A[由f(-x)=-f(x),故函数为奇函数,图象关于原点对称.]
4.C[f(-2012)+f(2011)=f(2012)+f(2011)=f(0)+f(1)=log21+log2(1+1)=1.]
5.-1
解析∵f(-1)=0,∴f(1)=2(a+1)=0,
∴a=-1.代入检验f(x)=是奇函数,故a=-1.
课堂活动区
例1解题导引判断函数奇偶性的方法.
(1)定义法:用函数奇偶性的定义判断.(先看定义域是否关于原点对称).
(2)图象法:f(x)的图象关于原点对称,则f(x)为奇函数;f(x)的图象关于y轴对称,则f(x)为偶函数.
(3)基本函数法:把f(x)变形为g(x)与h(x)的和、差、积、商的形式,通过g(x)与h(x)的奇偶性判定出f(x)的奇偶性.
解(1)定义域要求≥0且x≠-1,
∴-1x≤1,∴f(x)定义域不关于原点对称,
∴f(x)是非奇非偶函数.
(2)函数定义域为(-∞,0)∪(0,+∞).
∵f(-x)=-x
=-x=
==f(x).
∴f(x)是偶函数.
(3)函数定义域为R.
∵f(-x)=log2(-x+x2+1)
=log21x+x2+1=-log2(x+x2+1)
=-f(x),
∴f(x)是奇函数.
(4)函数的定义域为(-∞,0)∪(0,+∞).
当x0时,-x0,则
f(-x)=-(-x)2-x=-(x2+x)=-f(x);
当x0时,-x0,则
f(-x)=(-x)2-x=x2-x=-(-x2+x)=-f(x).
∴对任意x∈(-∞,0)∪(0,+∞)都有f(-x)=-f(x).
故f(x)为奇函数.
变式迁移1解(1)由于f(-1)=2,f(1)=0,f(-1)≠f(1),f(-1)≠-f(1),从而函数f(x)既不是奇函数也不是偶函数.
(2)f(x)的定义域为{-1,1},关于原点对称,又f(-1)=f(1)=0,f(-1)=-f(1)=0,∴f(x)既是奇函数又是偶函数.
(3)由4-x2≥0|x+3|≠3得,f(x)定义域为[-2,0)∪(0,2].
∴定义域关于原点对称,
又f(x)=4-x2x,f(-x)=-4-x2x
∴f(-x)=-f(x)
∴f(x)为奇函数.
例2解题导引本题考查利用函数的单调性和奇偶性解不等式.解题的关键是利用函数的单调性、奇偶性化“抽象的不等式”为“具体的代数不等式”.
在关于原点对称的两个区间上,奇函数的单调性相同,偶函数的单调性相反.
解∵y=f(x)为奇函数,且在(0,+∞)上为增函数,
∴y=f(x)在(-∞,0)上单调递增,
且由f(1)=0得f(-1)=0.
若f[x(x-12)]0=f(1),
则xx-120xx-121即0x(x-12)1,
解得12x1+174或1-174x0.
若f[x(x-12)]0=f(-1),则xx-120xx-12-1
由x(x-12)-1,解得x∈.
∴原不等式的解集是
{x|12x1+174或1-174x0}.
变式迁移2(-2,23)
解析易知f(x)在R上为单调递增函数,且f(x)为奇函数,故f(mx-2)+f(x)0,等价于f(mx-2)-f(x)=f(-x),此时应用mx-2-x,即mx+x-20对所有m∈[-2,2]恒成立,令h(m)=mx+x-2,
此时,只需h-20h20即可,解得x∈(-2,23).
例3解题导引解决此类抽象函数问题,根据函数的奇偶性、周期性、单调性等性质,画出函数的一部分简图,使抽象问题变得直观、形象,有利于问题的解决.
-8
解析因为定义在R上的奇函数,满足f(x-4)=-f(x),所以f(4-x)=f(x).因此,函数图象关于直线x=2对称且f(0)=0,由f(x-4)=-f(x)知f(x-8)=f(x),所以函数是以8为周期的周期函数.又因为f(x)在区间[0,2]上是增函数,所以f(x)在区间[-2,0]上也是增函数,如图所示,那么方程f(x)=m(m0)在区间[-8,8]上有四个不同的根x1,x2,x3,x4,不妨设x1x2x3x4.由对称性知x1+x2=-12,x3+x4=4,所以x1+x2+x3+x4=-12+4=-8.
变式迁移3B[∵f(x)=f(2-x),∴f(x+1)=f(1-x).
∴x=1为函数f(x)的一条对称轴.
又f(x+2)=f[2-(x+2)]
=f(-x)=f(x),
∴2是函数f(x)的一个周期.
根据已知条件画出函数简图的一部分,如右图:
由图象可以看出,在区间[-2,-1]上是增函数,在区间[3,4]上是减函数.]
课后练习区
1.B[依题意得a-1=-2ab=0,∴a=13b=0,
∴a+b=13.]
2.D
[由已知条件,可得函数f(x)的图象大致为右图,故fxx0的解集为(-3,0)∪(3,+∞).]
3.D[由f(x+2)=-1fx,
得f(x+4)=-1fx+2=f(x),那么f(x)的周期是4,得f(6.5)=f(2.5).因为f(x)是偶函数,则f(2.5)=f(-2.5)=f(1.5).而1≤x≤2时,f(x)=x-2,
∴f(1.5)=-0.5.由上知:f(6.5)=-0.5.]
4.D[因为奇函数f(x)在x=0有定义,所以f(0)=20+2×0+b=b+1=0,b=-1.
∴f(x)=2x+2x-1,f(1)=3,
从而f(-1)=-f(1)=-3.]
5.A[由y=f(x+1)是偶函数,得到y=f(x)的图象关于直线x=1对称,∴f(-1)=f(3).
又f(x)在[1,+∞)上为单调增函数,
∴f(3)f(2),即f(-1)f(2).]
6.1
解析∵f(x)是奇函数,且x∈R,∴f(0)=0,即a=0.又f(-1)=-f(1),∴b-1=-(1-1)=0,即b=1,因此a+b=1.
7.-1m23
解析∵f(x+3)=f(x),∴f(2)=f(-1+3)=f(-1).
∵f(x)为奇函数,且f(1)1,
∴f(-1)=-f(1)-1,∴2m-3m+1-1.
解得:-1m23.
8.2
解析由g(x)=f(x-1),得g(-x)=f(-x-1),
又g(x)为R上的奇函数,∴g(-x)=-g(x),
∴f(-x-1)=-f(x-1),
即f(x-1)=-f(-x-1),
用x+1替换x,得f(x)=-f(-x-2).
又f(x)是R上的偶函数,∴f(x)=-f(x+2).
∴f(x)=f(x+4),即f(x)的周期为4.
∴f(2010)=f(4×502+2)=f(2)=2.
9.解由题意,当3≤x≤6时,设f(x)=a(x-5)2+3,
∵f(6)=2,∴2=a(6-5)2+3.∴a=-1.
∴f(x)=-(x-5)2+3(3≤x≤6).…………………………………………………………(3分)
∴f(3)=-(3-5)2+3=-1.
又∵f(x)为奇函数,∴f(0)=0.
∴一次函数图象过(0,0),(3,-1)两点.
∴f(x)=-13x(0≤x≤3).…………………………………………………………………(6分)
当-3≤x≤0时,-x∈[0,3],
∴f(-x)=-13(-x)=13x.
又f(-x)=-f(x),∴f(x)=-13x.
∴f(x)=-13x(-3≤x≤3).………………………………………………………………(9分)
当-6≤x≤-3时,3≤-x≤6,
∴f(-x)=-(-x-5)2+3=-(x+5)2+3.
又f(-x)=-f(x),∴f(x)=(x+5)2-3.
∴f(x)=x+52-3,-6≤x≤-3,-13x-3x3,…………………………………………………………12分-x-52+3,3≤x≤6.
10.解(1)f(-x)=(-x)2-2|-x|-1
=x2-2|x|-1=f(x),
即f(-x)=f(x).∴f(x)是偶函数.………………………………………………………(2分)
(2)当x≥0时,f(x)=x2-2x-1=(x-1)2-2,
当x0时,f(x)=x2+2x-1=(x+1)2-2,
即f(x)=x-12-2,x≥0,x+12-2,x0.
根据二次函数的作图方法,可得函数图象如下图.
……………………………………(6分)
(3)由(2)中函数图象可知,函数f(x)的单调区间为[-3,-1],[-1,0],[0,1],[1,3].
f(x)在区间[-3,-1]和[0,1]上为减函数,在[-1,0],[1,3]上为增函数.……………(8分)
(4)当x≥0时,函数f(x)=(x-1)2-2的最小值为-2,最大值为f(3)=2;
当x0时,函数f(x)=(x+1)2-2的最小值为-2,最大值为f(-3)=2;
故函数f(x)的值域为[-2,2].……………………………………………………………(12分)
11.解(1)当a=0时,f(x)=x2对任意x∈(-∞,0)∪(0,+∞),
有f(-x)=(-x)2=x2=f(x),
∴f(x)为偶函数.…………………………………………………………………………(2分)
当a≠0时,f(x)=x2+ax(x≠0,常数a∈R),
若x=±1时,则f(-1)+f(1)=2≠0;
∴f(-1)≠-f(1),又f(-1)≠f(1)
∴函数f(x)既不是奇函数,也不是偶函数.……………………………………………(6分)
综上所述,当a=0时,f(x)为偶函数;
当a≠0时,f(x)为非奇非偶函数.………………………………………………………(7分)
(2)设2≤x1x2,
f(x1)-f(x2)=x21+ax1-x22-ax2
=x1-x2x1x2[x1x2(x1+x2)-a],………………………………………………………………(10分)
要使f(x)在x∈[2,+∞)上为增函数,必须使f(x1)-f(x2)0恒成立.
∵x1-x20,x1x24,即ax1x2(x1+x2)恒成立.………………………………………(12分)
又∵x1+x24,∴x1x2(x1+x2)16,
∴a的取值范围为(-∞,16].…………………………………………………………(14分)