88教案网

你的位置: 教案 > 高中教案 > 导航 > 2012届高考数学备考复习概率、随机变量及其分布列教案

小学数学复习教案

发表时间:2020-11-24

2012届高考数学备考复习概率、随机变量及其分布列教案。

一名优秀的教师在教学时都会提前最好准备,作为高中教师就要在上课前做好适合自己的教案。教案可以让学生们有一个良好的课堂环境,帮助高中教师掌握上课时的教学节奏。关于好的高中教案要怎么样去写呢?为了让您在使用时更加简单方便,下面是小编整理的“2012届高考数学备考复习概率、随机变量及其分布列教案”,仅供参考,希望能为您提供参考!

专题六:概率与统计、推理与证明、算法初步、复数
第二讲概率、随机变量及其分布列
【最新考纲透析】
1.概率
(1)了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别。
(2)了解两个互斥事件的概率加法公式。
(3)理解古典概型及其概率计算公式。
(4)了解几何概型的意义。
(5)了解条件概率。
2.两个事件相互独立,n次独立重复试验
(1)了解两个事件相互独立的概念;
(2)理解n次独立重复试验的模型并能解决一些实际问题;
3.离散型随机变量及其分布列
(1)理解取有限个值的离散随机变量及其分布列的概念。
(2)理解二项分布,并解决一些简单问题。
4.离散型随机变量的均值、方差
(1)理解取有限个值的离散型随机变量的均值、方差的概念;
(2)能计算简单离散型随机变量的均值、方差,并能解决一些实际问题。

【核心要点突破】
要点考向1:古典概型
考情聚焦:1.古典概型是高考重点考查的概率模型,常与计数原理、排列组合结合起来考查。
2.多以选择题、填空题的形式考查,属容易题。
考向链接:1.有关古典模型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数,这常常用到计数原理与排列、组合的相关知识。
2.在求基本事件的个数时,要准确理解基本事件的构成,这样才能保证所求事件所包含的基本事件数的求法与基本事件总数的求法的一致性。
3.对于较复杂的题目,要注意正确分类,分类时应不重不漏。
例1:(2010北京高考文科T3)从{1,2,3,4,5}中随机选取一个数为a,从{1,2,3}中随机选取一个数为b,则ba的概率是()
(A)(B)(C)(D)
【命题立意】本题考查古典概型,熟练掌握求古典概型概率的常用方法是解决本题的关键。
【思路点拨】先求出基本事件空间包含的基本事件总数,再求出事件“”包含的基本事件数,从而。
【规范解答】选D。,包含的基本事件总数。事件“”为,包含的基本事件数为。其概率。
【方法技巧】列古典概型的基本事件空间常用的方法有:(1)列举法;(2)坐标网格法;(3)树图等。
要点考向2:几何概型
考情聚焦:1.几何模型是新课标新增内容,预计今后会成为新课标高考的增长点,应引起高度重视。
2.易与解析几何、定积分等几何知识交汇命题,多以选择题、填空题的形式出现,属中、低档题目。
考向链接:1.当试验的结果构成的区域为长度、面积、体积、弧长、夹角等时,应考虑使用几何概型求解。
2.利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域。
例2:(2010湖南高考文科T11)在区间[-1,2]上随即取一个数x,则x∈[0,1]的概率为。
【命题立意】以非常简单的区间立意,运算不复杂,但能切中考查几何概型的要害。
【思路点拨】一元几何概型→长度之比
【规范解答】[-1,2]的长度为3,[0,1]的长度为1,所以概率是.
【方法技巧】一元几何概型→长度之比,二元几何概型→面积之比,三元几何概型→体积之比
要点考向3:条件概率
考情聚焦:1.条件概率是新课标新增内容,在2007年山东高考重点亮相过,预计在今后课改省份高考中会成为亮点。
2.常出现在解答题中和其他知识一同考查,当然也会在选择题、填空题中单独考查。
考向链接:(1)利用公式是求条件概率最基本的方法,这种方法的关键是分别求出P(A)和P(AB),其中P(AB)是指事件A和B同时发生的概率。
(2)在求P(AB)时,要判断事件A与事件B之间的关系,以便采用不同的方法求P(AB)。其中,若,则P(AB)=P(B),从而
例3:(2010安徽高考理科T15)甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球。先从甲罐中随机取出一球放入乙罐,分别以和表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以表示由乙罐取出的球是红球的事件,则下列结论中正确的是________(写出所有正确结论的编号)。
①;
②;
③事件与事件相互独立;
④是两两互斥的事件;
⑤的值不能确定,因为它与中哪一个发生有关。
【命题立意】本题主要考查概率的综合问题,考查考生对事件关系的理解和条件概率的认知水平.
【思路点拨】根据事件互斥、事件相互独立的概念,条件概率及把事件B的概率转化为可辨析此题。
【规范解答】显然是两两互斥的事件,
有,,,


且,,有
可以判定②④正确,而①③⑤错误。
【答案】②④
要点考向4:复杂事件的概率与随机变量的分布列、期望、方差
考情聚焦:1.复杂事件的概率与随机变量的分布列、期望、方差是每年高考必考的内容,与生活实践联系密切。
2.多以解答题的形式呈现,属中档题。
例4:(2010湖南高考理科T4)
图4是某城市通过抽样得到的居民某年的月均用水量(单位:吨)的频率分布直方图
(Ⅰ)求直方图中x的值
(II)若将频率视为概率,从这个城市随机抽取3位居民(看作有放回的抽样),求月均用水量在3至4吨的居民数X的分布列和数学期望。
【命题立意】以实际生活为背景,考查频率分布直方图的认识,进而考查分布列和期望等统计知识.
【思路点拨】频率分布直方图→矩形的面积表示频率反映概率;随机抽取3位居民(看作有放回的抽样)是三个独立重复实验→计算概率时遵循贝努力概型.
【规范解答】(1)依题意及频率分布直方图知,0.02+0.1+x+0.37+0.39=1,解得x=0.12.
(2)由题意知,X~B(3,0.1).
因此P(x=0)=P(X=1)=
P(X=2)=P(X=3)=
故随机变量X的分布列为
X0123
P0.7290.2430.0270.001
X的数学期望为EX=3×0.1=0.3.
【方法技巧】1、统计的常用图:条形图,径叶图;直方图,折线图等。要学会识图.2、概率问题的解题步骤:首先思考实验的个数、实验关系和实验结果,然后思考目标时间如何用基本事件表示出来,最后利用对立事件、对立事件和互斥事件进行运算.3、在求期望和方差时注意使用公式.
注:(1)求复杂事件的概率,要正确分析复杂事件的构成,看复杂事件能转化为几个彼此互斥的事件的和事件还是能转化为几个相互独立事件同时发生的积事件,然后用概率公式求解。
(2)一个复杂事件若正面情况比较多,反而情况较少,则一般利用对立事件进行求解。对于“至少”,“至多”等问题往往用这种方法求解。
(3)求离散型随机变量的分布列的关键是正确理解随机变量取每一个所表示的具体事件,然后综合应用各类求概率的公式,求出概率。
(4)求随机变量的均值和方差的关键是正确求出随机变量的分布列,若随机变量服从二项分布,则可直接使用公式求解。

【高考真题探究】
1.(2010辽宁高考理科T3)两个实习生每人加工一个零件.加工为一等品的概率分别为和,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为()
(A)(B)(C)(D)
【命题立意】本题考查独立事件同时发生的概率,
【思路点拨】恰有一个一等品,包含两类情况,
【规范解答】选B.所求概率为。
【方法技巧】1、要准确理解恰有一个产含义,
2、事件A、B相互独立,则P(AB)=P(A)P(B)
3、本题也可用对立事件的概率来解决。所求概率p=1-.

2.(2010福建高考理科T13)某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续回答出两个问题,即停止答题,晋级下一轮。假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于。
【命题立意】本题主要考查相互独立事件同时发生的概率的求解。
【思路点拨】分析题意可得:该选手第一个问题可以答对也可以答错,第二个问题一定回答错误,第三、四个问题一定答对,进而求解“相互独立事件同时发生的概率”。
【规范解答】依题意得:该选手第一个问题可以答对也可以答错,第二个问题一定回答错误,第三、四个问题一定答对,所以其概率.

3.(2010江苏高考T3)盒子里共有大小相同的3只白球,1只黑球,若从中随机地摸出两只球,则它们颜色不同的概率是___.
【命题立意】本题考查古典概型的概率求法。
【思路点拨】先求出从盒子中随机地摸出两只球的所有方法数,再求出所摸两只球颜色不同的方法数,最后代入公式计算即可。
【规范解答】从盒子中随机地摸出两只球,共有种情况,而摸两只球颜色不同的种数为种情况,故所求的概率为
【答案】

4.(2010湖北高考文科T13)一个病人服用某种新药后被治愈的概率为0.9.则服用这种新药的4个病人中至少3人被治愈的概率为_______(用数字作答).
【命题立意】本题主要考查独立重复试验及互斥事件的概率,考查考生的分类讨论思想和运算求解能力.
【思路点拨】“4个病人服用某种新药”相当于做4次独立重复试验,“至少3人被治愈”即“3人被治愈”,“4人被治愈”两个互斥事件有一个要发生,由独立重复试验和概率的加法公式即可得出答案.
【规范解答】4个病人服用某种新药3人被治愈的概率为:;
4个病人服用某种新药4人被治愈的概率为:,故服用这种新药的4个
病人中至少3人被治愈的概率为.
【答案】0.9477.
【方法技巧】求多个事件至少有一个要发生的概率一般有两种办法:1、将该事件分解为若干个互斥事件的“和事件”,然后利用概率的加法公式求解;2、考虑对立事件。如:本题也可另解为

5.(2010重庆高考文科T14)加工某一零件经过三道工序,设第一、二、三道工序的次品率分别为、、,且各道工序互不影响,则加工出来的零件的次品率为.
【命题立意】本小题考查概率、相互独立试验等基础知识,考查运算求解能力,考查分类讨论的思想.
【思路点拨】加工零件需要完成三道工序,考虑问题的对立事件,加工出合格零件则需要三道工序都是合格品.
【规范解答】因为第一、二、三道工序的次品率分别为、、,所以第一、二、三道工序的正品率分别为,所以加工出来的零件的次品率为
【答案】.
【方法技巧】当所求事件的情形较多时,它的对立事件的情形较少,采用对立事件求解就是“正难则反易”的方法.

6.(2010重庆高考文科T17)在甲、乙等6个单位参加的一次“唱读讲传”演出活动中,每个单位的节目集中安排在一起.若采用抽签的方式随机确定各单位的演出顺序(序号为1,2,…,6),求:
(1)甲、乙两单位的演出序号均为偶数的概率;
(2)甲、乙两单位的演出序号不相邻的概率.
【命题立意】本小题考查排列、组合、古典概型的基础知识及其综合应用,考查运算求解能力,及分类讨论的数学思想.
【思路点拨】先求出事件的总的基本事件的个数,再求出符合题意要求的基本事件的个数,最后计算概率.
【规范解答】(方法一)考虑甲乙两个单位的排列顺序,甲乙两个单位可以排列在6个位置中的任意两个位置,有种等可能的结果;
(1)设A表示“甲、乙的演出序号均为偶数”,则事件A包含的基本事件的个数是,所以;
(2)设B表示事件“甲乙两单位的演出序号不相邻”,则表示事件“甲乙两单位的演出序号相邻”,事件包含的基本事件的个数是,
所以
(方法二)不考虑甲乙两个单位的排列顺序,甲乙两个单位可以在6个位置中的任选两个位置,有种等可能的结果;
(1)设A表示“甲、乙的演出序号均为偶数”,则事件A包含的基本事件的个数是,所以;
(2)设B表示事件“甲乙两单位的演出序号不相邻”,则表示事件“甲乙两单位的演出序号相邻”,事件包含的基本事件的个数是5,所以.
(方法三)考虑所有单位的排列位置,各单位的演出顺序共有(种)情形;
(1)设A表示“甲、乙的演出序号均为偶数”,则事件A包含的基本事件的个数是,所以;
(2)设B表示事件“甲乙两单位的演出序号不相邻”,则表示事件“甲乙两单位的演出序号相邻”,事件包含的基本事件的个数是,
所以.

【跟踪模拟训练】
一、选择题(每小题6分,共36分)
1.锅中煮有芝麻馅汤圆6个,花生馅汤圆5个,豆沙馅汤圆4个,这三种汤圆的外部特征完全相同。从中任意舀取4个汤圆,则每种汤圆都至少取到1个的概率为()
(A)(B)(C)(D)
2.已知函数、都是定义在上的函数,且(且),,在有穷数列()中,任意取正整数,则其前项和大于的概率是()
A.B.C.D.
3.先后抛掷两枚均匀的正方体骰子,记骰子落地后朝上的点数分别为x、y,则的概率为()A.B.C.D.
4.一个容量为100的样本,其数据的分组与各组的频数如下表:
组别

频数1213241516137
则样本数据落在上的频率为
A.0.13B.0.39C.0.52D.0.64
5.(2010届安徽省合肥高三四模(理))从足够多的四种颜色的灯泡中任选六个安置在如右图的6个顶点处,则相邻顶点处灯泡颜色不同的概率为()
A.B.C.D.
6.(2010届杭州五中高三下5月模拟(理))将一枚骰子抛掷两次,若先后出现的点数分别为,则方程有实根的概率为()
A.B.C.D.

二、填空题(每小题6分,共18分)
7.某班有36名同学参加数学、物理、化学课外兴趣小组,每名同至多参加两个小组,已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有人.
8.从5名世博志愿者中选出3名,分别从事翻译、导游、保洁三项不同的工作,每人承担一项,其中甲不能从事翻译工作,则不同的选派方案共有种.
9.已知集合A={(x,y)||x|≤2,|y|≤2,x,y∈Z},集合B={(x,y)|(x-2)2+(y-2)2≤4,x,y∈Z},在集合A中任取一个元素p,则p∈B的概率是_______.

三、解答题(10、11题每题15分,12题16分,共46分)

10.一个口袋中装有n个红球(n≥5且n∈N)和5个白球,一次摸奖从中摸出两个球,两个球颜色不同则为中奖.
(1)试用n表示一次摸奖中奖的概率P;
(2)若n=5,求三次摸奖(每次摸奖后放回)恰有一次中奖的概率;
(3)记三次摸奖(每次摸奖后放回)恰有一次中奖的概率记为P3(1),当n取多少时,P3(1)值最大?

11.袋内装有6个球,每个球上都记有从1到6的一个号码,设号码为n的球重克,这些球等可能地从袋里取出(不受重量、号码的影响)。
(1)如果任意取出1球,求其重量大于号码数的概率;
(2)如果不放回地任意取出2球,求它们重量相等的概率。

12.大量统计数据表明,某班一周内(周六、周日休息)各天语文、数学、外语三科有作业的概率如下表:
根据上表:(I)求周五没有语文、数学、外语三科作业的概率;
(II)设一周内有数学作业的天数为,求随机变量的分布列和数学期望。
参考答案
1.C
2.C
3.C
4.C
5.C
6.C
7.8
8.48
9.【解析】集合A中共有25个元素,既属于集合A又属于集合B的元素为(0,2),(1,1),(1,2),(2,0),(2,1),(2,2),共6个,故所求概率为P=.
答案:

11.解析:(1)由题意,任意取出1球,共有6种等可能的方法。
由不等式
所以,于是所求概率为
(2)从6个球中任意取出2个球,共有15种等可能的方法,列举如下:
(1,2)(1,3)(1,4)(1,5)(1,6)(2,3)(2,4)(2,5)(2,6)(3,4)(3,5)
(3,6)(4,5)(4,6)(5,6)
设第n号与第m号的两个球的重量相等,
则有
故所求概率为

12.解析:(I)设周五有语文、数学、外语三科作业分别为事件A1、A2、A3周五没有语文、数学、外语三科作业为事件A,则由已知表格得
、、
(II)设一周内有数学作业的天数为,则
所以随机变量的概率分布列如下:
3.若在二项式(x+1)10的展开式中任取一项,则该项的系数为奇数的概率为_______.
【解析】展开式共有11项,其中第1,3,9,11项系数为奇数,故所求概率为P=.
答案:
4.平面区域U={(x,y)|x+y≤6,x≥0,y≥0},M={(x,y)|x≤4,y≥0,x-2y≥0},若向区域U内随机投一点P,则点P落入区域M的概率为________.
【解析】本题考查了线性规划知识及几何概型求概率等知识.如图,作出两集合表示的平面区域,
容易得出U所表示的平面区域为三
角形AOB及其边界,M表示的区域
为三角形OCD及其边界.
容易求得D(4,2)恰为直线x=4,
x-2y=0,x+y=6的交点.
6.一厂家向用户提供的一箱产品共10件,其中有2件次品,用户先对产品进行抽检以决定是否接收,抽检规则是这样的:一次取一件产品检查(取出的产品不放回箱子),若前三次没有抽查到次品,则用户接收这箱产品;若前三次中一抽查到次品就立即停止抽检,并且用户拒绝接收这箱产品.
(1)求这箱产品被用户接收的概率;
(2)记抽检的产品件数为ξ,求ξ的分布列和数学期望.
7.袋中装有标号分别为1,2,3,4,5,6的卡片各1张,从中任取两张卡片,其标号分别记为x,y(其中x>y).
(1)求这两张卡片的标号之和为偶数的概率;
(2)设ξ=x-y,求随机变量ξ的概率分布列与数学期望.

延伸阅读

2012届高考数学第二轮备考复习:散型随机变量的概率分布


一位优秀的教师不打无准备之仗,会提前做好准备,教师要准备好教案,这是老师职责的一部分。教案可以让学生们有一个良好的课堂环境,减轻教师们在教学时的教学压力。写好一份优质的教案要怎么做呢?以下是小编收集整理的“2012届高考数学第二轮备考复习:散型随机变量的概率分布”,仅供参考,希望能为您提供参考!

题型八离散型随机变量的概率分布,均值与方差
(推荐时间:30分钟)
1.(2011盐城模拟)已知某投资项目的利润与产品价格的调整有关,在每次调整中,价格下降的概率都是x(0x1),设该项目产品价格在一年内进行3次独立的调整,记该项目产品价格在一年内的下降次数为ξ,若对该项目投资十万元,则一年后相应利润η(单位:万元)如下表所示:
ξ0123
η210-1
(1)求η的概率分布;
(2)若η的数学期望超过1万元时,才可以投资,则x在什么范围内就可以投资?

2.某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人.现采用分层抽样的方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取3名工人进行技术考核.
(1)求从甲、乙两组各抽取的人数;
(2)求从甲组抽取的工人中恰有1名女工人的概率;
(3)记ξ表示抽取的3名工人中男工人数,求ξ的概率分布及数学期望.

答案
1.解(1)η的值为2,1,0,-1.
P(η=2)=C03x0(1-x)3=(1-x)3,
P(η=1)=C13x(1-x)2=3x(1-x)2.
P(η=0)=C23x2(1-x)=3x2(1-x),
P(η=-1)=C33x3=x3.
∴η的概率分布为:
η210-1
P(1-x)33x(1-x)23x2(1-x)x3
(2)E(η)=2(1-x)3+3x(1-x)2-x3=2-3x.
令2-3x1,得x13,
所以当0x13时,就可以投资.
2.解(1)由于甲组有10名工人,乙组有5名工人,根据分层抽样原理,若从甲、乙两组中共抽取3名工人进行技术考核,则从甲组抽取2名工人,乙组抽取1名工人.
(2)记A表示事件:从甲组抽取的工人中恰有1名女工人,
则P(A)=C14C16C210=815.
(3)ξ的可能取值为0,1,2,3.
Ai表示事件:从甲组抽取的2名工人中恰有i名男工人,i=0,1,2.
B表示事件:从乙组抽取的是1名男工人.
Ai(i=0,1,2)与B独立,
P(ξ=0)=P(A0B)=P(A0)P(B)=C24C210C13C15=675,
P(ξ=1)=P(A0B+A1B)
=P(A0)P(B)+P(A1)P(B)
=C24C210C12C15+C16C14C210C13C15=2875,
P(ξ=3)=P(A2B)=P(A2)P(B)=C26C210C12C15=1075,
P(ξ=2)=1-[P(ξ=0)+P(ξ=1)+P(ξ=3)]=3175.
故ξ的概率分布为
ξ0123
P675
2875
3175
1075

E(ξ)=0×675+1×2875+2×3175+3×1075=85.

高二数学.1随机变量及其概率分布学案


一名优秀的教师在教学时都会提前最好准备,作为教师就要好好准备好一份教案课件。教案可以让学生们能够在上课时充分理解所教内容,帮助教师缓解教学的压力,提高教学质量。所以你在写教案时要注意些什么呢?考虑到您的需要,小编特地编辑了“高二数学.1随机变量及其概率分布学案”,欢迎阅读,希望您能够喜欢并分享!

§2.1随机变量及其概率分布
一、知识要点
1.随机变量
2.随机变量的概率分布:
⑴分布列:;
⑵分布表:
……

这里的满足条件.
3.两点分布
二、典型例题
例1.⑴掷一枚质地均匀的硬币1次,若用表示掷得正面的次数,则随机变量的可能取值有哪些?
⑵一实验箱中装有标号为1,2,3,4,5的5只白鼠,若从中任取1只,记取到的白鼠的标号为,则随机变量的可能取值有哪些?

例2.从装有6只白球和4只红球的口袋中任取1只球,用表示“取到的白球个数”即,求随机变量的概率分布.

例3.同时掷两颗质地均匀的骰子,观察朝上一面出现的点数,求两颗骰子中出现的较大点数的概率分布,并求大于2小于5的概率.

例4.将3个小球随机地放入4个盒子中,盒子中球的最大个数记为,求⑴的分布列;⑵盒子中球的最大个数不是1的概率.
三、巩固练习
1.设随机变量的概率分布列为,则常数等于.
2.掷一枚骰子,出现点数是一随机变量,则的值为.
3.若离散型随机变量的分布列见下表,则常数=.

4.设随机变量的分布列为.
求:⑴;⑵;⑶.

四、课堂小结
五、课后反思
六、课后作业
1.设随机变量的分布列为,则=.
2.把3个骰子全部掷出,设出现6点的骰子的个数为,则=.
3.设是一个随机变量,其分布列为,则=.
4.设随机变量的分布列为为常数,则
=.
5.在0—1分布中,设,则=.
6.已知随机变量的概率分布如下:
-1-0.501.83
0.10.20.10.3

求:⑴;⑵;⑶;⑷;⑸;⑹.

7.袋中有5只乒乓球,编号为1至5,从袋中任取3只,若以表示取到的球中的最大号码,试写出的分布列.

8.设随机变量只能取5,6,7,…,16这12个值,且取每个值的机会是均等的.试求:
⑴;⑵;⑶.

新人教A版选修2-3离散型随机变量及其分布列教案1


一名优秀的教师就要对每一课堂负责,准备好一份优秀的教案往往是必不可少的。教案可以让学生们充分体会到学习的快乐,帮助高中教师掌握上课时的教学节奏。您知道高中教案应该要怎么下笔吗?以下是小编为大家收集的“新人教A版选修2-3离散型随机变量及其分布列教案1”仅供参考,希望能为您提供参考!

2.1.2离散型随机变量的分布列
教学目标:
知识与技能:会求出某些简单的离散型随机变量的概率分布。
过程与方法:认识概率分布对于刻画随机现象的重要性。
情感、态度与价值观:认识概率分布对于刻画随机现象的重要性。
教学重点:离散型随机变量的分布列的概念
教学难点:求简单的离散型随机变量的分布列
授课类型:新授课
课时安排:2课时
教具:多媒体、实物投影仪
教学过程:
一、复习引入:
1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量随机变量常用希腊字母ξ、η等表示
2.离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量
3.连续型随机变量:对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量
4.离散型随机变量与连续型随机变量的区别与联系:离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出
若是随机变量,是常数,则也是随机变量并且不改变其属性(离散型、连续型)
请同学们阅读课本P5-6的内容,说明什么是随机变量的分布列?
二、讲解新课:
1.分布列:设离散型随机变量ξ可能取得值为
x1,x2,…,x3,…,
ξ取每一个值xi(i=1,2,…)的概率为,则称表
ξx1x2…xi…
PP1P2…Pi…
为随机变量ξ的概率分布,简称ξ的分布列
2.分布列的两个性质:任何随机事件发生的概率都满足:,并且不可能事件的概率为0,必然事件的概率为1.由此你可以得出离散型随机变量的分布列都具有下面两个性质:
⑴Pi≥0,i=1,2,…;
⑵P1+P2+…=1.
对于离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率的和即
3.两点分布列:
例1.在掷一枚图钉的随机试验中,令
如果针尖向上的概率为,试写出随机变量X的分布列.
解:根据分布列的性质,针尖向下的概率是().于是,随机变量X的分布列是
ξ01
P

像上面这样的分布列称为两点分布列.
两点分布列的应用非常广泛.如抽取的彩券是否中奖;买回的一件产品是否为正品;新生婴儿的性别;投篮是否命中等,都可以用两点分布列来研究.如果随机变量X的分布列为两点分布列,就称X服从两点分布(two一pointdistribution),而称=P(X=1)为成功概率.
两点分布又称0一1分布.由于只有两个可能结果的随机试验叫伯努利(Bernoulli)试验,所以还称这种分布为伯努利分布.


,.
4.超几何分布列:
例2.在含有5件次品的100件产品中,任取3件,试求:
(1)取到的次品数X的分布列;
(2)至少取到1件次品的概率.
解:(1)由于从100件产品中任取3件的结果数为,从100件产品中任取3件,
其中恰有k件次品的结果数为,那么从100件产品中任取3件,其中恰有k件次品的概率为

所以随机变量X的分布列是
X0123
P

(2)根据随机变量X的分布列,可得至少取到1件次品的概率
P(X≥1)=P(X=1)+P(X=2)+P(X=3)
≈0.13806+0.00588+0.00006
=0.14400.
一般地,在含有M件次品的N件产品中,任取n件,其中恰有X件次品数,则事件{X=k}发生的概率为
,
其中,且.称分布列
X01…

P

为超几何分布列.如果随机变量X的分布列为超几何分布列,则称随机变量X服从超几何分布(hypergeometriCdistribution).
例3.在某年级的联欢会上设计了一个摸奖游戏,在一个口袋中装有10个红球和20个白球,这些球除颜色外完全相同.一次从中摸出5个球,至少摸到3个红球就中奖.求中奖的概率.
解:设摸出红球的个数为X,则X服从超几何分布,其中N=30,M=10,n=5.于是中奖的概率
P(X≥3)=P(X=3)+P(X=4)十P(X=5)
=≈0.191.
思考:如果要将这个游戏的中奖率控制在55%左右,那么应该如何设计中奖规则?

例4.已知一批产品共件,其中件是次品,从中任取件,试求这件产品中所含次品件数的分布律。
解显然,取得的次品数只能是不大于与最小者的非负整数,即的可能取值为:0,1,…,,由古典概型知
此时称服从参数为的超几何分布。
注超几何分布的上述模型中,“任取件”应理解为“不放回地一次取一件,连续取件”.如果是有放回地抽取,就变成了重贝努利试验,这时概率分布就是二项分布.所以两个分布的区别就在于是不放回地抽样,还是有放回地抽样.若产品总数很大时,那么不放回抽样可以近似地看成有放回抽样.因此,当时,超几何分布的极限分布就是二项分布,即有如下定理.
定理如果当时,,那么当时(不变),则

由于普阿松分布又是二项分布的极限分布,于是有:
超几何分布二项分布普阿松分布.
例5.一盒中放有大小相同的红色、绿色、黄色三种小球,已知红球个数是绿球个数的两倍,黄球个数是绿球个数的一半.现从该盒中随机取出一个球,若取出红球得1分,取出黄球得0分,取出绿球得-1分,试写出从该盒中取出一球所得分数ξ的分布列.
分析:欲写出ξ的分布列,要先求出ξ的所有取值,以及ξ取每一值时的概率.
解:设黄球的个数为n,由题意知
绿球个数为2n,红球个数为4n,盒中的总数为7n.
∴,,.
所以从该盒中随机取出一球所得分数ξ的分布列为
ξ10-1

说明:在写出ξ的分布列后,要及时检查所有的概率之和是否为1.
例6.某一射手射击所得的环数ξ的分布列如下:
ξ45678910
P0.020.040.060.090.280.290.22
求此射手“射击一次命中环数≥7”的概率.
分析:“射击一次命中环数≥7”是指互斥事件“ξ=7”、“ξ=8”、“ξ=9”、“ξ=10”的和,根据互斥事件的概率加法公式,可以求得此射手“射击一次命中环数≥7”的概率.
解:根据射手射击所得的环数ξ的分布列,有
P(ξ=7)=0.09,P(ξ=8)=0.28,P(ξ=9)=0.29,P(ξ=10)=0.22.
所求的概率为P(ξ≥7)=0.09+0.28+0.29+0.22=0.88
四、课堂练习:
某一射手射击所得环数分布列为
45678910
P0.020.040.060.090.280.290.22
求此射手“射击一次命中环数≥7”的概率
解:“射击一次命中环数≥7”是指互斥事件“=7”,“=8”,“=9”,“=10”的和,根据互斥事件的概率加法公式,有:
P(≥7)=P(=7)+P(=8)+P(=9)+P(=10)=0.88
注:求离散型随机变量的概率分布的步骤:
(1)确定随机变量的所有可能的值xi
(2)求出各取值的概率p(=xi)=pi
(3)画出表格
五、小结:⑴根据随机变量的概率分步(分步列),可以求随机事件的概率;⑵两点分布是一种常见的离散型随机变量的分布,它是概率论中最重要的几种分布之一(3)离散型随机变量的超几何分布
六、课后作业:
七、板书设计(略)
八、课后记:
预习提纲:
⑴什么叫做离散型随机变量ξ的数学期望?它反映了离散型随机变量的什么特征?
⑵离散型随机变量ξ的数学期望有什么性质?

新人教A版选修2-32.1离散型随机变量及其分布列教案


2.1.1离散型随机变量
教学目标:
知识目标:1.理解随机变量的意义;
2.学会区分离散型与非离散型随机变量,并能举出离散性随机变量
的例子;
3.理解随机变量所表示试验结果的含义,并恰当地定义随机变量.
能力目标:发展抽象、概括能力,提高实际解决问题的能力.
情感目标:学会合作探讨,体验成功,提高学习数学的兴趣.
教学重点:随机变量、离散型随机变量、连续型随机变量的意义
教学难点:随机变量、离散型随机变量、连续型随机变量的意义
授课类型:新授课
课时安排:1课时
教具:多媒体、实物投影仪
内容分析:
本章是在初中“统计初步”和高中必修课“概率”的基础上,学习随机变量和统计的一些知识.学习这些知识后,我们将能解决类似引言中的一些实际问题
教学过程:
一、复习引入:
展示教科书章头提出的两个实际问题(有条件的学校可用计算机制作好课件辅助教学),激发学生的求知欲
某人射击一次,可能出现命中0环,命中1环,…,命中10环等结果,即可能出现的结果可能由0,1,……10这11个数表示;
某次产品检验,在可能含有次品的100件产品中任意抽取4件,那么其中含有的次品可能是0件,1件,2件,3件,4件,即可能出现的结果可以由0,1,2,3,4这5个数表示
在这些随机试验中,可能出现的结果都可以用一个数来表示.这个数在随机试验前是否是预先确定的?在不同的随机试验中,结果是否不变?
观察,概括出它们的共同特点
二、讲解新课:
思考1:掷一枚骰子,出现的点数可以用数字1,2,3,4,5,6来表示.那么掷一枚硬币的结果是否也可以用数字来表示呢?
掷一枚硬币,可能出现正面向上、反面向上两种结果.虽然这个随机试验的结果不具有数量性质,但我们可以用数1和0分别表示正面向上和反面向上(图2.1一1).
在掷骰子和掷硬币的随机试验中,我们确定了一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化.
定义1:随着试验结果变化而变化的变量称为随机变量(randomvariable).随机变量常用字母X,Y,,,…表示.
思考2:随机变量和函数有类似的地方吗?
随机变量和函数都是一种映射,随机变量把随机试验的结果映为实数,函数把实数映为实数.在这两种映射之间,试验结果的范围相当于函数的定义域,随机变量的取值范围相当于函数的值域.我们把随机变量的取值范围叫做随机变量的值域.
例如,在含有10件次品的100件产品中,任意抽取4件,可能含有的次品件数X将随着抽取结果的变化而变化,是一个随机变量,其值域是{0,1,2,3,4}.
利用随机变量可以表达一些事件.例如{X=0}表示“抽出0件次品”,{X=4}表示“抽出4件次品”等.你能说出{X3}在这里表示什么事件吗?“抽出3件以上次品”又如何用X表示呢?
定义2:所有取值可以一一列出的随机变量,称为离散型随机变量(discreterandomvariable).
离散型随机变量的例子很多.例如某人射击一次可能命中的环数X是一个离散型随机变量,它的所有可能取值为0,1,…,10;某网页在24小时内被浏览的次数Y也是一个离散型随机变量,它的所有可能取值为0,1,2,….
思考3:电灯的寿命X是离散型随机变量吗?
电灯泡的寿命X的可能取值是任何一个非负实数,而所有非负实数不能一一列出,所以X不是离散型随机变量.
在研究随机现象时,需要根据所关心的问题恰当地定义随机变量.例如,如果我们仅关心电灯泡的使用寿命是否超过1000小时,那么就可以定义如下的随机变量:
与电灯泡的寿命X相比较,随机变量Y的构造更简单,它只取两个不同的值0和1,是一个离散型随机变量,研究起来更加容易.
连续型随机变量:对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量
如某林场树木最高达30米,则林场树木的高度是一个随机变量,它可以取(0,30]内的一切值
4.离散型随机变量与连续型随机变量的区别与联系:离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出
注意:(1)有些随机试验的结果虽然不具有数量性质,但可以用数量来表达如投掷一枚硬币,=0,表示正面向上,=1,表示反面向上
(2)若是随机变量,是常数,则也是随机变量
三、讲解范例:
例1.写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果
(1)一袋中装有5只同样大小的白球,编号为1,2,3,4,5现从该袋内随机取出3只球,被取出的球的最大号码数ξ;
(2)某单位的某部电话在单位时间内收到的呼叫次数η
解:(1)ξ可取3,4,5
ξ=3,表示取出的3个球的编号为1,2,3;
ξ=4,表示取出的3个球的编号为1,2,4或1,3,4或2,3,4;
ξ=5,表示取出的3个球的编号为1,2,5或1,3,5或1,4,5或2,3或3,4,5
(2)η可取0,1,…,n,…
η=i,表示被呼叫i次,其中i=0,1,2,…
例2.抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差为ξ,试问:“ξ4”表示的试验结果是什么?
答:因为一枚骰子的点数可以是1,2,3,4,5,6六种结果之一,由已知得-5≤ξ≤5,也就是说“ξ4”就是“ξ=5”所以,“ξ4”表示第一枚为6点,第二枚为1点
例3某城市出租汽车的起步价为10元,行驶路程不超出4km,则按10元的标准收租车费若行驶路程超出4km,则按每超出lkm加收2元计费(超出不足1km的部分按lkm计).从这个城市的民航机场到某宾馆的路程为15km.某司机常驾车在机场与此宾馆之间接送旅客,由于行车路线的不同以及途中停车时间要转换成行车路程(这个城市规定,每停车5分钟按lkm路程计费),这个司机一次接送旅客的行车路程ξ是一个随机变量,他收旅客的租车费可也是一个随机变量
(1)求租车费η关于行车路程ξ的关系式;
(Ⅱ)已知某旅客实付租车费38元,而出租汽车实际行驶了15km,问出租车在途中因故停车累计最多几分钟?
解:(1)依题意得η=2(ξ-4)+10,即η=2ξ+2
(Ⅱ)由38=2ξ+2,得ξ=18,5×(18-15)=15.
所以,出租车在途中因故停车累计最多15分钟.
四、课堂练习:
1.①某寻呼台一小时内收到的寻呼次数;②长江上某水文站观察到一天中的水位;③某超市一天中的顾客量其中的是连续型随机变量的是()
A.①;B.②;C.③;D.①②③
2.随机变量的所有等可能取值为,若,则()
A.;B.;C.;D.不能确定
3.抛掷两次骰子,两个点的和不等于8的概率为()
A.;B.;C.;D.
4.如果是一个离散型随机变量,则假命题是()
A.取每一个可能值的概率都是非负数;B.取所有可能值的概率之和为1;
C.取某几个值的概率等于分别取其中每个值的概率之和;
D.在某一范围内取值的概率大于它取这个范围内各个值的概率之和
答案:1.B2.C3.B4.D
五、小结:随机变量离散型、随机变量连续型随机变量的概念随机变量ξ是关于试验结果的函数,即每一个试验结果对应着一个实数;随机变量ξ的线性组合η=aξ+b(其中a、b是常数)也是随机变量
六、课后作业:
七、板书设计(略)
八、教学反思:
1、怎样防止所谓新课程理念流于形式,如何合理选择值得讨论的问题,实现学生实质意义的参与.
2、防止过于追求教学的情境化倾向,怎样把握一个度.