88教案网

你的位置: 教案 > 高中教案 > 导航 > 2.3离散型随机变量的均值与方差教案一(新人教A版选修2-3)

闽教版小学英语教案

发表时间:2020-10-13

2.3离散型随机变量的均值与方差教案一(新人教A版选修2-3)。

古人云,工欲善其事,必先利其器。作为教师就需要提前准备好适合自己的教案。教案可以让讲的知识能够轻松被学生吸收,有效的提高课堂的教学效率。关于好的教案要怎么样去写呢?经过搜索和整理,小编为大家呈现“2.3离散型随机变量的均值与方差教案一(新人教A版选修2-3)”,仅供参考,大家一起来看看吧。

2.3.2离散型随机变量的方差
教学目标:
知识与技能:了解离散型随机变量的方差、标准差的意义,会根据离散型随机变量的分布列求出方差或标准差。
过程与方法:了解方差公式“D(aξ+b)=a2Dξ”,以及“若ξ~Β(n,p),则Dξ=np(1—p)”,并会应用上述公式计算有关随机变量的方差。
情感、态度与价值观:承前启后,感悟数学与生活的和谐之美,体现数学的文化功能与人文价值。
教学重点:离散型随机变量的方差、标准差
教学难点:比较两个随机变量的期望与方差的大小,从而解决实际问题
教具准备:多媒体、实物投影仪。
教学设想:了解方差公式“D(aξ+b)=a2Dξ”,以及“若ξ~Β(n,p),则Dξ=np(1—p)”,并会应用上述公式计算有关随机变量的方差。
授课类型:新授课
课时安排:2课时
教具:多媒体、实物投影仪
内容分析:
数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平,表示了随机变量在随机实验中取值的平均值,所以又常称为随机变量的平均数、均值.今天,我们将对随机变量取值的稳定与波动、集中与离散的程度进行研究.其实在初中我们也对一组数据的波动情况作过研究,即研究过一组数据的方差.
回顾一组数据的方差的概念:设在一组数据,,…,中,各数据与它们的平均值得差的平方分别是,,…,,那么++…+
叫做这组数据的方差
教学过程:
一、复习引入:
1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量随机变量常用希腊字母ξ、η等表示
2.离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量
3.连续型随机变量:对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量
4.离散型随机变量与连续型随机变量的区别与联系:离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出
5.分布列:
ξx1x2…xi…
PP1P2…Pi…
6.分布列的两个性质:⑴Pi≥0,i=1,2,…;⑵P1+P2+…=1.
7.二项分布:ξ~B(n,p),并记=b(k;n,p).
ξ01…k…n
P

8.几何分布:g(k,p)=,其中k=0,1,2,…,.
ξ123…k…
P

9.数学期望:一般地,若离散型随机变量ξ的概率分布为
ξx1x2…xn…
Pp1p2…pn…
则称……为ξ的数学期望,简称期望.
10.数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平
11平均数、均值:在有限取值离散型随机变量ξ的概率分布中,令…,则有…,…,所以ξ的数学期望又称为平均数、均值
12.期望的一个性质:
13.若ξB(n,p),则Eξ=np
二、讲解新课:
1.方差:对于离散型随机变量ξ,如果它所有可能取的值是,,…,,…,且取这些值的概率分别是,,…,,…,那么,
=++…++…
称为随机变量ξ的均方差,简称为方差,式中的是随机变量ξ的期望.
2.标准差:的算术平方根叫做随机变量ξ的标准差,记作.
3.方差的性质:(1);(2);
(3)若ξ~B(n,p),则np(1-p)
4.其它:
⑴随机变量ξ的方差的定义与一组数据的方差的定义式是相同的;
⑵随机变量ξ的方差、标准差也是随机变量ξ的特征数,它们都反映了随机变量取值的稳定与波动、集中与离散的程度;
⑶标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛
三、讲解范例:
例1.随机抛掷一枚质地均匀的骰子,求向上一面的点数的均值、方差和标准差.
解:抛掷散子所得点数X的分布列为
ξ123456

从而

例2.有甲乙两个单位都愿意聘用你,而你能获得如下信息:
甲单位不同职位月工资X1/元1200140016001800
获得相应职位的概率P10.40.30.20.1

乙单位不同职位月工资X2/元1000140018002000
获得相应职位的概率P20.40.30.20.1
根据工资待遇的差异情况,你愿意选择哪家单位?
解:根据月工资的分布列,利用计算器可算得
EX1=1200×0.4+1400×0.3+1600×0.2+1800×0.1
=1400,
DX1=(1200-1400)2×0.4+(1400-1400)2×0.3
+(1600-1400)2×0.2+(1800-1400)2×0.1
=40000;
EX2=1000×0.4+1400×0.3+1800×0.2+2200×0.1=1400,
DX2=(1000-1400)2×0.4+(1400-1400)×0.3+(1800-1400)2×0.2+(2200-1400)2×0.l
=160000.
因为EX1=EX2,DX1DX2,所以两家单位的工资均值相等,但甲单位不同职位的工资相对集中,乙单位不同职位的工资相对分散.这样,如果你希望不同职位的工资差距小一些,就选择甲单位;如果你希望不同职位的工资差距大一些,就选择乙单位.

例3.设随机变量ξ的分布列为
ξ12…n
P

求Dξ
解:(略),
例4.已知离散型随机变量的概率分布为
1234567

P

离散型随机变量的概率分布为
3.73.83.944.14.24.3
P

求这两个随机变量期望、均方差与标准差
解:;


=0.04,.
点评:本题中的和都以相等的概率取各个不同的值,但的取值较为分散,的取值较为集中.,,,方差比较清楚地指出了比取值更集中.
=2,=0.02,可以看出这两个随机变量取值与其期望值的偏差
例5.甲、乙两射手在同一条件下进行射击,分布列如下:射手甲击中环数8,9,10的概率分别为0.2,0.6,0.2;射手乙击中环数8,9,10的概率分别为0.4,0.2,0.24用击中环数的期望与方差比较两名射手的射击水平
解:
+(10-9);
同理有
由上可知,,所以,在射击之前,可以预测甲、乙两名射手所得的平均环数很接近,均在9环左右,但甲所得环数较集中,以9环居多,而乙得环数较分散,得8、10环地次数多些.
点评:本题中,和所有可能取的值是一致的,只是概率的分布情况不同.=9,这时就通过=0.4和=0.8来比较和的离散程度,即两名射手成绩的稳定情况
例6.A、B两台机床同时加工零件,每生产一批数量较大的产品时,出次品的概率如下表所示:
A机床B机床
次品数ξ10123次品数ξ10123
概率P0.70.20.060.04概率P0.80.060.040.10
问哪一台机床加工质量较好
解:Eξ1=0×0.7+1×0.2+2×0.06+3×0.04=0.44,
Eξ2=0×0.8+1×0.06+2×0.04+3×0.10=0.44.
它们的期望相同,再比较它们的方差
Dξ1=(0-0.44)2×0.7+(1-0.44)2×0.2+(2-0.44)2
×0.06+(3-0.44)2×0.04=0.6064,
Dξ2=(0-0.44)2×0.8+(1-0.44)2×0.06+(2-0.44)2
×0.04+(3-0.44)2×0.10=0.9264.
∴Dξ1Dξ2故A机床加工较稳定、质量较好.
四、课堂练习:
1.已知,则的值分别是()
A.;B.;C.;D.
答案:1.D
2.一盒中装有零件12个,其中有9个正品,3个次品,从中任取一个,如果每次取出次品就不再放回去,再取一个零件,直到取得正品为止.求在取得正品之前已取出次品数的期望.
分析:涉及次品率;抽样是否放回的问题.本例采用不放回抽样,每次抽样后次品率将会发生变化,即各次抽样是不独立的.如果抽样采用放回抽样,则各次抽样的次品率不变,各次抽样是否抽出次品是完全独立的事件.
解:设取得正品之前已取出的次品数为ξ,显然ξ所有可能取的值为0,1,2,3
当ξ=0时,即第一次取得正品,试验停止,则
P(ξ=0)=
当ξ=1时,即第一次取出次品,第二次取得正品,试验停止,则
P(ξ=1)=
当ξ=2时,即第一、二次取出次品,第三次取得正品,试验停止,则
P(ξ=2)=
当ξ=3时,即第一、二、三次取出次品,第四次取得正品,试验停止,则P(ξ=3)=
所以,Eξ=
3.有一批数量很大的商品的次品率为1%,从中任意地连续取出200件商品,设其中次品数为ξ,求Eξ,Dξ
分析:涉及产品数量很大,而且抽查次数又相对较少的产品抽查问题.由于产品数量很大,因而抽样时抽出次品与否对后面的抽样的次品率影响很小,所以可以认为各次抽查的结果是彼此独立的.解答本题,关键是理解清楚:抽200件商品可以看作200次独立重复试验,即ξB(200,1%),从而可用公式:Eξ=np,Dξ=npq(这里q=1-p)直接进行计算
解:因为商品数量相当大,抽200件商品可以看作200次独立重复试验,所以ξB(200,1%)因为Eξ=np,Dξ=npq,这里n=200,p=1%,q=99%,所以,Eξ=200×1%=2,Dξ=200×1%×99%=1.98
4.设事件A发生的概率为p,证明事件A在一次试验中发生次数ξ的方差不超过1/4
分析:这是一道纯数学问题.要求学生熟悉随机变量的期望与方差的计算方法,关键还是掌握随机变量的分布列.求出方差Dξ=P(1-P)后,我们知道Dξ是关于P(P≥0)的二次函数,这里可用配方法,也可用重要不等式证明结论
证明:因为ξ所有可能取的值为0,1且P(ξ=0)=1-p,P(ξ=1)=p,
所以,Eξ=0×(1-p)+1×p=p
则Dξ=(0-p)2×(1-p)+(1-p)2×p=p(1-p)
5.有A、B两种钢筋,从中取等量样品检查它们的抗拉强度,指标如下:
ξA110120125130135ξB100115125130145
P0.10.20.40.10.2P0.10.20.40.10.2
其中ξA、ξB分别表示A、B两种钢筋的抗拉强度.在使用时要求钢筋的抗拉强度不低于120,试比较A、B两种钢筋哪一种质量较好
分析:两个随机变量ξA和ξB都以相同的概率0.1,0.2,0.4,0.1,0.2取5个不同的数值.ξA取较为集中的数值110,120,125,130,135;ξB取较为分散的数值100,115,125,130,145.直观上看,猜想A种钢筋质量较好.但猜想不一定正确,需要通过计算来证明我们猜想的正确性
解:先比较ξA与ξB的期望值,因为
EξA=110×0.1+120×0.2+125×0.4+130×0.1+135×0.2=125,
EξB=100×0.1+115×0.2+125×0.4十130×0.1+145×0.2=125.
所以,它们的期望相同.再比较它们的方差.因为
DξA=(110-125)2×0.1+(120-125)2×0.2+(130-125)2×0.1+(135-125)2×0.2=50,
DξB=(100-125)2×0.1+(110-125)2×0.2+(130-125)2×0.1+(145-125)2×0.2=165.
所以,DξADξB.因此,A种钢筋质量较好
6.在有奖摸彩中,一期(发行10000张彩票为一期)有200个奖品是5元的,20个奖品是25元的,5个奖品是100元的.在不考虑获利的前提下,一张彩票的合理价格是多少元?
分析:这是同学们身边常遇到的现实问题,比如福利彩票、足球彩票、奥运彩票等等.一般来说,出台各种彩票,政府要从中收取一部分资金用于公共福利事业,同时也要考虑工作人员的工资等问题.本题的“不考虑获利”的意思是指:所收资金全部用于奖品方面的费用
解:设一张彩票中奖额为随机变量ξ,显然ξ所有可能取的值为0,5,25,100依题
意,可得ξ的分布列为
ξ0525100
P

答:一张彩票的合理价格是0.2元.
五、小结:⑴求离散型随机变量ξ的方差、标准差的步骤:①理解ξ的意义,写出ξ可能取的全部值;②求ξ取各个值的概率,写出分布列;③根据分布列,由期望的定义求出Eξ;④根据方差、标准差的定义求出、.若ξ~B(n,p),则不必写出分布列,直接用公式计算即可.
⑵对于两个随机变量和,在和相等或很接近时,比较和
,可以确定哪个随机变量的性质更适合生产生活实际,适合人们的需要
六、课后作业:P69练习1,2,3P69A组4B组1,2
1.设~B(n、p)且E=12D=4,求n、p
解:由二次分布的期望与方差性质可知E=npD=np(1-p)
∴∴
2.已知随机变量服从二项分布即~B(6、)求b(2;6,)
解:p(=2)=c62()2()4
3.已知甲、乙两名射手在一次射击中的得分为两个相互独立的随机变量和,已知和的分布列如下:(注得分越大,水平越高)
123
pA0.10.6
123
p0.3b0.3

试分析甲、乙技术状况
解:由0.1+0.6+a+1a=0.3
0.3+0.3+b=1a=0.4
∴E=2.3,E=2.0
D=0.81,D=0.6
七、板书设计(略)
八、教学反思:
⑴求离散型随机变量ξ的方差、标准差的步骤:
①理解ξ的意义,写出ξ可能取的全部值;
②求ξ取各个值的概率,写出分布列;
③根据分布列,由期望的定义求出Eξ;
④根据方差、标准差的定义求出、.若ξ~B(n,p),则不必写出分布列,直接用公式计算即可.
⑵对于两个随机变量和,在和相等或很接近时,比较和,可以确定哪个随机变量的性质更适合生产生活实际,适合人们的需要

延伸阅读

新人教A版选修2-3离散型随机变量及其分布列教案1


一名优秀的教师就要对每一课堂负责,准备好一份优秀的教案往往是必不可少的。教案可以让学生们充分体会到学习的快乐,帮助高中教师掌握上课时的教学节奏。您知道高中教案应该要怎么下笔吗?以下是小编为大家收集的“新人教A版选修2-3离散型随机变量及其分布列教案1”仅供参考,希望能为您提供参考!

2.1.2离散型随机变量的分布列
教学目标:
知识与技能:会求出某些简单的离散型随机变量的概率分布。
过程与方法:认识概率分布对于刻画随机现象的重要性。
情感、态度与价值观:认识概率分布对于刻画随机现象的重要性。
教学重点:离散型随机变量的分布列的概念
教学难点:求简单的离散型随机变量的分布列
授课类型:新授课
课时安排:2课时
教具:多媒体、实物投影仪
教学过程:
一、复习引入:
1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量随机变量常用希腊字母ξ、η等表示
2.离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量
3.连续型随机变量:对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量
4.离散型随机变量与连续型随机变量的区别与联系:离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出
若是随机变量,是常数,则也是随机变量并且不改变其属性(离散型、连续型)
请同学们阅读课本P5-6的内容,说明什么是随机变量的分布列?
二、讲解新课:
1.分布列:设离散型随机变量ξ可能取得值为
x1,x2,…,x3,…,
ξ取每一个值xi(i=1,2,…)的概率为,则称表
ξx1x2…xi…
PP1P2…Pi…
为随机变量ξ的概率分布,简称ξ的分布列
2.分布列的两个性质:任何随机事件发生的概率都满足:,并且不可能事件的概率为0,必然事件的概率为1.由此你可以得出离散型随机变量的分布列都具有下面两个性质:
⑴Pi≥0,i=1,2,…;
⑵P1+P2+…=1.
对于离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率的和即
3.两点分布列:
例1.在掷一枚图钉的随机试验中,令
如果针尖向上的概率为,试写出随机变量X的分布列.
解:根据分布列的性质,针尖向下的概率是().于是,随机变量X的分布列是
ξ01
P

像上面这样的分布列称为两点分布列.
两点分布列的应用非常广泛.如抽取的彩券是否中奖;买回的一件产品是否为正品;新生婴儿的性别;投篮是否命中等,都可以用两点分布列来研究.如果随机变量X的分布列为两点分布列,就称X服从两点分布(two一pointdistribution),而称=P(X=1)为成功概率.
两点分布又称0一1分布.由于只有两个可能结果的随机试验叫伯努利(Bernoulli)试验,所以还称这种分布为伯努利分布.


,.
4.超几何分布列:
例2.在含有5件次品的100件产品中,任取3件,试求:
(1)取到的次品数X的分布列;
(2)至少取到1件次品的概率.
解:(1)由于从100件产品中任取3件的结果数为,从100件产品中任取3件,
其中恰有k件次品的结果数为,那么从100件产品中任取3件,其中恰有k件次品的概率为

所以随机变量X的分布列是
X0123
P

(2)根据随机变量X的分布列,可得至少取到1件次品的概率
P(X≥1)=P(X=1)+P(X=2)+P(X=3)
≈0.13806+0.00588+0.00006
=0.14400.
一般地,在含有M件次品的N件产品中,任取n件,其中恰有X件次品数,则事件{X=k}发生的概率为
,
其中,且.称分布列
X01…

P

为超几何分布列.如果随机变量X的分布列为超几何分布列,则称随机变量X服从超几何分布(hypergeometriCdistribution).
例3.在某年级的联欢会上设计了一个摸奖游戏,在一个口袋中装有10个红球和20个白球,这些球除颜色外完全相同.一次从中摸出5个球,至少摸到3个红球就中奖.求中奖的概率.
解:设摸出红球的个数为X,则X服从超几何分布,其中N=30,M=10,n=5.于是中奖的概率
P(X≥3)=P(X=3)+P(X=4)十P(X=5)
=≈0.191.
思考:如果要将这个游戏的中奖率控制在55%左右,那么应该如何设计中奖规则?

例4.已知一批产品共件,其中件是次品,从中任取件,试求这件产品中所含次品件数的分布律。
解显然,取得的次品数只能是不大于与最小者的非负整数,即的可能取值为:0,1,…,,由古典概型知
此时称服从参数为的超几何分布。
注超几何分布的上述模型中,“任取件”应理解为“不放回地一次取一件,连续取件”.如果是有放回地抽取,就变成了重贝努利试验,这时概率分布就是二项分布.所以两个分布的区别就在于是不放回地抽样,还是有放回地抽样.若产品总数很大时,那么不放回抽样可以近似地看成有放回抽样.因此,当时,超几何分布的极限分布就是二项分布,即有如下定理.
定理如果当时,,那么当时(不变),则

由于普阿松分布又是二项分布的极限分布,于是有:
超几何分布二项分布普阿松分布.
例5.一盒中放有大小相同的红色、绿色、黄色三种小球,已知红球个数是绿球个数的两倍,黄球个数是绿球个数的一半.现从该盒中随机取出一个球,若取出红球得1分,取出黄球得0分,取出绿球得-1分,试写出从该盒中取出一球所得分数ξ的分布列.
分析:欲写出ξ的分布列,要先求出ξ的所有取值,以及ξ取每一值时的概率.
解:设黄球的个数为n,由题意知
绿球个数为2n,红球个数为4n,盒中的总数为7n.
∴,,.
所以从该盒中随机取出一球所得分数ξ的分布列为
ξ10-1

说明:在写出ξ的分布列后,要及时检查所有的概率之和是否为1.
例6.某一射手射击所得的环数ξ的分布列如下:
ξ45678910
P0.020.040.060.090.280.290.22
求此射手“射击一次命中环数≥7”的概率.
分析:“射击一次命中环数≥7”是指互斥事件“ξ=7”、“ξ=8”、“ξ=9”、“ξ=10”的和,根据互斥事件的概率加法公式,可以求得此射手“射击一次命中环数≥7”的概率.
解:根据射手射击所得的环数ξ的分布列,有
P(ξ=7)=0.09,P(ξ=8)=0.28,P(ξ=9)=0.29,P(ξ=10)=0.22.
所求的概率为P(ξ≥7)=0.09+0.28+0.29+0.22=0.88
四、课堂练习:
某一射手射击所得环数分布列为
45678910
P0.020.040.060.090.280.290.22
求此射手“射击一次命中环数≥7”的概率
解:“射击一次命中环数≥7”是指互斥事件“=7”,“=8”,“=9”,“=10”的和,根据互斥事件的概率加法公式,有:
P(≥7)=P(=7)+P(=8)+P(=9)+P(=10)=0.88
注:求离散型随机变量的概率分布的步骤:
(1)确定随机变量的所有可能的值xi
(2)求出各取值的概率p(=xi)=pi
(3)画出表格
五、小结:⑴根据随机变量的概率分步(分步列),可以求随机事件的概率;⑵两点分布是一种常见的离散型随机变量的分布,它是概率论中最重要的几种分布之一(3)离散型随机变量的超几何分布
六、课后作业:
七、板书设计(略)
八、课后记:
预习提纲:
⑴什么叫做离散型随机变量ξ的数学期望?它反映了离散型随机变量的什么特征?
⑵离散型随机变量ξ的数学期望有什么性质?

高二数学离散型随机变量的均值学案


一名优秀的教师在每次教学前有自己的事先计划,作为教师就要根据教学内容制定合适的教案。教案可以让学生们充分体会到学习的快乐,帮助教师掌握上课时的教学节奏。那么一篇好的教案要怎么才能写好呢?以下是小编为大家精心整理的“高二数学离散型随机变量的均值学案”,欢迎阅读,希望您能阅读并收藏。

§离散型随机变量的均值
一、知识要点
1.离散型随机变量.
2.离散型随机变量的均值或数学期望.
3.几种特殊的离散型随机变量的数学期望.
①两点分布;②二项分布;③超几何分布.
二、典型例题
例1.高三(1)班的联欢会上设计了一项游戏,在一个口袋中装有10个红球,20个白球,这些球除颜色外完全相同,某学生一次从中摸出5个球,其中红球的个数为,求的数学期望.
例2.从批量较大的成品中随机取出10件产品进行质量检查,若这批产品的不合格品概率为0.05,随机变量表示这10件产品中的不合格品数,求随机变量的数学期望.

例3.某人射击一发子弹的命中率为0.8,若他只有5颗子弹,若击中目标,则不再射击,否则继续射击至子弹打完,求他射击次数的期望.

三、巩固练习
1.设随机变量的概率分布如下表,试求.
12345

2.假定1500件产品中有100件不合格品,从中抽取15件进行检查,其中不合格品件数为,求的数学期望.

3.从甲、乙两名射击运动员中选择一名参加比赛,现统计了这两名运动员在训练中命中环数的概率分布如下,问:哪名运动员的平均成绩较好?
8910
8910
0.30.10.6
0.20.50.3

4.某商家有一台电话交换机,其中有5个分机专供与顾客通话。设每个分机在1h内平均占线20min,并且各个分机是否占线是相互独立的,求任一时刻占线的分机数目的数学期望.

四、课堂小结
五、课后反思
六、课后作业
1.随机变量的概率分布如下表所示
1234

且,则=,=.
2.已知随机变量的分布列为
012

且,则=.
3.一个袋子中装有大小相同的3个红球和2个黄球,从中同时取出2个,则其中含有红球个数的数学期望为.
4.篮球运动员在比赛中每次罚球命中得1分,罚不中得0分,已知某运动员罚球的命中率是0.7,则他罚球6次的总得分的均值是.
5.一个盒子中有10件产品,其中有2件是次品,现逐个抽取,取到次品则抛弃,直到取到正品为止,则被抛弃的次品数的均值=.
6.对某个数学题,甲解出的概率为,乙解出的概率为,两人独立解题,记为解出该题的人数,则=.
7.设篮球队A与B进行比赛,若有一队先胜3场,比赛宣告结束,假定A,B在每场比赛中获胜的概率都是,求比赛场数的分布列和均值.

8.袋中有2个白球,3个黑球,从中任意摸一球,猜它是白球还是黑球,猜对得1分,猜错不得分,从平均得分最大的角度,你猜什么颜色有利?说明理由.

9.某运动员射击一次所得环数的分布如下:
78910
0.20.30.30.2
现进行两次射击,以该运动员两次射击所中最高环数作为他的成绩,记为.
⑴求该运动员两次都命中7环的概率;
⑵求的分布列;
⑶求的数学期望.

订正栏:

新人教A版选修2-32.1离散型随机变量及其分布列教案


2.1.1离散型随机变量
教学目标:
知识目标:1.理解随机变量的意义;
2.学会区分离散型与非离散型随机变量,并能举出离散性随机变量
的例子;
3.理解随机变量所表示试验结果的含义,并恰当地定义随机变量.
能力目标:发展抽象、概括能力,提高实际解决问题的能力.
情感目标:学会合作探讨,体验成功,提高学习数学的兴趣.
教学重点:随机变量、离散型随机变量、连续型随机变量的意义
教学难点:随机变量、离散型随机变量、连续型随机变量的意义
授课类型:新授课
课时安排:1课时
教具:多媒体、实物投影仪
内容分析:
本章是在初中“统计初步”和高中必修课“概率”的基础上,学习随机变量和统计的一些知识.学习这些知识后,我们将能解决类似引言中的一些实际问题
教学过程:
一、复习引入:
展示教科书章头提出的两个实际问题(有条件的学校可用计算机制作好课件辅助教学),激发学生的求知欲
某人射击一次,可能出现命中0环,命中1环,…,命中10环等结果,即可能出现的结果可能由0,1,……10这11个数表示;
某次产品检验,在可能含有次品的100件产品中任意抽取4件,那么其中含有的次品可能是0件,1件,2件,3件,4件,即可能出现的结果可以由0,1,2,3,4这5个数表示
在这些随机试验中,可能出现的结果都可以用一个数来表示.这个数在随机试验前是否是预先确定的?在不同的随机试验中,结果是否不变?
观察,概括出它们的共同特点
二、讲解新课:
思考1:掷一枚骰子,出现的点数可以用数字1,2,3,4,5,6来表示.那么掷一枚硬币的结果是否也可以用数字来表示呢?
掷一枚硬币,可能出现正面向上、反面向上两种结果.虽然这个随机试验的结果不具有数量性质,但我们可以用数1和0分别表示正面向上和反面向上(图2.1一1).
在掷骰子和掷硬币的随机试验中,我们确定了一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化.
定义1:随着试验结果变化而变化的变量称为随机变量(randomvariable).随机变量常用字母X,Y,,,…表示.
思考2:随机变量和函数有类似的地方吗?
随机变量和函数都是一种映射,随机变量把随机试验的结果映为实数,函数把实数映为实数.在这两种映射之间,试验结果的范围相当于函数的定义域,随机变量的取值范围相当于函数的值域.我们把随机变量的取值范围叫做随机变量的值域.
例如,在含有10件次品的100件产品中,任意抽取4件,可能含有的次品件数X将随着抽取结果的变化而变化,是一个随机变量,其值域是{0,1,2,3,4}.
利用随机变量可以表达一些事件.例如{X=0}表示“抽出0件次品”,{X=4}表示“抽出4件次品”等.你能说出{X3}在这里表示什么事件吗?“抽出3件以上次品”又如何用X表示呢?
定义2:所有取值可以一一列出的随机变量,称为离散型随机变量(discreterandomvariable).
离散型随机变量的例子很多.例如某人射击一次可能命中的环数X是一个离散型随机变量,它的所有可能取值为0,1,…,10;某网页在24小时内被浏览的次数Y也是一个离散型随机变量,它的所有可能取值为0,1,2,….
思考3:电灯的寿命X是离散型随机变量吗?
电灯泡的寿命X的可能取值是任何一个非负实数,而所有非负实数不能一一列出,所以X不是离散型随机变量.
在研究随机现象时,需要根据所关心的问题恰当地定义随机变量.例如,如果我们仅关心电灯泡的使用寿命是否超过1000小时,那么就可以定义如下的随机变量:
与电灯泡的寿命X相比较,随机变量Y的构造更简单,它只取两个不同的值0和1,是一个离散型随机变量,研究起来更加容易.
连续型随机变量:对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量
如某林场树木最高达30米,则林场树木的高度是一个随机变量,它可以取(0,30]内的一切值
4.离散型随机变量与连续型随机变量的区别与联系:离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出
注意:(1)有些随机试验的结果虽然不具有数量性质,但可以用数量来表达如投掷一枚硬币,=0,表示正面向上,=1,表示反面向上
(2)若是随机变量,是常数,则也是随机变量
三、讲解范例:
例1.写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果
(1)一袋中装有5只同样大小的白球,编号为1,2,3,4,5现从该袋内随机取出3只球,被取出的球的最大号码数ξ;
(2)某单位的某部电话在单位时间内收到的呼叫次数η
解:(1)ξ可取3,4,5
ξ=3,表示取出的3个球的编号为1,2,3;
ξ=4,表示取出的3个球的编号为1,2,4或1,3,4或2,3,4;
ξ=5,表示取出的3个球的编号为1,2,5或1,3,5或1,4,5或2,3或3,4,5
(2)η可取0,1,…,n,…
η=i,表示被呼叫i次,其中i=0,1,2,…
例2.抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差为ξ,试问:“ξ4”表示的试验结果是什么?
答:因为一枚骰子的点数可以是1,2,3,4,5,6六种结果之一,由已知得-5≤ξ≤5,也就是说“ξ4”就是“ξ=5”所以,“ξ4”表示第一枚为6点,第二枚为1点
例3某城市出租汽车的起步价为10元,行驶路程不超出4km,则按10元的标准收租车费若行驶路程超出4km,则按每超出lkm加收2元计费(超出不足1km的部分按lkm计).从这个城市的民航机场到某宾馆的路程为15km.某司机常驾车在机场与此宾馆之间接送旅客,由于行车路线的不同以及途中停车时间要转换成行车路程(这个城市规定,每停车5分钟按lkm路程计费),这个司机一次接送旅客的行车路程ξ是一个随机变量,他收旅客的租车费可也是一个随机变量
(1)求租车费η关于行车路程ξ的关系式;
(Ⅱ)已知某旅客实付租车费38元,而出租汽车实际行驶了15km,问出租车在途中因故停车累计最多几分钟?
解:(1)依题意得η=2(ξ-4)+10,即η=2ξ+2
(Ⅱ)由38=2ξ+2,得ξ=18,5×(18-15)=15.
所以,出租车在途中因故停车累计最多15分钟.
四、课堂练习:
1.①某寻呼台一小时内收到的寻呼次数;②长江上某水文站观察到一天中的水位;③某超市一天中的顾客量其中的是连续型随机变量的是()
A.①;B.②;C.③;D.①②③
2.随机变量的所有等可能取值为,若,则()
A.;B.;C.;D.不能确定
3.抛掷两次骰子,两个点的和不等于8的概率为()
A.;B.;C.;D.
4.如果是一个离散型随机变量,则假命题是()
A.取每一个可能值的概率都是非负数;B.取所有可能值的概率之和为1;
C.取某几个值的概率等于分别取其中每个值的概率之和;
D.在某一范围内取值的概率大于它取这个范围内各个值的概率之和
答案:1.B2.C3.B4.D
五、小结:随机变量离散型、随机变量连续型随机变量的概念随机变量ξ是关于试验结果的函数,即每一个试验结果对应着一个实数;随机变量ξ的线性组合η=aξ+b(其中a、b是常数)也是随机变量
六、课后作业:
七、板书设计(略)
八、教学反思:
1、怎样防止所谓新课程理念流于形式,如何合理选择值得讨论的问题,实现学生实质意义的参与.
2、防止过于追求教学的情境化倾向,怎样把握一个度.

离散型随机变量的期望说案


一、教材分析
教材的地位和作用
期望是概率论和数理统计的重要概念之一,是反映随机变量取值分布的特征数,学习期望将为今后学习概率统计知识做铺垫。同时,它在市场预测,经济统计,风险与决策等领域有着广泛的应用,为今后学习数学及相关学科产生深远的影响。
教学重点与难点
重点:离散型随机变量期望的概念及其实际含义。
难点:离散型随机变量期望的实际应用。
[理论依据]本课是一节概念新授课,而概念本身具有一定的抽象性,学生难以理解,因此把对离散性随机变量期望的概念的教学作为本节课的教学重点。此外,学生初次应用概念解决实际问题也较为困难,故把其作为本节课的教学难点。
二、教学目标
[知识与技能目标]
通过实例,让学生理解离散型随机变量期望的概念,了解其实际含义。
会计算简单的离散型随机变量的期望,并解决一些实际问题。
[过程与方法目标]
经历概念的建构这一过程,让学生进一步体会从特殊到一般的思想,培养学生归纳、概括等合情推理能力。
通过实际应用,培养学生把实际问题抽象成数学问题的能力和学以致用的数学应用意识。
[情感与态度目标]
通过创设情境激发学生学习数学的情感,培养其严谨治学的态度。在学生分析问题、解决问题的过程中培养其积极探索的精神,从而实现自我的价值。
三、教法选择
引导发现法
四、学法指导
“授之以鱼,不如授之以渔”,注重发挥学生的主体性,让学生在学习中学会怎样发现问题、分析问题、解决问题。