小学数学的教案
发表时间:2020-11-19高二数学离散型随机变量的均值学案。
一名优秀的教师在每次教学前有自己的事先计划,作为教师就要根据教学内容制定合适的教案。教案可以让学生们充分体会到学习的快乐,帮助教师掌握上课时的教学节奏。那么一篇好的教案要怎么才能写好呢?以下是小编为大家精心整理的“高二数学离散型随机变量的均值学案”,欢迎阅读,希望您能阅读并收藏。
§离散型随机变量的均值
一、知识要点
1.离散型随机变量.
2.离散型随机变量的均值或数学期望.
3.几种特殊的离散型随机变量的数学期望.
①两点分布;②二项分布;③超几何分布.
二、典型例题
例1.高三(1)班的联欢会上设计了一项游戏,在一个口袋中装有10个红球,20个白球,这些球除颜色外完全相同,某学生一次从中摸出5个球,其中红球的个数为,求的数学期望.
例2.从批量较大的成品中随机取出10件产品进行质量检查,若这批产品的不合格品概率为0.05,随机变量表示这10件产品中的不合格品数,求随机变量的数学期望.
例3.某人射击一发子弹的命中率为0.8,若他只有5颗子弹,若击中目标,则不再射击,否则继续射击至子弹打完,求他射击次数的期望.
三、巩固练习
1.设随机变量的概率分布如下表,试求.
12345
2.假定1500件产品中有100件不合格品,从中抽取15件进行检查,其中不合格品件数为,求的数学期望.
3.从甲、乙两名射击运动员中选择一名参加比赛,现统计了这两名运动员在训练中命中环数的概率分布如下,问:哪名运动员的平均成绩较好?
8910
8910
0.30.10.6
0.20.50.3
4.某商家有一台电话交换机,其中有5个分机专供与顾客通话。设每个分机在1h内平均占线20min,并且各个分机是否占线是相互独立的,求任一时刻占线的分机数目的数学期望.
四、课堂小结
五、课后反思
六、课后作业
1.随机变量的概率分布如下表所示
1234
且,则=,=.
2.已知随机变量的分布列为
012
且,则=.
3.一个袋子中装有大小相同的3个红球和2个黄球,从中同时取出2个,则其中含有红球个数的数学期望为.
4.篮球运动员在比赛中每次罚球命中得1分,罚不中得0分,已知某运动员罚球的命中率是0.7,则他罚球6次的总得分的均值是.
5.一个盒子中有10件产品,其中有2件是次品,现逐个抽取,取到次品则抛弃,直到取到正品为止,则被抛弃的次品数的均值=.
6.对某个数学题,甲解出的概率为,乙解出的概率为,两人独立解题,记为解出该题的人数,则=.
7.设篮球队A与B进行比赛,若有一队先胜3场,比赛宣告结束,假定A,B在每场比赛中获胜的概率都是,求比赛场数的分布列和均值.
8.袋中有2个白球,3个黑球,从中任意摸一球,猜它是白球还是黑球,猜对得1分,猜错不得分,从平均得分最大的角度,你猜什么颜色有利?说明理由.
9.某运动员射击一次所得环数的分布如下:
78910
0.20.30.30.2
现进行两次射击,以该运动员两次射击所中最高环数作为他的成绩,记为.
⑴求该运动员两次都命中7环的概率;
⑵求的分布列;
⑶求的数学期望.
订正栏:
扩展阅读
2.3离散型随机变量的均值与方差教案二(新人教A版选修2-3)
一名优秀的教师在教学时都会提前最好准备,作为高中教师就要在上课前做好适合自己的教案。教案可以让学生们有一个良好的课堂环境,帮助高中教师掌握上课时的教学节奏。关于好的高中教案要怎么样去写呢?为了让您在使用时更加简单方便,下面是小编整理的“2.3离散型随机变量的均值与方差教案二(新人教A版选修2-3)”,仅供参考,希望能为您提供参考!
2.3离散型随机变量的均值与方差
2.3.1离散型随机变量的均值
教学目标:
知识与技能:了解离散型随机变量的均值或期望的意义,会根据离散型随机变量的分布列求出均值或期望.
过程与方法:理解公式“E(aξ+b)=aEξ+b”,以及“若ξB(n,p),则Eξ=np”.能熟
练地应用它们求相应的离散型随机变量的均值或期望。
情感、态度与价值观:承前启后,感悟数学与生活的和谐之美,体现数学的文化功能与人文
价值。
教学重点:离散型随机变量的均值或期望的概念
教学难点:根据离散型随机变量的分布列求出均值或期望
授课类型:新授课
课时安排:2课时
教具:多媒体、实物投影仪
教学过程:
一、复习引入:
1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量随机变量常用希腊字母ξ、η等表示
2.离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量
3.连续型随机变量:对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量
4.离散型随机变量与连续型随机变量的区别与联系:离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出
若是随机变量,是常数,则也是随机变量并且不改变其属性(离散型、连续型)
5.分布列:设离散型随机变量ξ可能取得值为x1,x2,…,x3,…,
ξ取每一个值xi(i=1,2,…)的概率为,则称表
ξx1x2…xi…
PP1P2…Pi…
为随机变量ξ的概率分布,简称ξ的分布列
6.分布列的两个性质:⑴Pi≥0,i=1,2,…;⑵P1+P2+…=1.
7.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P,那么在n次独立重复试验中这个事件恰好发生k次的概率是
,(k=0,1,2,…,n,).
于是得到随机变量ξ的概率分布如下:
ξ01…k…n
P
…
称这样的随机变量ξ服从二项分布,记作ξ~B(n,p),其中n,p为参数,并记=b(k;n,p).
8.离散型随机变量的几何分布:在独立重复试验中,某事件第一次发生时,所作试验的次数ξ也是一个正整数的离散型随机变量.“”表示在第k次独立重复试验时事件第一次发生.如果把k次试验时事件A发生记为、事件A不发生记为,P()=p,P()=q(q=1-p),那么
(k=0,1,2,…,).于是得到随机变量ξ的概率分布如下:
ξ123…k…
P
…
…
称这样的随机变量ξ服从几何分布
记作g(k,p)=,其中k=0,1,2,…,.
二、讲解新课:
根据已知随机变量的分布列,我们可以方便的得出随机变量的某些制定的概率,但分布列的用途远不止于此,例如:已知某射手射击所得环数ξ的分布列如下
ξ45678910
P0.020.040.060.090.280.290.22
在n次射击之前,可以根据这个分布列估计n次射击的平均环数.这就是我们今天要学习的离散型随机变量的均值或期望
根据射手射击所得环数ξ的分布列,
我们可以估计,在n次射击中,预计大约有
次得4环;
次得5环;
…………
次得10环.
故在n次射击的总环数大约为
,
从而,预计n次射击的平均环数约为
.
这是一个由射手射击所得环数的分布列得到的,只与射击环数的可能取值及其相应的概率有关的常数,它反映了射手射击的平均水平.
对于任一射手,若已知其射击所得环数ξ的分布列,即已知各个(i=0,1,2,…,10),我们可以同样预计他任意n次射击的平均环数:
….
1.均值或数学期望:一般地,若离散型随机变量ξ的概率分布为
ξx1x2…xn…
Pp1p2…pn…
则称……为ξ的均值或数学期望,简称期望.
2.均值或数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平
3.平均数、均值:一般地,在有限取值离散型随机变量ξ的概率分布中,令…,则有…,…,所以ξ的数学期望又称为平均数、均值
4.均值或期望的一个性质:若(a、b是常数),ξ是随机变量,则η也是随机变量,它们的分布列为
ξx1x2…xn…
η
…
…
Pp1p2…pn…
于是……
=……)……)
=,
由此,我们得到了期望的一个性质:
5.若ξB(n,p),则Eξ=np
证明如下:
∵,
∴0×+1×+2×+…+k×+…+n×.
又∵,
∴++…++…+.
故若ξ~B(n,p),则np.
三、讲解范例:
例1.篮球运动员在比赛中每次罚球命中得1分,罚不中得0分,已知他命中的概率为0.7,求他罚球一次得分的期望
解:因为,
所以
例2.一次单元测验由20个选择题构成,每个选择题有4个选项,其中有且仅有一个选项是正确答案,每题选择正确答案得5分,不作出选择或选错不得分,满分100分学生甲选对任一题的概率为0.9,学生乙则在测验中对每题都从4个选择中随机地选择一个,求学生甲和乙在这次英语单元测验中的成绩的期望
解:设学生甲和乙在这次英语测验中正确答案的选择题个数分别是,则~B(20,0.9),,
由于答对每题得5分,学生甲和乙在这次英语测验中的成绩分别是5和5所以,他们在测验中的成绩的期望分别是:
例3.根据气象预报,某地区近期有小洪水的概率为0.25,有大洪水的概率为0.01.该地区某工地上有一台大型设备,遇到大洪水时要损失60000元,遇到小洪水时要损失10000元.为保护设备,有以下3种方案:
方案1:运走设备,搬运费为3800元.
方案2:建保护围墙,建设费为2000元.但围墙只能防小洪水.
方案3:不采取措施,希望不发生洪水.
试比较哪一种方案好.
解:用X1、X2和X3分别表示三种方案的损失.
采用第1种方案,无论有无洪水,都损失3800元,即
X1=3800.
采用第2种方案,遇到大洪水时,损失2000+60000=62000元;没有大洪水时,损失2000元,即
同样,采用第3种方案,有
于是,
EX1=3800,
EX2=62000×P(X2=62000)+200000×P(X2=2000)
=62000×0.01+2000×(1-0.01)=2600,
EX3=60000×P(X3=60000)+10000×P(X3=10000)+0×P(X3=0)
=60000×0.01+10000×0.25=3100.
采取方案2的平均损失最小,所以可以选择方案2.
值得注意的是,上述结论是通过比较“平均损失”而得出的.一般地,我们可以这样来理解“平均损失”:假设问题中的气象情况多次发生,那么采用方案2将会使损失减到最小.由于洪水是否发生以及洪水发生的大小都是随机的,所以对于个别的一次决策,采用方案2也不一定是最好的.
例4.随机抛掷一枚骰子,求所得骰子点数的期望
解:∵,
=3.5
例5.有一批数量很大的产品,其次品率是15%,对这批产品进行抽查,每次抽取1件,如果抽出次品,则抽查终止,否则继续抽查,直到抽出次品为止,但抽查次数不超过10次求抽查次数的期望(结果保留三个有效数字)
解:抽查次数取110的整数,从这批数量很大的产品中抽出1件检查的试验可以认为是彼此独立的,取出次品的概率是0.15,取出正品的概率是0.85,前次取出正品而第次(=1,2,…,10)取出次品的概率:
(=1,2,…,10)
需要抽查10次即前9次取出的都是正品的概率:由此可得的概率分布如下:
12345678910
0.150.12750.10840.0920.07830.06660.05660.04810.04090.2316
根据以上的概率分布,可得的期望
例6.随机的抛掷一个骰子,求所得骰子的点数ξ的数学期望.
解:抛掷骰子所得点数ξ的概率分布为
ξ123456
所以
1×+2×+3×+4×+5×+6×
=(1+2+3+4+5+6)×=3.5.
抛掷骰子所得点数ξ的数学期望,就是ξ的所有可能取值的平均值.
例7.某城市出租汽车的起步价为10元,行驶路程不超出4km时租车费为10元,若行驶路程超出4km,则按每超出lkm加收2元计费(超出不足lkm的部分按lkm计).从这个城市的民航机场到某宾馆的路程为15km.某司机经常驾车在机场与此宾馆之间接送旅客,由于行车路线的不同以及途中停车时间要转换成行车路程(这个城市规定,每停车5分钟按lkm路程计费),这个司机一次接送旅客的行车路程ξ是一个随机变量.设他所收租车费为η
(Ⅰ)求租车费η关于行车路程ξ的关系式;
(Ⅱ)若随机变量ξ的分布列为
ξ15161718
P0.10.50.30.1
求所收租车费η的数学期望.
(Ⅲ)已知某旅客实付租车费38元,而出租汽车实际行驶了15km,问出租车在途中因故停车累计最多几分钟?
解:(Ⅰ)依题意得η=2(ξ-4)十10,即η=2ξ+2;
(Ⅱ)
∵η=2ξ+2
∴2Eξ+2=34.8(元)
故所收租车费η的数学期望为34.8元.
(Ⅲ)由38=2ξ+2,得ξ=18,5(18-15)=15
所以出租车在途中因故停车累计最多15分钟
四、课堂练习:
1.口袋中有5只球,编号为1,2,3,4,5,从中任取3球,以表示取出球的最大号码,则()
A.4;B.5;C.4.5;D.4.75
答案:C
2.篮球运动员在比赛中每次罚球命中的1分,罚不中得0分.已知某运动员罚球命中的概率为0.7,求
⑴他罚球1次的得分ξ的数学期望;
⑵他罚球2次的得分η的数学期望;
⑶他罚球3次的得分ξ的数学期望.
解:⑴因为,,所以
1×+0×
⑵η的概率分布为
η012
P
所以0×+1×+2×=1.4.
⑶ξ的概率分布为
ξ0123
P
所以0×+1×+2×=2.1.
3.设有m升水,其中含有大肠杆菌n个.今取水1升进行化验,设其中含有大肠杆菌的个数为ξ,求ξ的数学期望.
分析:任取1升水,此升水中含一个大肠杆菌的概率是,事件“ξ=k”发生,即n个大肠杆菌中恰有k个在此升水中,由n次独立重复实验中事件A(在此升水中含一个大肠杆菌)恰好发生k次的概率计算方法可求出P(ξ=k),进而可求Eξ.
解:记事件A:“在所取的1升水中含一个大肠杆菌”,则P(A)=.
∴P(ξ=k)=Pn(k)=C)k(1-)n-k(k=0,1,2,….,n).
∴ξ~B(n,),故Eξ=n×=
五、小结:(1)离散型随机变量的期望,反映了随机变量取值的平均水平;
(2)求离散型随机变量ξ的期望的基本步骤:①理解ξ的意义,写出ξ可能取的全部值;②求ξ取各个值的概率,写出分布列;③根据分布列,由期望的定义求出Eξ公式E(aξ+b)=aEξ+b,以及服从二项分布的随机变量的期望Eξ=np
六、课后作业:P64-65练习1,2,3,4P69A组1,2,3
1.一袋子里装有大小相同的3个红球和两个黄球,从中同时取出2个,则其中含红球个数的数学期望是(用数字作答)
解:令取取黄球个数(=0、1、2)则的要布列为
012
p
于是E()=0×+1×+2×=0.8
故知红球个数的数学期望为1.2
2.袋中有4个黑球、3个白球、2个红球,从中任取2个球,每取到一个黑球记0分,每取到一个白球记1分,每取到一个红球记2分,用表示得分数
①求的概率分布列
②求的数学期望
解:①依题意的取值为0、1、2、3、4
=0时,取2黑p(=0)=
=1时,取1黑1白p(=1)=
=2时,取2白或1红1黑p(=2)=+
=3时,取1白1红,概率p(=3)=
=4时,取2红,概率p(=4)=
01234
p
∴分布列为
(2)期望E=0×+1×+2×+3×+4×=
3.学校新进了三台投影仪用于多媒体教学,为保证设备正常工作,事先进行独立试验,已知各设备产生故障的概率分别为p1、p2、p3,求试验中三台投影仪产生故障的数学期望
解:设表示产生故障的仪器数,Ai表示第i台仪器出现故障(i=1、2、3)
表示第i台仪器不出现故障,则:
p(=1)=p(A1)+p(A2)+p(A3)
=p1(1-p2)(1-p3)+p2(1-p1)(1-p3)+p3(1-p1)(1-p2)
=p1+p2+p3-2p1p2-2p2p3-2p3p1+3p1p2p3
p(=2)=p(A1A2)+p(A1)+p(A2A3)
=p1p2(1-p3)+p1p3(1-p2)+p2p3(1-p1)
=p1p2+p1p3+p2p3-3p1p2p3
p(=3)=p(A1A2A3)=p1p2p3
∴=1×p(=1)+2×p(=2)+3×p(=3)=p1+p2+p3
注:要充分运用分类讨论的思想,分别求出三台仪器中有一、二、三台发生故障的概率后再求期望
4.一个袋子里装有大小相同的3个红球和2个黄球,从中同时取出2个,含红球个数的数学期望是1.2
解:从5个球中同时取出2个球,出现红球的分布列为
012
5.、两个代表队进行乒乓球对抗赛,每队三名队员,队队员是,队队员是,按以往多次比赛的统计,对阵队员之间胜负概率如下:
对阵队员A队队员胜的概率B队队员胜的概率
A1对B1
A2对B2
A3对B3
现按表中对阵方式出场,每场胜队得1分,负队得0分,设队,队最后所得分分别为,
(1)求,的概率分布;(2)求,
解:(Ⅰ),的可能取值分别为3,2,1,0
根据题意知,所以
(Ⅱ);
因为,所以
七、板书设计(略)
八、教学反思:
(1)离散型随机变量的期望,反映了随机变量取值的平均水平;
(2)求离散型随机变量ξ的期望的基本步骤:
①理解ξ的意义,写出ξ可能取的全部值;
②求ξ取各个值的概率,写出分布列;
③根据分布列,由期望的定义求出Eξ公式E(aξ+b)=aEξ+b,以及服从二项分布的随机变量的期望Eξ=np。
高二数学《随机变量》教案
高二数学《随机变量》教案
学习目标:
1、了解本章的学习的内容以及学习思想方法2、能叙述随机变量的定义
3、能说出随机变量与函数的关系,4、能够把一个随机试验结果用随机变量表示
重点:能够把一个随机试验结果用随机变量表示
难点:随机事件概念的透彻理解及对随机变量引入目的的认识:
环节一:随机变量的定义
1.通过生活中的一些随机现象,能够概括出随机变量的定义
2能叙述随机变量的定义
3能说出随机变量与函数的区别与联系
一、阅读课本33页问题提出和分析理解,回答下列问题?
1、了解一个随机现象的规律具体指的是什么?
2、分析理解中的两个随机现象的随机试验结果有什么不同?建立了什么样的对应关系?
总结:
3、随机变量
(1)定义:
这种对应称为一个随机变量。即随机变量是从随机试验每一个可能的结果所组成的
到的映射。
(2)表示:随机变量常用大写字母.等表示.
(3)随机变量与函数的区别与联系
函数随机变量
自变量
因变量
因变量的范围
相同点都是映射都是映射
环节二随机变量的应用
1、能正确写出随机现象所有可能出现的结果2、能用随机变量的描述随机事件
例1:已知在10件产品中有2件不合格品。现从这10件产品中任取3件,其中含有的次品数为随机变量的学案.这是一个随机现象。(1)写成该随机现象所有可能出现的结果;(2)试用随机变量来描述上述结果。
变式:已知在10件产品中有2件不合格品。从这10件产品中任取3件,这是一个随机现象。若Y表示取出的3件产品中的合格品数,试用随机变量描述上述结果
例2连续投掷一枚均匀的硬币两次,用X表示这两次正面朝上的次数,则X是一个随机变
量,分别说明下列集合所代表的随机事件:
(1){X=0}(2){X=1}
(3){X2}(4){X0}
变式:连续投掷一枚均匀的硬币三次,用X表示这三次正面朝上的次数,则X是一个随机变量,X的可能取值是?并说明这些值所表示的随机试验的结果.
练习:写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机变量的结果。
(1)从学校回家要经过5个红绿灯路口,可能遇到红灯的次数;
(2)一个袋中装有5只同样大小的球,编号为1,2,3,4,5,现从中随机取出3只球,被取出的球的最大号码数;
小结(对标)
2.3离散型随机变量的均值与方差教案一(新人教A版选修2-3)
2.3.2离散型随机变量的方差
教学目标:
知识与技能:了解离散型随机变量的方差、标准差的意义,会根据离散型随机变量的分布列求出方差或标准差。
过程与方法:了解方差公式“D(aξ+b)=a2Dξ”,以及“若ξ~Β(n,p),则Dξ=np(1—p)”,并会应用上述公式计算有关随机变量的方差。
情感、态度与价值观:承前启后,感悟数学与生活的和谐之美,体现数学的文化功能与人文价值。
教学重点:离散型随机变量的方差、标准差
教学难点:比较两个随机变量的期望与方差的大小,从而解决实际问题
教具准备:多媒体、实物投影仪。
教学设想:了解方差公式“D(aξ+b)=a2Dξ”,以及“若ξ~Β(n,p),则Dξ=np(1—p)”,并会应用上述公式计算有关随机变量的方差。
授课类型:新授课
课时安排:2课时
教具:多媒体、实物投影仪
内容分析:
数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平,表示了随机变量在随机实验中取值的平均值,所以又常称为随机变量的平均数、均值.今天,我们将对随机变量取值的稳定与波动、集中与离散的程度进行研究.其实在初中我们也对一组数据的波动情况作过研究,即研究过一组数据的方差.
回顾一组数据的方差的概念:设在一组数据,,…,中,各数据与它们的平均值得差的平方分别是,,…,,那么++…+
叫做这组数据的方差
教学过程:
一、复习引入:
1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量随机变量常用希腊字母ξ、η等表示
2.离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量
3.连续型随机变量:对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量
4.离散型随机变量与连续型随机变量的区别与联系:离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出
5.分布列:
ξx1x2…xi…
PP1P2…Pi…
6.分布列的两个性质:⑴Pi≥0,i=1,2,…;⑵P1+P2+…=1.
7.二项分布:ξ~B(n,p),并记=b(k;n,p).
ξ01…k…n
P
…
…
8.几何分布:g(k,p)=,其中k=0,1,2,…,.
ξ123…k…
P
…
9.数学期望:一般地,若离散型随机变量ξ的概率分布为
ξx1x2…xn…
Pp1p2…pn…
则称……为ξ的数学期望,简称期望.
10.数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平
11平均数、均值:在有限取值离散型随机变量ξ的概率分布中,令…,则有…,…,所以ξ的数学期望又称为平均数、均值
12.期望的一个性质:
13.若ξB(n,p),则Eξ=np
二、讲解新课:
1.方差:对于离散型随机变量ξ,如果它所有可能取的值是,,…,,…,且取这些值的概率分别是,,…,,…,那么,
=++…++…
称为随机变量ξ的均方差,简称为方差,式中的是随机变量ξ的期望.
2.标准差:的算术平方根叫做随机变量ξ的标准差,记作.
3.方差的性质:(1);(2);
(3)若ξ~B(n,p),则np(1-p)
4.其它:
⑴随机变量ξ的方差的定义与一组数据的方差的定义式是相同的;
⑵随机变量ξ的方差、标准差也是随机变量ξ的特征数,它们都反映了随机变量取值的稳定与波动、集中与离散的程度;
⑶标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛
三、讲解范例:
例1.随机抛掷一枚质地均匀的骰子,求向上一面的点数的均值、方差和标准差.
解:抛掷散子所得点数X的分布列为
ξ123456
从而
例2.有甲乙两个单位都愿意聘用你,而你能获得如下信息:
甲单位不同职位月工资X1/元1200140016001800
获得相应职位的概率P10.40.30.20.1
乙单位不同职位月工资X2/元1000140018002000
获得相应职位的概率P20.40.30.20.1
根据工资待遇的差异情况,你愿意选择哪家单位?
解:根据月工资的分布列,利用计算器可算得
EX1=1200×0.4+1400×0.3+1600×0.2+1800×0.1
=1400,
DX1=(1200-1400)2×0.4+(1400-1400)2×0.3
+(1600-1400)2×0.2+(1800-1400)2×0.1
=40000;
EX2=1000×0.4+1400×0.3+1800×0.2+2200×0.1=1400,
DX2=(1000-1400)2×0.4+(1400-1400)×0.3+(1800-1400)2×0.2+(2200-1400)2×0.l
=160000.
因为EX1=EX2,DX1DX2,所以两家单位的工资均值相等,但甲单位不同职位的工资相对集中,乙单位不同职位的工资相对分散.这样,如果你希望不同职位的工资差距小一些,就选择甲单位;如果你希望不同职位的工资差距大一些,就选择乙单位.
例3.设随机变量ξ的分布列为
ξ12…n
P
…
求Dξ
解:(略),
例4.已知离散型随机变量的概率分布为
1234567
P
离散型随机变量的概率分布为
3.73.83.944.14.24.3
P
求这两个随机变量期望、均方差与标准差
解:;
;
;
=0.04,.
点评:本题中的和都以相等的概率取各个不同的值,但的取值较为分散,的取值较为集中.,,,方差比较清楚地指出了比取值更集中.
=2,=0.02,可以看出这两个随机变量取值与其期望值的偏差
例5.甲、乙两射手在同一条件下进行射击,分布列如下:射手甲击中环数8,9,10的概率分别为0.2,0.6,0.2;射手乙击中环数8,9,10的概率分别为0.4,0.2,0.24用击中环数的期望与方差比较两名射手的射击水平
解:
+(10-9);
同理有
由上可知,,所以,在射击之前,可以预测甲、乙两名射手所得的平均环数很接近,均在9环左右,但甲所得环数较集中,以9环居多,而乙得环数较分散,得8、10环地次数多些.
点评:本题中,和所有可能取的值是一致的,只是概率的分布情况不同.=9,这时就通过=0.4和=0.8来比较和的离散程度,即两名射手成绩的稳定情况
例6.A、B两台机床同时加工零件,每生产一批数量较大的产品时,出次品的概率如下表所示:
A机床B机床
次品数ξ10123次品数ξ10123
概率P0.70.20.060.04概率P0.80.060.040.10
问哪一台机床加工质量较好
解:Eξ1=0×0.7+1×0.2+2×0.06+3×0.04=0.44,
Eξ2=0×0.8+1×0.06+2×0.04+3×0.10=0.44.
它们的期望相同,再比较它们的方差
Dξ1=(0-0.44)2×0.7+(1-0.44)2×0.2+(2-0.44)2
×0.06+(3-0.44)2×0.04=0.6064,
Dξ2=(0-0.44)2×0.8+(1-0.44)2×0.06+(2-0.44)2
×0.04+(3-0.44)2×0.10=0.9264.
∴Dξ1Dξ2故A机床加工较稳定、质量较好.
四、课堂练习:
1.已知,则的值分别是()
A.;B.;C.;D.
答案:1.D
2.一盒中装有零件12个,其中有9个正品,3个次品,从中任取一个,如果每次取出次品就不再放回去,再取一个零件,直到取得正品为止.求在取得正品之前已取出次品数的期望.
分析:涉及次品率;抽样是否放回的问题.本例采用不放回抽样,每次抽样后次品率将会发生变化,即各次抽样是不独立的.如果抽样采用放回抽样,则各次抽样的次品率不变,各次抽样是否抽出次品是完全独立的事件.
解:设取得正品之前已取出的次品数为ξ,显然ξ所有可能取的值为0,1,2,3
当ξ=0时,即第一次取得正品,试验停止,则
P(ξ=0)=
当ξ=1时,即第一次取出次品,第二次取得正品,试验停止,则
P(ξ=1)=
当ξ=2时,即第一、二次取出次品,第三次取得正品,试验停止,则
P(ξ=2)=
当ξ=3时,即第一、二、三次取出次品,第四次取得正品,试验停止,则P(ξ=3)=
所以,Eξ=
3.有一批数量很大的商品的次品率为1%,从中任意地连续取出200件商品,设其中次品数为ξ,求Eξ,Dξ
分析:涉及产品数量很大,而且抽查次数又相对较少的产品抽查问题.由于产品数量很大,因而抽样时抽出次品与否对后面的抽样的次品率影响很小,所以可以认为各次抽查的结果是彼此独立的.解答本题,关键是理解清楚:抽200件商品可以看作200次独立重复试验,即ξB(200,1%),从而可用公式:Eξ=np,Dξ=npq(这里q=1-p)直接进行计算
解:因为商品数量相当大,抽200件商品可以看作200次独立重复试验,所以ξB(200,1%)因为Eξ=np,Dξ=npq,这里n=200,p=1%,q=99%,所以,Eξ=200×1%=2,Dξ=200×1%×99%=1.98
4.设事件A发生的概率为p,证明事件A在一次试验中发生次数ξ的方差不超过1/4
分析:这是一道纯数学问题.要求学生熟悉随机变量的期望与方差的计算方法,关键还是掌握随机变量的分布列.求出方差Dξ=P(1-P)后,我们知道Dξ是关于P(P≥0)的二次函数,这里可用配方法,也可用重要不等式证明结论
证明:因为ξ所有可能取的值为0,1且P(ξ=0)=1-p,P(ξ=1)=p,
所以,Eξ=0×(1-p)+1×p=p
则Dξ=(0-p)2×(1-p)+(1-p)2×p=p(1-p)
5.有A、B两种钢筋,从中取等量样品检查它们的抗拉强度,指标如下:
ξA110120125130135ξB100115125130145
P0.10.20.40.10.2P0.10.20.40.10.2
其中ξA、ξB分别表示A、B两种钢筋的抗拉强度.在使用时要求钢筋的抗拉强度不低于120,试比较A、B两种钢筋哪一种质量较好
分析:两个随机变量ξA和ξB都以相同的概率0.1,0.2,0.4,0.1,0.2取5个不同的数值.ξA取较为集中的数值110,120,125,130,135;ξB取较为分散的数值100,115,125,130,145.直观上看,猜想A种钢筋质量较好.但猜想不一定正确,需要通过计算来证明我们猜想的正确性
解:先比较ξA与ξB的期望值,因为
EξA=110×0.1+120×0.2+125×0.4+130×0.1+135×0.2=125,
EξB=100×0.1+115×0.2+125×0.4十130×0.1+145×0.2=125.
所以,它们的期望相同.再比较它们的方差.因为
DξA=(110-125)2×0.1+(120-125)2×0.2+(130-125)2×0.1+(135-125)2×0.2=50,
DξB=(100-125)2×0.1+(110-125)2×0.2+(130-125)2×0.1+(145-125)2×0.2=165.
所以,DξADξB.因此,A种钢筋质量较好
6.在有奖摸彩中,一期(发行10000张彩票为一期)有200个奖品是5元的,20个奖品是25元的,5个奖品是100元的.在不考虑获利的前提下,一张彩票的合理价格是多少元?
分析:这是同学们身边常遇到的现实问题,比如福利彩票、足球彩票、奥运彩票等等.一般来说,出台各种彩票,政府要从中收取一部分资金用于公共福利事业,同时也要考虑工作人员的工资等问题.本题的“不考虑获利”的意思是指:所收资金全部用于奖品方面的费用
解:设一张彩票中奖额为随机变量ξ,显然ξ所有可能取的值为0,5,25,100依题
意,可得ξ的分布列为
ξ0525100
P
答:一张彩票的合理价格是0.2元.
五、小结:⑴求离散型随机变量ξ的方差、标准差的步骤:①理解ξ的意义,写出ξ可能取的全部值;②求ξ取各个值的概率,写出分布列;③根据分布列,由期望的定义求出Eξ;④根据方差、标准差的定义求出、.若ξ~B(n,p),则不必写出分布列,直接用公式计算即可.
⑵对于两个随机变量和,在和相等或很接近时,比较和
,可以确定哪个随机变量的性质更适合生产生活实际,适合人们的需要
六、课后作业:P69练习1,2,3P69A组4B组1,2
1.设~B(n、p)且E=12D=4,求n、p
解:由二次分布的期望与方差性质可知E=npD=np(1-p)
∴∴
2.已知随机变量服从二项分布即~B(6、)求b(2;6,)
解:p(=2)=c62()2()4
3.已知甲、乙两名射手在一次射击中的得分为两个相互独立的随机变量和,已知和的分布列如下:(注得分越大,水平越高)
123
pA0.10.6
123
p0.3b0.3
试分析甲、乙技术状况
解:由0.1+0.6+a+1a=0.3
0.3+0.3+b=1a=0.4
∴E=2.3,E=2.0
D=0.81,D=0.6
七、板书设计(略)
八、教学反思:
⑴求离散型随机变量ξ的方差、标准差的步骤:
①理解ξ的意义,写出ξ可能取的全部值;
②求ξ取各个值的概率,写出分布列;
③根据分布列,由期望的定义求出Eξ;
④根据方差、标准差的定义求出、.若ξ~B(n,p),则不必写出分布列,直接用公式计算即可.
⑵对于两个随机变量和,在和相等或很接近时,比较和,可以确定哪个随机变量的性质更适合生产生活实际,适合人们的需要
高二数学.1随机变量及其概率分布学案
一名优秀的教师在教学时都会提前最好准备,作为教师就要好好准备好一份教案课件。教案可以让学生们能够在上课时充分理解所教内容,帮助教师缓解教学的压力,提高教学质量。所以你在写教案时要注意些什么呢?考虑到您的需要,小编特地编辑了“高二数学.1随机变量及其概率分布学案”,欢迎阅读,希望您能够喜欢并分享!
§2.1随机变量及其概率分布
一、知识要点
1.随机变量
2.随机变量的概率分布:
⑴分布列:;
⑵分布表:
……
这里的满足条件.
3.两点分布
二、典型例题
例1.⑴掷一枚质地均匀的硬币1次,若用表示掷得正面的次数,则随机变量的可能取值有哪些?
⑵一实验箱中装有标号为1,2,3,4,5的5只白鼠,若从中任取1只,记取到的白鼠的标号为,则随机变量的可能取值有哪些?
例2.从装有6只白球和4只红球的口袋中任取1只球,用表示“取到的白球个数”即,求随机变量的概率分布.
例3.同时掷两颗质地均匀的骰子,观察朝上一面出现的点数,求两颗骰子中出现的较大点数的概率分布,并求大于2小于5的概率.
例4.将3个小球随机地放入4个盒子中,盒子中球的最大个数记为,求⑴的分布列;⑵盒子中球的最大个数不是1的概率.
三、巩固练习
1.设随机变量的概率分布列为,则常数等于.
2.掷一枚骰子,出现点数是一随机变量,则的值为.
3.若离散型随机变量的分布列见下表,则常数=.
4.设随机变量的分布列为.
求:⑴;⑵;⑶.
四、课堂小结
五、课后反思
六、课后作业
1.设随机变量的分布列为,则=.
2.把3个骰子全部掷出,设出现6点的骰子的个数为,则=.
3.设是一个随机变量,其分布列为,则=.
4.设随机变量的分布列为为常数,则
=.
5.在0—1分布中,设,则=.
6.已知随机变量的概率分布如下:
-1-0.501.83
0.10.20.10.3
求:⑴;⑵;⑶;⑷;⑸;⑹.
7.袋中有5只乒乓球,编号为1至5,从袋中任取3只,若以表示取到的球中的最大号码,试写出的分布列.
8.设随机变量只能取5,6,7,…,16这12个值,且取每个值的机会是均等的.试求:
⑴;⑵;⑶.