88教案网

你的位置: 教案 > 高中教案 > 导航 > §3.1.5空间向量运算的坐标表示

高中向量的教案

发表时间:2020-10-31

§3.1.5空间向量运算的坐标表示。

作为优秀的教学工作者,在教学时能够胸有成竹,教师要准备好教案,这是每个教师都不可缺少的。教案可以让学生们能够更好的找到学习的乐趣,帮助教师能够更轻松的上课教学。怎么才能让教案写的更加全面呢?下面是由小编为大家整理的“§3.1.5空间向量运算的坐标表示”,相信您能找到对自己有用的内容。

§3.1.5空间向量运算的坐标表示
【学情分析】:
平面向量有座标表示,空间向量也有座标表示,在上一节中,单位正交分解就能够完成向量坐标向空间直角坐标系坐标的转化。现在,通过本节的学习,我们可以将向量的地定性公式定量化,在解题特别是在解决立体几何问题的过程中,可以大大简化问题的难度。
【教学目标】:
(1)知识与技能:能用坐标表示空间向量
(2)过程与方法:由平面坐标运算类别空间坐标运算,掌握空间向量的坐标运算
(3)情感态度与价值观:类比学习,注重类比,运用向量的运算解决问题,培养学生的开拓能力。
【教学重点】:
空间向量的坐标运算
【教学难点】:
空间向量的坐标运算
【教学过程设计】:
教学环节教学活动设计意图
一.温故知新平面向量的坐标运算
二.新课讲授1.空间向量的直角坐标运算律
(1)若,,则,


(2)若,,则.
一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。注重类比学习,举一反三,在平面向量中有坐标运算,空间向量中也有,运
2.数量积:即=
3.夹角:.
4.模长公式:若,
则.
5.平行与垂直:
6.距离公式:若,,
则,
或.
算规律和结论的本质是一样的。
三.典例例1.如图,在正方体中,,分别是,的一个四等分点,求与所成的角的余弦值。
解:不妨设正方体的棱长为1,分别以,,为单位正交基底建立空间直角坐标系,
则,,,
所以,
,,
将空间向量的运算与向量的坐标表示结合起来,不仅可以解决夹角和距离的计算问题,而且可以使一些问题的解决变得简单。
讲练所以,
因此,与所成角的余弦值是
例2.如图,正方体中,,分别是,的中点,求证:
证明:不妨设正方体的棱长为1,分别以,,为单位正交基底建立空间直角坐标系,
则,所以,又,,所以,
所以,
因此,即

四.练习巩固课本P97练习1,2,3
五.拓展与提高1.如图在正方体AC1中,M、N分别是AA1、BB1的中点,求直线CM与D1N所成的角。

学习注意触类旁通,举一反三,引进向量的坐标运算式把定性的向量定量化的有效办法。这样可以把向量问题转化为代数问
2.已知三角形的顶点A(1,-1,1),B(2,1,-1),C(-1,-1,-2),这个三角形的面积是()
A.B.C.2D.
题。
六.小结1.空间向量的直角坐标运算律
2.数量积与夹角
3.模长与距离
4.平行于垂直
七.作业课本P98习题3.1,A组第8、9、11题

练习与测试:
(基础题)
1.已知向量的夹角为()
A.0°B.45°C.90°D.180°
2.已知()
A.B.5,2C.D.-5,-2

(中等题)
3.已知,,求:
(1)线段的中点坐标和长度;
(2)到两点的距离相等的点的坐标满足的条件
解:(1)设是线段的中点,则.
∴的中点坐标是,

(2)∵点到两点的距离相等,
则,
化简得:,
所以,到两点的距离相等的点的坐标满足的条件是.
点评:到两点的距离相等的点构成的集合就是线段AB的中垂面,若将点的坐标满足的条件的系数构成一个向量,发现与共线。
4,已知三角形的顶点是,,,试求这个三角形的面积。
分析:可用公式来求面积
解:∵,,
∴,,

∴,
∴所以.
5.已知,则向量与的夹角是()
A.90°B.60°C.30°D.0°
6.已知,则的最小值是()
A.B.C.D.
7.已知,则的取值范围是()
A.B.C.D.

相关知识

向量的坐标表示与坐标运算


课时7向量平行的坐标表示(2)
【学习目标】
巩固平面向量坐标的概念,掌握平行向量的坐标表示,并且能用它解决向量平行(共线)的有关问题。
【知识扫描】
1.共线向量的条件是有且只有一个实数λ使得=λ.()
2.设=(x1,y1)=(x2,y2)其中,则∥()x1y2-x2y1=0
注:(1)该条件不能写成∵x1,x2有可能为0
(2)向量共线的条件有两种形式:∥()
归纳:向量平行的坐标表示要注意正反两方面,
即若则
【例题选讲】
例1已知a=(1,1),b=(x,1),u=a+2b,v=2a-b,
(1)若u=3v,求x;(2)若u∥v,求x.

例2.已知点A(1,1),B(-1,5)及,,求点C、D、E的坐标,判断向量是否共线。
例3.已知A、B、C三点的坐标分别为(-1,0),(3,-1),(1,2),并且,
求证:

例4.已知四点A(x,0),B(2x,1)C(2,x),D(6,2x)。(1)求实数x,使两向量,共线;(2)当向量,共线时,A、B、C、D四点是否在同一直线上?

例5.设向量=(k,12),=(4,5),=(10,k),当k为何值时,A、B、C三点共线。

例6.已知=2,=(-1,),且∥,求向量。

【课内练习】课本P75练习1-3
1.三点A(a,b),B(c.d),C(e,f)共线的条件为
2.已知A(1,-3),B(8,),若A、B、C三点共线,则C点坐标是
3.向量=(3,7),=(-3,),(),若∥,则x等于
4.已知=(1,2),=(x,1),且(+2)∥(2-),则x的值为
【课后作业】
1.以下各向量中,与向量=(-5,4)平行的向量是
A(5k,4k)B()C(-10,2)D(-5k,-4k)
2.与=(15,8)平行的所有单位向量是
3.已知=(3,4),=(sinx,cosx),且∥,则tanx=
4.已知=(-2,1-cos),=(1+cos,-),且,则锐角=
5.下列各组向量相互平行的是
A=(-1,2),=(3,5)B=(1,2),=(2,1)
C=(2,-1),=(3,4)D=(-2,1),=(4,-2)
6.已知=(2,3),=(-1,2)若k-与-k平行,求k的值。

7.已知向量=(6,1),=(x,y)=(-2,-3),当向量∥时,求实数x,y应满足的关系式。

8.已知=(x,2),=(3,-1)是否存在实数x,使向量-2与2+平行?若存在,求出x;若不存在,说明理由。

9.已知三个向量=(3,2),=(-1,2),=(4,1),回答下列问题:
(1)求3+-2;(2)求满足=m+n的实数m和n;
(3)若(+k)//(2-),求实数k的值;
(4)设=(x,y),满足且=1,求

10、已知ABCD的三个顶点A、B、C的坐标分别为(-2,1)、(-1,3)、(3,4),求顶点D的坐标.

11、平行四边形ABCD的对角线交于点O,且知=(3,7),=(-2,1),求坐标.

问题统计与分析

§3.1.4空间向量的正交分解及坐标表示


§3.1.4空间向量的正交分解及坐标表示
【学情分析】:
本小节首先把平面向量的基本定理推广到空间向量的基本定理这种推广对学生学习已无困难但仍要一步步地进行,学生要时刻牢记,现在研究的范围已由平面扩大到空间这样做,一方面复习了平面向量、学习了空间向量,另一方面可加深学生的空间观念让学生从二维到三维发现规律,培养学生的探索创新能力。
【教学目标】:
(1)知识与技能:掌握空间向量基本定理,会判断空间向量共面
(2)过程与方法:正交分解推导入手,掌握空间向量基本定理
(3)情感态度与价值观:认识将空间向量的正交分解,能够将空间向量在某组基上进行分解
【教学重点】:
空间向量正交分解,空间向量的基本定理地使用
【教学难点】:
空间向量的分解
【教学过程设计】:
教学环节教学活动设计意图
一.温故知新回顾平面向量的正交分解和平面向量的基本定理由此为基础,推导空间向量的正交分解和基本定理
二.新课讲授1.空间向量的正交分解
设,,是空间的三个两两垂直的向量,且有公共起点O。对于空间任意一个向量,设Q为点P在,所确定的平面上的正投影,由平面向量基本定理可知,在,所确定的平面上,存在实数z,使得
而在,所确定的平面上,由平面向量基本定理可知,存在有序实数对,使得
从而
以平面向量的基本定理为基础,层层递进,得到空间向量的正交分解形式。
由此可知,对空间任一向量,存在一个有序实数组{},使得,称,,为向量在,,上的分向量。
2.空间向量的基本定理
如果三个向量不共面,那么对空间任一向量,存在一个唯一的有序实数组,使
由此定理,若三向量不共面,那么空间的任一向量都可由线性表示,我们把{}叫做空间的一个基底,叫做基向量。
空间任意三个不共面的向量都可以构成空间的一个基底
如果空间一个基底的三个基向量两两互相垂直,那么这个基底叫做正交基底,特别地,当一个正交基底的三个基向量都是单位向量时,称这个基底为单位正交基底,对空间任一向量,存在一个唯一的有序实数组,使记
推论:设是不共面的四点,则对空间任一点,都存在唯一的三个有序实数,使
注意介绍单位正交基、正交基、基的特殊与一般的关系,以帮助学生理解概念。
三.典例讲练例1.如图,已知空间四边形,其对角线,分别是对边的中点,点在线段上,且,用基底向量表示向量
解:


向量的分解过程中注意向量的运算的正确使用。
四.练习巩固1、如图,在正方体中,,点E是AB与OD的交点,M是OD/与CE的交点,试分别用向量表示和
解:
课本P94练习1、2、3
五.拓展与提高1.设A、B、C、D是空间任意四个点,令u=,v=,w=,则u、v、w三个向量()
A.互不相等B.至多有两个相等C.至少有两个相等D.有且只有两个相等
2.若a、b、c是空间的一个基底,下列各组
①la、mb、nc(lmn≠0);
②a+2b、2b+3c、3a-9c;
③a+2b、b+2c、c+2a;
④a+3b、3b+2c、-2a+4c
中,仍能构成空间基底的是()
A.①②B.②③C.①③D.②④
充分认识基底的特征,即线性无关的三个向量就可以构成空间的一个基底。
六.小结1.正交分解的推导和空间向量基本定理
2.如何将向量用坐标表示
3.任意空间向量在某组基底下的分解
七.作业课本P97习题3.1第6题

练习与测试:
(基础题)
1如图,在正方体中,,点E是AB与OD的交点,M是OD/与CE的交点,试分别用向量表示和
解:

2.设向量是空间一个基底,则一定可以与向量构成空间的另一个基底的向量是()
A.B.C.D.
3.设A、B、C、D是空间任意四个点,令u=,v=,w=,则u、v、w三个向量()
A.互不相等B.至多有两个相等C.至少有两个相等D.有且只有两个相等
4.若a、b、c是空间的一个基底,下列各组
①la、mb、nc(lmn≠0);②a+2b、2b+3c、3a-9c;
③a+2b、b+2c、c+2a;④a+3b、3b+2c、-2a+4c
中,仍能构成空间基底的是()
A.①②B.②③C.①③D.②④
5.设A,B,C,D是空间不共面的四点,且满足,,,则△BCD是()
A.钝角三角形B.直角三角形C.锐角三角形D.不确定
6.已知S是△ABC所在平面外一点,D是SC的中点,若=,
则x+y+z=.
7.在空间四边形ABCD中,AC和BD为对角线,
G为△ABC的重心,E是BD上一点,BE=3ED,
以{,,}为基底,则=.

(中等题)
8.已知四面体中,两两互相垂直,则下列结论中,不一定成立的是()
(1).(2).
(3).(4).
不一定成立的是.

9,已知非零向量不共线,如果,求证:A、B、C、D共面。

空间向量的坐标表示学案练习题


§3.1.4空间向量的坐标表示
一、知识要点
1.用坐标表示空间向量;
2.空间向量的坐标运算;
3.根据向量的坐标判断两个空间向量平行。
二、典型例题
例1.已知,求。

例2.已知,试求实数的值,使。

例3.已知空间四点和,
求证:四边形是梯形。
三、巩固练习
1.设,则=,=,;
2.已知点在同一直线上,则=,=。

四、小结

五、作业
1.若为一个单位正交基底,试写出下列向量的坐标:
⑴;⑵;⑶。

2.已知,则向量=,=。
3.已知,为线段上一点,且满足,则点的坐标为;
4.若,则重心坐标为;
5.已知,若三向量共面,则=;
6.与向量共线的单位向量=;
7.设,且,求实数的值。

8.已知中,,求其余顶点与向量。

9.已知正方体的棱长为2,分别为的中点,建立如图所示的空间直角坐标系。
⑴写出的坐标;⑵证明四点共面。

订正栏:

2.3.3平面向量的正交分解及坐标表示平面向量的坐标运算


2.3.22.3.3平面向量的正交分解及坐标表示
平面向量的坐标运算

预习课本P94~98,思考并完成以下问题
(1)怎样分解一个向量才为正交分解?
(2)如何由a,b的坐标求a+b,a-b,λa的坐标?
[新知初探]
1.平面向量正交分解的定义
把一个平面向量分解为两个互相垂直的向量.
2.平面向量的坐标表示
(1)基底:在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i,j作为基底.
(2)坐标:对于平面内的一个向量a,有且仅有一对实数x,y,使得a=xi+yj,则有序实数对(x,y)叫做向量a的坐标.
(3)坐标表示:a=(x,y).
(4)特殊向量的坐标:i=(1,0),j=(0,1),0=(0,0).
[点睛](1)平面向量的正交分解实质上是平面向量基本定理的一种应用形式,只是两个基向量e1和e2互相垂直.
(2)由向量坐标的定义,知两向量相等的充要条件是它们的横、纵坐标对应相等,即a=bx1=x2且y1=y2,其中a=(x1,y1),b=(x2,y2).
3.平面向量的坐标运算
设向量a=(x1,y1),b=(x2,y2),λ∈R,则有下表:
文字描述符号表示
加法两个向量和的坐标分别等于这两个向量相应坐标的和a+b=(x1+x2,y1+y2)
减法两个向量差的坐标分别等于这两个向量相应坐标的差a-b=(x1-x2,y1-y2)
数乘实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标λa=(λx1,λy1)
重要结论一个向量的坐标等于表示此向量的有向线段的终点的坐标减去起点的坐标已知A(x1,y1),
B(x2,y2),则=(x2-x1,y2-y1)
[点睛](1)向量的坐标只与起点、终点的相对位置有关,而与它们的具体位置无关.
(2)当向量确定以后,向量的坐标就是唯一确定的,因此向量在平移前后,其坐标不变.
[小试身手]
1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)
(1)相等向量的坐标相同与向量的起点、终点无关.()
(2)当向量的始点在坐标原点时,向量的坐标就是向量终点的坐标.()
(3)两向量差的坐标与两向量的顺序无关.()
(4)点的坐标与向量的坐标相同.()
答案:(1)√(2)√(3)×(4)×
2.若a=(2,1),b=(1,0),则3a+2b的坐标是()
A.(5,3)B.(4,3)
C.(8,3)D.(0,-1)
答案:C
3.若向量=(1,2),=(3,4),则=()
A.(4,6)B.(-4,-6)
C.(-2,-2)D.(2,2)
答案:A
4.若点M(3,5),点N(2,1),用坐标表示向量=______.
答案:(-1,-4)

平面向量的坐标表示

[典例]
如图,在边长为1的正方形ABCD中,AB与x轴正半轴成30°角.求点B和点D的坐标和与的坐标.
[解]由题知B,D分别是30°,120°角的终边与单位圆的交点.
设B(x1,y1),D(x2,y2).
由三角函数的定义,得
x1=cos30°=32,y1=sin30°=12,∴B32,12.
x2=cos120°=-12,y2=sin120°=32,
∴D-12,32.
∴=32,12,=-12,32.

求点和向量坐标的常用方法
(1)求一个点的坐标,可以转化为求该点相对于坐标原点的位置向量的坐标.
(2)在求一个向量时,可以首先求出这个向量的起点坐标和终点坐标,再运用终点坐标减去起点坐标得到该向量的坐标.

[活学活用]
已知O是坐标原点,点A在第一象限,||=43,∠xOA=60°,
(1)求向量的坐标;
(2)若B(3,-1),求的坐标.
解:(1)设点A(x,y),则x=43cos60°=23,
y=43sin60°=6,即A(23,6),=(23,6).
(2)=(23,6)-(3,-1)=(3,7).
平面向量的坐标运算
[典例](1)已知三点A(2,-1),B(3,4),C(-2,0),则向量3+2=________,-2=________.
(2)已知向量a,b的坐标分别是(-1,2),(3,-5),求a+b,a-b,3a,2a+3b的坐标.
[解析](1)∵A(2,-1),B(3,4),C(-2,0),
∴=(1,5),=(4,-1),=(-5,-4).
∴3+2=3(1,5)+2(4,-1)
=(3+8,15-2)
=(11,13).
-2=(-5,-4)-2(1,5)
=(-5-2,-4-10)
=(-7,-14).
[答案](11,13)(-7,-14)
(2)解:a+b=(-1,2)+(3,-5)=(2,-3),
a-b=(-1,2)-(3,-5)=(-4,7),
3a=3(-1,2)=(-3,6),
2a+3b=2(-1,2)+3(3,-5)
=(-2,4)+(9,-15)
=(7,-11).
平面向量坐标运算的技巧
(1)若已知向量的坐标,则直接应用两个向量和、差及向量数乘的运算法则进行.
(2)若已知有向线段两端点的坐标,则可先求出向量的坐标,然后再进行向量的坐标运算.
(3)向量的线性坐标运算可完全类比数的运算进行.

[活学活用]
1.设平面向量a=(3,5),b=(-2,1),则a-2b=()
A.(7,3)B.(7,7)
C.(1,7)D.(1,3)
解析:选A∵2b=2(-2,1)=(-4,2),
∴a-2b=(3,5)-(-4,2)=(7,3).
2.已知M(3,-2),N(-5,-1),=12,则P点坐标为______.
解析:设P(x,y),=(x-3,y+2),=(-8,1),
∴=12=12(-8,1)=-4,12,
∴x-3=-4,y+2=12.∴x=-1,y=-32.
答案:-1,-32

向量坐标运算的综合应用
[典例]已知点O(0,0),A(1,2),B(4,5)及=+t,t为何值时,点P在x轴上?点P在y轴上?点P在第二象限?
[解]因为=+t=(1,2)+t(3,3)=(1+3t,2+3t),
若点P在x轴上,则2+3t=0,
所以t=-23.
若点P在y轴上,则1+3t=0,
所以t=-13.
若点P在第二象限,则1+3t<0,2+3t>0,
所以-23<t<-13.
[一题多变]
1.[变条件]本例中条件“点P在x轴上,点P在y轴上,点P在第二象限”若换为“B为线段AP的中点”试求t的值.
解:由典例知P(1+3t,2+3t),
则1+1+3t2=4,2+2+3t2=5,解得t=2.
2.[变设问]本例条件不变,试问四边形OABP能为平行四边形吗?若能,求出t值;若不能,说明理由.
解:=(1,2),=(3-3t,3-3t).若四边形OABP为平行四边形,则=,
所以3-3t=1,3-3t=2,该方程组无解.
故四边形OABP不能成为平行四边形.
向量中含参数问题的求解
(1)向量的坐标含有两个量:横坐标和纵坐标,如果横或纵坐标是一个变量,则表示向量的点的坐标的位置会随之改变.
(2)解答这类由参数决定点的位置的题目,关键是列出满足条件的含参数的方程(组),解这个方程(组),就能达到解题的目的.
层级一学业水平达标
1.如果用i,j分别表示x轴和y轴方向上的单位向量,且A(2,3),B(4,2),则可以表示为()
A.2i+3jB.4i+2j
C.2i-jD.-2i+j
解析:选C记O为坐标原点,则=2i+3j,=4i+2j,所以=-=2i-j.
2.已知=a,且A12,4,B14,2,又λ=12,则λa等于()
A.-18,-1B.14,3
C.18,1D.-14,-3
解析:选A∵a==14,2-12,4=-14,-2,
∴λa=12a=-18,-1.
3.已知向量a=(1,2),2a+b=(3,2),则b=()
A.(1,-2)B.(1,2)
C.(5,6)D.(2,0)
解析:选Ab=(3,2)-2a=(3,2)-(2,4)=(1,-2).
4.在平行四边形ABCD中,AC为一条对角线,=(2,4),=(1,3),则=()
A.(2,4)B.(3,5)
C.(1,1)D.(-1,-1)
解析:选C=-=-=-(-)=(1,1).
5.已知M(-2,7),N(10,-2),点P是线段MN上的点,且=-2,则P点的坐标为()
A.(-14,16)B.(22,-11)
C.(6,1)D.(2,4)
解析:选D设P(x,y),则=(10-x,-2-y),=(-2-x,7-y),
由=-2得10-x=4+2x,-2-y=-14+2y,所以x=2,y=4.
6.(江苏高考)已知向量a=(2,1),b=(1,-2),若ma+nb=(9,-8)(m,n∈R),则m-n的值为________.
解析:∵ma+nb=(2m+n,m-2n)=(9,-8),
∴2m+n=9,m-2n=-8,∴m=2,n=5,∴m-n=2-5=-3.
答案:-3
7.若A(2,-1),B(4,2),C(1,5),则+2=________.
解析:∵A(2,-1),B(4,2),C(1,5),
∴=(2,3),=(-3,3).
∴+2=(2,3)+2(-3,3)=(2,3)+(-6,6)=(-4,9).
答案:(-4,9)
8.已知O是坐标原点,点A在第二象限,||=6,∠xOA=150°,向量的坐标为________.
解析:设点A(x,y),则x=||cos150°=6cos150°=-33,
y=||sin150°=6sin150°=3,
即A(-33,3),所以=(-33,3).
答案:(-33,3)
9.已知a=,B点坐标为(1,0),b=(-3,4),c=(-1,1),且a=3b-2c,求点A的坐标.
解:∵b=(-3,4),c=(-1,1),
∴3b-2c=3(-3,4)-2(-1,1)=(-9,12)-(-2,2)=(-7,10),
即a=(-7,10)=.
又B(1,0),设A点坐标为(x,y),
则=(1-x,0-y)=(-7,10),
∴1-x=-7,0-y=10x=8,y=-10,
即A点坐标为(8,-10).
10.已知向量=(4,3),=(-3,-1),点A(-1,-2).
(1)求线段BD的中点M的坐标.
(2)若点P(2,y)满足=λ(λ∈R),求λ与y的值.
解:(1)设B(x1,y1),
因为=(4,3),A(-1,-2),
所以(x1+1,y1+2)=(4,3),
所以x1+1=4,y1+2=3,所以x1=3,y1=1,
所以B(3,1).
同理可得D(-4,-3),
设BD的中点M(x2,y2),
则x2=3-42=-12,y2=1-32=-1,
所以M-12,-1.
(2)由=(3,1)-(2,y)=(1,1-y),
=(-4,-3)-(3,1)=(-7,-4),
又=λ(λ∈R),
所以(1,1-y)=λ(-7,-4)=(-7λ,-4λ),
所以1=-7λ,1-y=-4λ,所以λ=-17,y=37.

层级二应试能力达标
1.已知向量=(2,4),=(0,2),则12=()
A.(-2,-2)B.(2,2)
C.(1,1)D.(-1,-1)
解析:选D12=12(-)=12(-2,-2)=(-1,-1),故选D.
2.已知向量a=(1,2),b=(2,3),c=(3,4),且c=λ1a+λ2b,则λ1,λ2的值分别为()
A.-2,1B.1,-2
C.2,-1D.-1,2
解析:选D∵c=λ1a+λ2b,
∴(3,4)=λ1(1,2)+λ2(2,3)=(λ1+2λ2,2λ1+3λ2),
∴λ1+2λ2=3,2λ1+3λ2=4,解得λ1=-1,λ2=2.
3.已知四边形ABCD的三个顶点A(0,2),B(-1,-2),C(3,1),且=2,则顶点D的坐标为()
A.2,72B.2,-12
C.(3,2)D.(1,3)
解析:选A设点D(m,n),则由题意得(4,3)=2(m,n-2)=(2m,2n-4),故2m=4,2n-4=3,解得m=2,n=72,即点D2,72,故选A.
4.对于任意的两个向量m=(a,b),n=(c,d),规定运算“?”为m?n=(ac-bd,bc+ad),运算“?”为m?n=(a+c,b+d).设f=(p,q),若(1,2)?f=(5,0),则(1,2)?f等于()
A.(4,0)B.(2,0)
C.(0,2)D.(0,-4)
解析:选B由(1,2)f=(5,0),得p-2q=5,2p+q=0,解得p=1,q=-2,所以f=(1,-2),所以(1,2)?f=(1,2)?(1,-2)=(2,0).
5.已知向量i=(1,0),j=(0,1),对坐标平面内的任一向量a,给出下列四个结论:
①存在唯一的一对实数x,y,使得a=(x,y);
②若x1,x2,y1,y2∈R,a=(x1,y1)≠(x2,y2),则x1≠x2,且y1≠y2;
③若x,y∈R,a=(x,y),且a≠0,则a的起点是原点O;
④若x,y∈R,a≠0,且a的终点坐标是(x,y),则a=(x,y).
其中,正确结论有________个.
解析:由平面向量基本定理,可知①正确;例如,a=(1,0)≠(1,3),但1=1,故②错误;因为向量可以平移,所以a=(x,y)与a的起点是不是原点无关,故③错误;当a的终点坐标是(x,y)时,a=(x,y)是以a的起点是原点为前提的,故④错误.
答案:1
6.已知A(-3,0),B(0,2),O为坐标原点,点C在∠AOB内,|OC|=22,且∠AOC=π4.设=λ+(λ∈R),则λ=________.
解析:过C作CE⊥x轴于点E,
由∠AOC=π4知,|OE|=|CE|=2,所以=+=λ+,即=λ,所以(-2,0)=λ(-3,0),故λ=23.
答案:23
7.在△ABC中,已知A(7,8),B(3,5),C(4,3),M,N,D分别是AB,AC,BC的中点,且MN与AD交于点F,求的坐标.
解:∵A(7,8),B(3,5),C(4,3),
∴=(3-7,5-8)=(-4,-3),
=(4-7,3-8)=(-3,-5).
∵D是BC的中点,
∴=12(+)=12(-4-3,-3-5)
=12(-7,-8)=-72,-4.
∵M,N分别为AB,AC的中点,∴F为AD的中点.
∴=-=-12=-12-72,-4=74,2.
8.在直角坐标系xOy中,已知点A(1,1),B(2,3),C(3,2),
(1)若++=0,求的坐标.
(2)若=m+n(m,n∈R),且点P在函数y=x+1的图象上,求m-n.
解:(1)设点P的坐标为(x,y),
因为++=0,
又++=(1-x,1-y)+(2-x,3-y)+(3-x,2-y)=(6-3x,6-3y).
所以6-3x=0,6-3y=0,解得x=2,y=2.
所以点P的坐标为(2,2),
故=(2,2).
(2)设点P的坐标为(x0,y0),因为A(1,1),B(2,3),C(3,2),
所以=(2,3)-(1,1)=(1,2),
=(3,2)-(1,1)=(2,1),
因为=m+n,
所以(x0,y0)=m(1,2)+n(2,1)=(m+2n,2m+n),所以x0=m+2n,y0=2m+n,
两式相减得m-n=y0-x0,
又因为点P在函数y=x+1的图象上,
所以y0-x0=1,所以m-n=1.