88教案网

你的位置: 教案 > 高中教案 > 导航 > 向量的坐标表示与坐标运算

高中向量的教案

发表时间:2020-10-31

向量的坐标表示与坐标运算。

一名优秀的教师在教学时都会提前最好准备,准备好一份优秀的教案往往是必不可少的。教案可以让学生更容易听懂所讲的内容,让教师能够快速的解决各种教学问题。你知道如何去写好一份优秀的教案呢?以下是小编为大家收集的“向量的坐标表示与坐标运算”欢迎阅读,希望您能够喜欢并分享!

课时7向量平行的坐标表示(2)
【学习目标】
巩固平面向量坐标的概念,掌握平行向量的坐标表示,并且能用它解决向量平行(共线)的有关问题。
【知识扫描】
1.共线向量的条件是有且只有一个实数λ使得=λ.()
2.设=(x1,y1)=(x2,y2)其中,则∥()x1y2-x2y1=0
注:(1)该条件不能写成∵x1,x2有可能为0
(2)向量共线的条件有两种形式:∥()
归纳:向量平行的坐标表示要注意正反两方面,
即若则
【例题选讲】
例1已知a=(1,1),b=(x,1),u=a+2b,v=2a-b,
(1)若u=3v,求x;(2)若u∥v,求x.

例2.已知点A(1,1),B(-1,5)及,,求点C、D、E的坐标,判断向量是否共线。
例3.已知A、B、C三点的坐标分别为(-1,0),(3,-1),(1,2),并且,
求证:

例4.已知四点A(x,0),B(2x,1)C(2,x),D(6,2x)。(1)求实数x,使两向量,共线;(2)当向量,共线时,A、B、C、D四点是否在同一直线上?

例5.设向量=(k,12),=(4,5),=(10,k),当k为何值时,A、B、C三点共线。

例6.已知=2,=(-1,),且∥,求向量。

【课内练习】课本P75练习1-3
1.三点A(a,b),B(c.d),C(e,f)共线的条件为
2.已知A(1,-3),B(8,),若A、B、C三点共线,则C点坐标是
3.向量=(3,7),=(-3,),(),若∥,则x等于
4.已知=(1,2),=(x,1),且(+2)∥(2-),则x的值为
【课后作业】
1.以下各向量中,与向量=(-5,4)平行的向量是
A(5k,4k)B()C(-10,2)D(-5k,-4k)
2.与=(15,8)平行的所有单位向量是
3.已知=(3,4),=(sinx,cosx),且∥,则tanx=
4.已知=(-2,1-cos),=(1+cos,-),且,则锐角=
5.下列各组向量相互平行的是
A=(-1,2),=(3,5)B=(1,2),=(2,1)
C=(2,-1),=(3,4)D=(-2,1),=(4,-2)
6.已知=(2,3),=(-1,2)若k-与-k平行,求k的值。

7.已知向量=(6,1),=(x,y)=(-2,-3),当向量∥时,求实数x,y应满足的关系式。

8.已知=(x,2),=(3,-1)是否存在实数x,使向量-2与2+平行?若存在,求出x;若不存在,说明理由。

9.已知三个向量=(3,2),=(-1,2),=(4,1),回答下列问题:
(1)求3+-2;(2)求满足=m+n的实数m和n;
(3)若(+k)//(2-),求实数k的值;
(4)设=(x,y),满足且=1,求

10、已知ABCD的三个顶点A、B、C的坐标分别为(-2,1)、(-1,3)、(3,4),求顶点D的坐标.

11、平行四边形ABCD的对角线交于点O,且知=(3,7),=(-2,1),求坐标.

问题统计与分析

扩展阅读

2.3.3平面向量的正交分解及坐标表示平面向量的坐标运算


2.3.22.3.3平面向量的正交分解及坐标表示
平面向量的坐标运算

预习课本P94~98,思考并完成以下问题
(1)怎样分解一个向量才为正交分解?
(2)如何由a,b的坐标求a+b,a-b,λa的坐标?
[新知初探]
1.平面向量正交分解的定义
把一个平面向量分解为两个互相垂直的向量.
2.平面向量的坐标表示
(1)基底:在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i,j作为基底.
(2)坐标:对于平面内的一个向量a,有且仅有一对实数x,y,使得a=xi+yj,则有序实数对(x,y)叫做向量a的坐标.
(3)坐标表示:a=(x,y).
(4)特殊向量的坐标:i=(1,0),j=(0,1),0=(0,0).
[点睛](1)平面向量的正交分解实质上是平面向量基本定理的一种应用形式,只是两个基向量e1和e2互相垂直.
(2)由向量坐标的定义,知两向量相等的充要条件是它们的横、纵坐标对应相等,即a=bx1=x2且y1=y2,其中a=(x1,y1),b=(x2,y2).
3.平面向量的坐标运算
设向量a=(x1,y1),b=(x2,y2),λ∈R,则有下表:
文字描述符号表示
加法两个向量和的坐标分别等于这两个向量相应坐标的和a+b=(x1+x2,y1+y2)
减法两个向量差的坐标分别等于这两个向量相应坐标的差a-b=(x1-x2,y1-y2)
数乘实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标λa=(λx1,λy1)
重要结论一个向量的坐标等于表示此向量的有向线段的终点的坐标减去起点的坐标已知A(x1,y1),
B(x2,y2),则=(x2-x1,y2-y1)
[点睛](1)向量的坐标只与起点、终点的相对位置有关,而与它们的具体位置无关.
(2)当向量确定以后,向量的坐标就是唯一确定的,因此向量在平移前后,其坐标不变.
[小试身手]
1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)
(1)相等向量的坐标相同与向量的起点、终点无关.()
(2)当向量的始点在坐标原点时,向量的坐标就是向量终点的坐标.()
(3)两向量差的坐标与两向量的顺序无关.()
(4)点的坐标与向量的坐标相同.()
答案:(1)√(2)√(3)×(4)×
2.若a=(2,1),b=(1,0),则3a+2b的坐标是()
A.(5,3)B.(4,3)
C.(8,3)D.(0,-1)
答案:C
3.若向量=(1,2),=(3,4),则=()
A.(4,6)B.(-4,-6)
C.(-2,-2)D.(2,2)
答案:A
4.若点M(3,5),点N(2,1),用坐标表示向量=______.
答案:(-1,-4)

平面向量的坐标表示

[典例]
如图,在边长为1的正方形ABCD中,AB与x轴正半轴成30°角.求点B和点D的坐标和与的坐标.
[解]由题知B,D分别是30°,120°角的终边与单位圆的交点.
设B(x1,y1),D(x2,y2).
由三角函数的定义,得
x1=cos30°=32,y1=sin30°=12,∴B32,12.
x2=cos120°=-12,y2=sin120°=32,
∴D-12,32.
∴=32,12,=-12,32.

求点和向量坐标的常用方法
(1)求一个点的坐标,可以转化为求该点相对于坐标原点的位置向量的坐标.
(2)在求一个向量时,可以首先求出这个向量的起点坐标和终点坐标,再运用终点坐标减去起点坐标得到该向量的坐标.

[活学活用]
已知O是坐标原点,点A在第一象限,||=43,∠xOA=60°,
(1)求向量的坐标;
(2)若B(3,-1),求的坐标.
解:(1)设点A(x,y),则x=43cos60°=23,
y=43sin60°=6,即A(23,6),=(23,6).
(2)=(23,6)-(3,-1)=(3,7).
平面向量的坐标运算
[典例](1)已知三点A(2,-1),B(3,4),C(-2,0),则向量3+2=________,-2=________.
(2)已知向量a,b的坐标分别是(-1,2),(3,-5),求a+b,a-b,3a,2a+3b的坐标.
[解析](1)∵A(2,-1),B(3,4),C(-2,0),
∴=(1,5),=(4,-1),=(-5,-4).
∴3+2=3(1,5)+2(4,-1)
=(3+8,15-2)
=(11,13).
-2=(-5,-4)-2(1,5)
=(-5-2,-4-10)
=(-7,-14).
[答案](11,13)(-7,-14)
(2)解:a+b=(-1,2)+(3,-5)=(2,-3),
a-b=(-1,2)-(3,-5)=(-4,7),
3a=3(-1,2)=(-3,6),
2a+3b=2(-1,2)+3(3,-5)
=(-2,4)+(9,-15)
=(7,-11).
平面向量坐标运算的技巧
(1)若已知向量的坐标,则直接应用两个向量和、差及向量数乘的运算法则进行.
(2)若已知有向线段两端点的坐标,则可先求出向量的坐标,然后再进行向量的坐标运算.
(3)向量的线性坐标运算可完全类比数的运算进行.

[活学活用]
1.设平面向量a=(3,5),b=(-2,1),则a-2b=()
A.(7,3)B.(7,7)
C.(1,7)D.(1,3)
解析:选A∵2b=2(-2,1)=(-4,2),
∴a-2b=(3,5)-(-4,2)=(7,3).
2.已知M(3,-2),N(-5,-1),=12,则P点坐标为______.
解析:设P(x,y),=(x-3,y+2),=(-8,1),
∴=12=12(-8,1)=-4,12,
∴x-3=-4,y+2=12.∴x=-1,y=-32.
答案:-1,-32

向量坐标运算的综合应用
[典例]已知点O(0,0),A(1,2),B(4,5)及=+t,t为何值时,点P在x轴上?点P在y轴上?点P在第二象限?
[解]因为=+t=(1,2)+t(3,3)=(1+3t,2+3t),
若点P在x轴上,则2+3t=0,
所以t=-23.
若点P在y轴上,则1+3t=0,
所以t=-13.
若点P在第二象限,则1+3t<0,2+3t>0,
所以-23<t<-13.
[一题多变]
1.[变条件]本例中条件“点P在x轴上,点P在y轴上,点P在第二象限”若换为“B为线段AP的中点”试求t的值.
解:由典例知P(1+3t,2+3t),
则1+1+3t2=4,2+2+3t2=5,解得t=2.
2.[变设问]本例条件不变,试问四边形OABP能为平行四边形吗?若能,求出t值;若不能,说明理由.
解:=(1,2),=(3-3t,3-3t).若四边形OABP为平行四边形,则=,
所以3-3t=1,3-3t=2,该方程组无解.
故四边形OABP不能成为平行四边形.
向量中含参数问题的求解
(1)向量的坐标含有两个量:横坐标和纵坐标,如果横或纵坐标是一个变量,则表示向量的点的坐标的位置会随之改变.
(2)解答这类由参数决定点的位置的题目,关键是列出满足条件的含参数的方程(组),解这个方程(组),就能达到解题的目的.
层级一学业水平达标
1.如果用i,j分别表示x轴和y轴方向上的单位向量,且A(2,3),B(4,2),则可以表示为()
A.2i+3jB.4i+2j
C.2i-jD.-2i+j
解析:选C记O为坐标原点,则=2i+3j,=4i+2j,所以=-=2i-j.
2.已知=a,且A12,4,B14,2,又λ=12,则λa等于()
A.-18,-1B.14,3
C.18,1D.-14,-3
解析:选A∵a==14,2-12,4=-14,-2,
∴λa=12a=-18,-1.
3.已知向量a=(1,2),2a+b=(3,2),则b=()
A.(1,-2)B.(1,2)
C.(5,6)D.(2,0)
解析:选Ab=(3,2)-2a=(3,2)-(2,4)=(1,-2).
4.在平行四边形ABCD中,AC为一条对角线,=(2,4),=(1,3),则=()
A.(2,4)B.(3,5)
C.(1,1)D.(-1,-1)
解析:选C=-=-=-(-)=(1,1).
5.已知M(-2,7),N(10,-2),点P是线段MN上的点,且=-2,则P点的坐标为()
A.(-14,16)B.(22,-11)
C.(6,1)D.(2,4)
解析:选D设P(x,y),则=(10-x,-2-y),=(-2-x,7-y),
由=-2得10-x=4+2x,-2-y=-14+2y,所以x=2,y=4.
6.(江苏高考)已知向量a=(2,1),b=(1,-2),若ma+nb=(9,-8)(m,n∈R),则m-n的值为________.
解析:∵ma+nb=(2m+n,m-2n)=(9,-8),
∴2m+n=9,m-2n=-8,∴m=2,n=5,∴m-n=2-5=-3.
答案:-3
7.若A(2,-1),B(4,2),C(1,5),则+2=________.
解析:∵A(2,-1),B(4,2),C(1,5),
∴=(2,3),=(-3,3).
∴+2=(2,3)+2(-3,3)=(2,3)+(-6,6)=(-4,9).
答案:(-4,9)
8.已知O是坐标原点,点A在第二象限,||=6,∠xOA=150°,向量的坐标为________.
解析:设点A(x,y),则x=||cos150°=6cos150°=-33,
y=||sin150°=6sin150°=3,
即A(-33,3),所以=(-33,3).
答案:(-33,3)
9.已知a=,B点坐标为(1,0),b=(-3,4),c=(-1,1),且a=3b-2c,求点A的坐标.
解:∵b=(-3,4),c=(-1,1),
∴3b-2c=3(-3,4)-2(-1,1)=(-9,12)-(-2,2)=(-7,10),
即a=(-7,10)=.
又B(1,0),设A点坐标为(x,y),
则=(1-x,0-y)=(-7,10),
∴1-x=-7,0-y=10x=8,y=-10,
即A点坐标为(8,-10).
10.已知向量=(4,3),=(-3,-1),点A(-1,-2).
(1)求线段BD的中点M的坐标.
(2)若点P(2,y)满足=λ(λ∈R),求λ与y的值.
解:(1)设B(x1,y1),
因为=(4,3),A(-1,-2),
所以(x1+1,y1+2)=(4,3),
所以x1+1=4,y1+2=3,所以x1=3,y1=1,
所以B(3,1).
同理可得D(-4,-3),
设BD的中点M(x2,y2),
则x2=3-42=-12,y2=1-32=-1,
所以M-12,-1.
(2)由=(3,1)-(2,y)=(1,1-y),
=(-4,-3)-(3,1)=(-7,-4),
又=λ(λ∈R),
所以(1,1-y)=λ(-7,-4)=(-7λ,-4λ),
所以1=-7λ,1-y=-4λ,所以λ=-17,y=37.

层级二应试能力达标
1.已知向量=(2,4),=(0,2),则12=()
A.(-2,-2)B.(2,2)
C.(1,1)D.(-1,-1)
解析:选D12=12(-)=12(-2,-2)=(-1,-1),故选D.
2.已知向量a=(1,2),b=(2,3),c=(3,4),且c=λ1a+λ2b,则λ1,λ2的值分别为()
A.-2,1B.1,-2
C.2,-1D.-1,2
解析:选D∵c=λ1a+λ2b,
∴(3,4)=λ1(1,2)+λ2(2,3)=(λ1+2λ2,2λ1+3λ2),
∴λ1+2λ2=3,2λ1+3λ2=4,解得λ1=-1,λ2=2.
3.已知四边形ABCD的三个顶点A(0,2),B(-1,-2),C(3,1),且=2,则顶点D的坐标为()
A.2,72B.2,-12
C.(3,2)D.(1,3)
解析:选A设点D(m,n),则由题意得(4,3)=2(m,n-2)=(2m,2n-4),故2m=4,2n-4=3,解得m=2,n=72,即点D2,72,故选A.
4.对于任意的两个向量m=(a,b),n=(c,d),规定运算“?”为m?n=(ac-bd,bc+ad),运算“?”为m?n=(a+c,b+d).设f=(p,q),若(1,2)?f=(5,0),则(1,2)?f等于()
A.(4,0)B.(2,0)
C.(0,2)D.(0,-4)
解析:选B由(1,2)f=(5,0),得p-2q=5,2p+q=0,解得p=1,q=-2,所以f=(1,-2),所以(1,2)?f=(1,2)?(1,-2)=(2,0).
5.已知向量i=(1,0),j=(0,1),对坐标平面内的任一向量a,给出下列四个结论:
①存在唯一的一对实数x,y,使得a=(x,y);
②若x1,x2,y1,y2∈R,a=(x1,y1)≠(x2,y2),则x1≠x2,且y1≠y2;
③若x,y∈R,a=(x,y),且a≠0,则a的起点是原点O;
④若x,y∈R,a≠0,且a的终点坐标是(x,y),则a=(x,y).
其中,正确结论有________个.
解析:由平面向量基本定理,可知①正确;例如,a=(1,0)≠(1,3),但1=1,故②错误;因为向量可以平移,所以a=(x,y)与a的起点是不是原点无关,故③错误;当a的终点坐标是(x,y)时,a=(x,y)是以a的起点是原点为前提的,故④错误.
答案:1
6.已知A(-3,0),B(0,2),O为坐标原点,点C在∠AOB内,|OC|=22,且∠AOC=π4.设=λ+(λ∈R),则λ=________.
解析:过C作CE⊥x轴于点E,
由∠AOC=π4知,|OE|=|CE|=2,所以=+=λ+,即=λ,所以(-2,0)=λ(-3,0),故λ=23.
答案:23
7.在△ABC中,已知A(7,8),B(3,5),C(4,3),M,N,D分别是AB,AC,BC的中点,且MN与AD交于点F,求的坐标.
解:∵A(7,8),B(3,5),C(4,3),
∴=(3-7,5-8)=(-4,-3),
=(4-7,3-8)=(-3,-5).
∵D是BC的中点,
∴=12(+)=12(-4-3,-3-5)
=12(-7,-8)=-72,-4.
∵M,N分别为AB,AC的中点,∴F为AD的中点.
∴=-=-12=-12-72,-4=74,2.
8.在直角坐标系xOy中,已知点A(1,1),B(2,3),C(3,2),
(1)若++=0,求的坐标.
(2)若=m+n(m,n∈R),且点P在函数y=x+1的图象上,求m-n.
解:(1)设点P的坐标为(x,y),
因为++=0,
又++=(1-x,1-y)+(2-x,3-y)+(3-x,2-y)=(6-3x,6-3y).
所以6-3x=0,6-3y=0,解得x=2,y=2.
所以点P的坐标为(2,2),
故=(2,2).
(2)设点P的坐标为(x0,y0),因为A(1,1),B(2,3),C(3,2),
所以=(2,3)-(1,1)=(1,2),
=(3,2)-(1,1)=(2,1),
因为=m+n,
所以(x0,y0)=m(1,2)+n(2,1)=(m+2n,2m+n),所以x0=m+2n,y0=2m+n,
两式相减得m-n=y0-x0,
又因为点P在函数y=x+1的图象上,
所以y0-x0=1,所以m-n=1.

空间向量的坐标运算


古人云,工欲善其事,必先利其器。教师要准备好教案,这是教师的任务之一。教案可以让学生能够在课堂积极的参与互动,帮助教师更好的完成实现教学目标。教案的内容要写些什么更好呢?下面是小编帮大家编辑的《空间向量的坐标运算》,欢迎大家阅读,希望对大家有所帮助。

题目第九章(B)直线、平面、简单几何体空间向量的坐标运算
高考要求
要使学生理解空间向量、空间点的坐标的意义,掌握向量加法、减法、数乘、点乘的坐标表示以及两点间的距离、夹角公式通过解题,会应用空间向量的坐标运算解决立体几何中有关平行、垂直、夹角、距离等问题
知识点归纳
1空间直角坐标系:
(1)若空间的一个基底的三个基向量互相垂直,且长为,这个基底叫单位正交基底,用表示;
(2)在空间选定一点和一个单位正交基底,以点为原点,分别以的方向为正方向建立三条数轴:轴、轴、轴,它们都叫坐标轴.我们称建立了一个空间直角坐标系,点叫原点,向量都叫坐标向量.通过每两个坐标轴的平面叫坐标平面,分别称为平面,平面,平面;
2.空间直角坐标系中的坐标:
在空间直角坐标系中,对空间任一点,存在唯一的有序实数组,使,有序实数组叫作向量在空间直角坐标系中的坐标,记作,叫横坐标,叫纵坐标,叫竖坐标.
3.空间向量的直角坐标运算律:
(1)若,,
则,


,,

(2)若,,则.
一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标
4模长公式:若,,
则,.
5.夹角公式:.
6.两点间的距离公式:若,,
则,

题型讲解
例1已知=(2,2,1),=(4,5,3),求平面ABC的单位法向量
解:设面ABC的法向量,
则⊥且⊥,即=0,且=0,
即2x+2y+z=0且4x+5y+3z=0,解得
∴=z(,-1,1),单位法向量=±(,-,)
点评:一般情况下求法向量用待定系数法由于法向量没规定长度,仅规定了方向,所以有一个自由度,可把的某个坐标设为1,再求另两个坐标平面法向量是垂直于平面的向量,故法向量的相反向量也是法向量,所以本题的单位法向量应有两解
例2已知A(3,2,1)、B(1,0,4),求:
(1)线段AB的中点坐标和长度;
(2)到A、B两点距离相等的点P(x,y,z)的坐标满足的条件
解:(1)设P(x,y,z)是AB的中点,
则=(+)=[(3,2,1)+(1,0,4)]=(2,1,),∴点P的坐标是(2,1,),
dAB==
(2)设点P(x,y,z)到A、B的距离相等,
则=
化简得4x+4y-6z+3=0(线段AB的中垂面方程,其法向量的坐标就是方程中x,y,z的系数),即为P的坐标应满足的条件
点评:空间两点P1(x1,y1,z1)、P2(x2,y2,z2)的中点为(,,),且|P1P2|=
例3棱长为a的正方体ABCD—A1B1C1D1中,在棱DD1上是否存在点P使B1D⊥面PAC?
解:以D为原点建立如图所示的坐标系,
设存在点P(0,0,z),
=(-a,0,z),
=(-a,a,0),
=(a,a,a),
∵B1D⊥面PAC,∴=0,=0
∴-a2+az=0∴z=a,即点P与D1重合
∴点P与D1重合时,DB1⊥面PAC
例4在三棱锥S—ABC中,∠SAB=∠SAC=∠ACB=90°,AC=2,BC=,SB=
(1)求证:SC⊥BC;
(2)求SC与AB所成角的余弦值
解法一:如图,取A为原点,AB、AS分别为y、z轴建立空间直角坐标系,则有AC=2,BC=,SB=,
得B(0,,0)、S(0,0,2)、C(2,,0),
∴=(2,,-2),=(-2,,0)
(1)∵=0,∴SC⊥BC
(2)设SC与AB所成的角为α,
∵=(0,,0),=4,||||=4,
∴cosα=,即为所求
解法二:(1)∵SA⊥面ABC,AC⊥BC,AC是斜线SC在平面ABC内的射影,∴SC⊥BC
(2)如图,过点C作CD∥AB,过点A作AD∥BC交CD于点D,连结SD、SC,则∠SCD为异面直线SC与AB所成的角
∵四边形ABCD是平行四边形,CD=,SA=2,SD===5,
∴在△SDC中,由余弦定理得cos∠SCD=,即为所求
点评:本题(1)采用的是“定量”与“定性”两种证法题(2)的解法一应用向量的数量积直接计算,避免了作辅助线、平移转化的麻烦,但需建立恰当的坐标系;解法二虽然避免了建系,但要选点、平移、作辅助线、解三角形
例5如图,直棱柱ABC—A1B1C1的底面△ABC中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分别是A1B1、A1A的中点
(1)求的长;
(2)求cos〈,〉的值;
(3)求证:A1B⊥C1M
(1)解:如图建立坐标系,依题意得B(0,1,0),N(1,0,1),
∴||==
(2)解:A1(1,0,2),B(0,1,0),C(0,0,0),B1(0,1,2),
∴=(1,-1,2),=(0,1,2),
∴=3,||=,||=
∴cos〈,〉==
(3)证明:∵C1(0,0,2),M(,,2),
∴=(-1,1,-2),=(,,0),
∴=0,∴A1B⊥C1M
例6如图,在正方体ABCD—A1B1C1D1中,E、F分别是BB1、CD的中点
(1)证明AD⊥D1F;
(2)求AE与D1F所成的角;
(3)证明面AED⊥面A1D1F
解:取D为原点,DA、DC、DD1为x轴、y轴、z轴建立直角坐标系,取正方体棱长为2,
则A(2,0,0)、A1(2,0,2)、
D1(0,0,2)、E(2,2,1)、F(0,1,0)
(1)∵=(2,0,0)(0,1,-2)=0,∴AD⊥D1F
(2)∵=(0,2,1)(0,1,-2)=0,
∴AE⊥D1F,即AE与D1F成90°角
(3)∵=(2,2,1)(0,1,-2)=0,
∴DE⊥D1F∵AE⊥D1F,∴D1F⊥面AED
∵D1F面A1D1F,∴面AED⊥面A1D1F
点评:①通过建立空间直角坐标系,点用三维坐标表示,向量用坐标表示,进行向量的运算,轻而易举地解决立体几何问题,不需要添加辅助线一个需要经过严密推理论证的问题就这样被简单机械的运算代替了
②本题是高考题,标准答案的解法较为复杂,而运用代数向量求解则轻而易举,充分显示出代数化方法研究几何图形的优越性,这应作为立体几何复习的一个重点去掌握通过坐标法计算数量积去证垂直,求夹角、距离,是高考的重点
例7如图,正三棱柱ABC-A1B1C1的底边长为a,侧棱长为a
建立适当的坐标系,⑴写出A,B,A1,B1的坐标;⑵求AC1与侧面ABB1A1所成的角
分析:(1)所谓“建立适当的坐标系”,一般应使尽量多的点在数轴上或便于计算,(2)首先要找出所求的角,或找出平面的法向量与直线所成的角,然后再求之
解:(1)建系如图,则A(0,0,0)B(0,a,0)
A1(0,0,a),C1(-a,)
(2)解法一:在所建的坐标系中,取A1B1的中点M,
于是M(0,),连结AM,MC1
则有
,,
∴,,
所以,MC1⊥平面ABB1A1
因此,AC1与AM所成的角就是AC1与侧面ABB1A1所成的角
,,
,而|
由cos=,=30°
解法二:,
平面ABB1A1的一个法向量
∴AC1与侧面ABB1A1所成的角的正弦为:
=
∴AC1与侧面ABB1A1所成的角为30°
例8棱长为2的正方体A1B1C1D1-ABCD中,E、F分别是C1C和D1A1的中点,(1)求EF长度;(2)求;3)求点A到EF的距离
分析:一般来说,与长方体的棱或棱上的点有关的问题,建立空间直角坐标系比较方便,适当建立坐标系后,正确地写出相关点的坐标及向量然后进行运算即可得解
解:以D为原点,DA,DC,DD1分别为x轴,
y轴,z轴建立直角坐标系,
则A(2,0,0),B(2,2,0),
E(0,2,1),F(1,0,2)
由此可得:=(0,2,0),=(1,-2,1)
=(1,0,-2),||=2,||=,=-4,=1-2=-1,
所以
(1)=
(2)cos==-,所以=-arccos
(3)在上的射影的数量cos==
A到EF的距离=
点评:点到直线的距离的向量求法,就是先求出该点与直线上某点连线在直线上的射影,再用勾股定理求对应的距离
例9平面ABCD⊥平面ABEF,ABCD是正方形,ABEF是矩形,且G是EF的中点,
(1)求证平面AGC⊥平面BGC;
(2)求GB与平面AGC所成角正弦值;
(3)求二面角B—AC—G的大小
解:如图,以A为原点建立直角坐标系,
则A(0,0,0),B(0,2a,0),C(0,2a,2a),
G(a,a,0),F(a,0,0)
(1)证明:,

设平面AGC的法向量为,
设平面BGC的法向量为,
∴即∴平面AGC⊥平面BGC;
(2)由⑴知平面AGC的法向量为


(3)因是平面AGC的法向量,又AF⊥平面ABCD,
平面ABCD的法向量,得
∴二面角B—AC—G的大小为
求平面法向量的另一种方法:
由A(0,0,0),B(0,2a,0),C(0,2a,2a),
G(a,a,0),F(a,0,0)
设平面AGC的方程为:

∴平面AGC的法向量为
设平面BGC的方程为:
则∴平面BGC的法向量为
点评:①平面平行于哪一个轴,其法向量的对应坐标就是0;
②平面经过原点时平面方程中的常数项等于0;
③平面法向量的两种求法的区别
小结:
1运用空间向量的坐标运算解决几何问题时,首先要恰当建立空间直角坐标系,计算出相关点的坐标,进而写出向量的坐标,再结合公式进行论证、计算,最后转化为几何结论
2本节知识是代数化方法研究几何问题的基础,向量运算分为向量法与坐标法两类,以通过向量运算推理,去研究几何元素的位置关系为重点利用两个向量(非零)垂直数量积为零,可证明空间直线垂直;利用数量积可计算两异面直线的夹角,可求线段的长度;运用共面向量定理可证点共面、线面平行等;利用向量的射影、平面的法向量,可求点面距、线面角、异面直线的距离等
学生练习
1若=(2x,1,3),=(1,-2y,9),如果与为共线向量,则
Ax=1,y=1Bx=,y=-Cx=,y=-Dx=-,y=
解析:∵=(2x,1,3)与=(1,-2y,9)共线,故有==
∴x=,y=-应选C答案:C
2在空间直角坐标系中,已知点P(x,y,z),下列叙述中正确的个数是①点P关于x轴对称点的坐标是P1(x,-y,z)②点P关于yOz平面对称点的坐标是P2(x,-y,-z)③点P关于y轴对称点的坐标是P3(x,-y,z)④点P关于原点对称的点的坐标是P4(-x,-y,-z)
A3B2C1D0
解析:P关于x轴的对称点为P1(x,-y,-z),关于yOz平面的对称点为P2(-x,y,z),关于y轴的对称点为P3(-x,y,-z)故①②③错误答案:C
3已知向量=(1,1,0),=(-1,0,2),且k+与2-互相垂直,则k值是
A1BCD
解析:k+=k(1,1,0)+(-1,0,2)=(k-1,k,2),2-=2(1,1,0)-(-1,0,2)=(3,2,-2)
∵两向量垂直,∴3(k-1)+2k-2×2=0∴k=答案:D
4设OABC是四面体,G1是△ABC的重心,G是OG1上一点,且OG=3GG1,若=x+y+z,则(x,y,z)为
A(,,)B(,,)
C(,,)D(,,)
解析:∵==(+)=+[(+)]=+[(-)+(-)]=++,而=x+y+z,∴x=,y=,z=
答案:A
5在棱长为1的正方体ABCD—A1B1C1D1中,M、N分别为A1B1和BB1的中点,那么直线AM与CN所成的角为
AarccosBarccosCarccosDarccos
解:建立坐标系,把D点视作原点O,分别沿、、方向为x轴、y轴、z轴的正方向,则A(1,0,0),M(1,,1),C(0,1,0),N(1,1,)
∴=(1,,1)-(1,0,0)=(0,,1),
=(1,1,)-(0,1,0)=(1,0,)
故=0×1+×0+1×=,
||==,||==
∴cosα===∴α=arccos答案:D
6已知空间三点A(1,1,1)、B(-1,0,4)、C(2,-2,3),则与的夹角θ的大小是_________
解析:=(-2,-1,3),=(-1,3,-2),
cos〈,〉===-,
∴θ=〈,〉=120°答案:120°
7已知点A(1,2,1)、B(-1,3,4)、D(1,1,1),若=2,则||的值是__________
解析:设点P(x,y,z),则由=2,得
(x-1,y-2,z-1)=2(-1-x,3-y,4-z),

则||==答案:
8设点C(2a+1,a+1,2)在点P(2,0,0)、A(1,-3,2)、B(8,-1,4)确定的平面上,求a的值
解:=(-1,-3,2),=(6,-1,4)
根据共面向量定理,设=x+y(x、y∈R),
则(2a-1,a+1,2)=x(-1,-3,2)+y(6,-1,4)=(-x+6y,-3x-y,2x+4y),∴解得x=-7,y=4,a=16
另法:先求出三点确定的平面方程,然后代入求a的值
9已知正方体ABCD—A1B1C1D1的棱长为2,P、Q分别是BC、CD上的动点,且|PQ|=,建立坐标系,把D点视作原点O,分别沿、、方向为x轴、y轴、z轴的正方向,
(1)确定P、Q的位置,使得B1Q⊥D1P;
(2)当B1Q⊥D1P时,求二面角C1—PQ—A的大小
解:(1)设BP=t,则CQ=,DQ=2-
∴B1(2,0,2),D1(0,2,2),P(2,t,0),Q(2-,2,0),
∴=(,-2,2),=(-2,2-t,2)
∵B1Q⊥D1P等价于=0,
即-2-2(2-t)+2×2=0,
整理得=t,解得t=1
此时,P、Q分别是棱BC、CD的中点,即P、Q分别是棱BC、CD的中点时,B1Q⊥D1P;
(2)二面角C1—PQ—A的大小是π-arctan2
10已知三角形的顶点是A(1,-1,1),B(2,1,-1),C(-1,-1,-2)试求这个三角形的面积
解:S=|AB||AC|sinα,其中α是AB与AC这两条边的夹角
则S=||||
=||||=
在本题中,=(2,1,-1)-(1,-1,1)=(1,2,-2),
=(-1,-1,-2)-(1,-1,1)=(-2,0,-3),
∴||2=12+22+(-2)2=9,
||2=(-2)2+02+(-3)2=13,
=1(-2)+20+(-2)(-3)=-2+6=4,
∴S==
11证明正三棱柱的两个侧面的异面对角线互相垂直的充要条件是它的底面边长与侧棱长的比为∶1
证明:如图,以正三棱柱的顶点O为原点,棱OC、OB为y轴、z轴,建立空间直角坐标系,设正三棱柱底面边长与棱长分别为2a、b,则A(a,a,b)、B(0,0,b)、C(0,2a,0)因为异面对角线OA⊥BC=0(a,a,b)(0,2a,-b)=2a2-b2=0b=a,即2a∶b=∶1,所以OA⊥BC的充要条件是它的底面边长与侧棱长的比为∶1
12如图,ABCD是边长为a的菱形,且∠BAD=60°,△PAD为正三角形,且面PAD⊥面ABCD
(1)求cos〈,〉的值;
(2)若E为AB的中点,F为PD的中点,求||的值;
(3)求二面角P—BC—D的大小
解:(1)选取AD中点O为原点,OB、AD、OP所在直线分别为x轴、y轴、z轴建立空间直角坐标系,则A(0,-,0),B(a,0,0),P(0,0,a),D(0,,0)
∴=(a,,0),=(0,,-a),
则cos〈,〉=
==
(2)∵E、F分别为AB、PD的中点,
∴E(a,-,0),F(0,,a)
则||==a
(3)∵面PAD⊥面ABCD,PO⊥AD,
∴PO⊥面ABCD
∵BO⊥AD,AD∥BC,∴BO⊥BC
连结PB,则PB⊥BC,
∴∠PBO为二面角P—BC—D的平面角
在Rt△PBO中,PO=a,BO=a,
∴tan∠PBO===1则∠PBO=45°
故二面角P—BC—D的大小为45°
课前后备注

高二数学向量的坐标表示及其运算016


一名爱岗敬业的教师要充分考虑学生的理解性,高中教师要准备好教案,这是老师职责的一部分。教案可以让学生更好的消化课堂内容,帮助高中教师提高自己的教学质量。优秀有创意的高中教案要怎样写呢?经过搜索和整理,小编为大家呈现“高二数学向量的坐标表示及其运算016”,欢迎阅读,希望您能够喜欢并分享!

8.1(2)向量的坐标表示及其运算(2)
一、教学内容分析
向量是研究数学的工具,是学习数形结合思想方法的直观而又生动的内容.向量的坐标以及向量运算的坐标形式,则从“数、式”的角度对向量以及向量的运算作了精确的、定量的描述.本节课是8.1向量的坐标及其运算的第二课时,一方面把“形”与“数、式”结合起来思考,以“数”入微,借“形”思考,体会并感悟数形结合的思维方式;另一方面通过例5的演绎推理教学,体会代数证明的严谨性,也为下节课定比分点(三点共线)的教学提供基础.
二、教学目标设计
1.掌握向量模的求法,知道模的几何意义;
2.理解并掌握两个非零向量平行的充要条件,巩固加深充要条件的证明方式;
3.会用平行的充要条件解决点共线问题;
4.感悟向量作为工具解题的优越性.
三、教学重点及难点
课本例5的演绎证明;
分类思想,数形结合思想在解决问题时的运用;
特殊——一般——特殊的探究问题意识.
四、教学流程设计
五、教学过程设计
创设问题情景
问题一、已知向量.
(1)在坐标平面上,画出向量;并求=;
(2)若向量终点Q坐标为,则向量的始点P坐标为_______;
(3)向量的模与两点P、Q间距离关系是.
若,则
练习1:已知向量,求
[说明]在问题一中,先给出向量,要求学生在坐标平面上画出向量,增强数形结合的解题意识,感悟向量的模即平面上两点的距离.由此发现并掌握向量模的求法及几何意义.安排(2)小问的目的在于复习巩固位置向量与自由向量的概念,体会并感悟到任何一个自由向量都可转化为位置向量.通过自由向量与位置向量的学习,引出向量平行的概念.
向量平行的概念:对任意两个向量,若存在一个常数,使得成立,则两向量与向高考¥资%源~网量平行,记为:.
问题探究反思
问题二.在坐标平面上描出下列三点,完成下列问题:
(1)请把下列向量的坐标与模填在表格内:

向量坐标(1,2)(2,4)(3,6)
向量的模

(2)通过画图,你得出什么结论?
三点A、B、C在一条直线上
(3)分析表格中向量的模,你发现了什么?
(4)分析表格中向量,你还发现了什么?
,,
[说明]养成解题后反思的习惯,总结如何判断三点共线?
方法一:计算三个向量的模长关系.
方法二:看两个非零向量之间是否存在非零常数.
(5)分析表格中向量坐标,你又发现了什么?
向量坐标之间存在比例关系.
思考:如果向量用坐标表示为,则是的()条件.
A、充要B、必要不充分
C、充分不必要D、既不充分也不必要
由此,通过改进引出
课本例5若是两个非零向量,且,
则的充要条件是.
分析:代数证明的方法与技巧,严密、严谨.
证明:分两步证明,
(Ⅰ)先证必要性:
非零向量存在非零实数,使得,即
,化简整理可得:,消去即得
(Ⅱ)再证充分性:
(1)若,则、、、全不为零,显然有,即
(2)若,则、、、中至少有两个为零.
①如果,则由是非零向量得出一定有,,
又由是非零向量得出,从而,此时存在使,即
②如果,则有,同理可证
综上,当时,总有
所以,命题得证.
[说明]本题是一典型的代数证明,推理严密,层次清楚,要求较高,是培养数学思维能力的良好范例.
练习2:
1.已知向量,,且,则x为_________;
2.设=(x1,y1),=(x2,y2),则下列与共线的充要条件的有()
①存在一个实数λ,使=λ或=λ;②;③(+)//(-)
A、0个B、1个C、2个D、3个
3.设为单位向量,有以下三个命题:(1)若为平面内的某个向量,则;(2)若与平行,则;(3)若与平行且,则.上述命题中,其中假命题的序号为;
[说明]安排此组练习快速巩固所学基础知识,当堂消化,及时反馈.
知识拓展应用
问题三:已知向量,且A、B、C三点共线,则k=____
(学生讨论与分析)
[说明]三点共线的证明方法总结:
法一:利用向量的模的等量关系
法二:若A、B、C三点满足,则A、B、C三点共线.
*法三:若A、B、C三点满足,当时,A、B、C三点共线.
课外探索学习
课外作业:
1.练习册P38:4、5、6、7
补充作业:
1.关于非零向量和,有下列四个命题:
(1)“”的充要条件是“和的方向相同”;
(2)“”的充要条件是“和的方向相反”;
(3)“”的充要条件是“和有相等的模”;
(4)“”的充要条件是“和的方向相同”;
其中真命题的个数是()
A.1B.2C.3D.4
2.质点P在平面上作匀速直线运动,速度向量=(4,-3)(即点P的运动方向与相同,且每秒移动的距离为|v|个单位.设开始时点P的坐标为(-10,10),则5秒后该质点P的坐标为()
A.(-2,4)B.(-30,25)C.(10,-5)D.(5,-10)
3.已知向量,则的最大值为.
4.设C、D为直线上不重合的两点,对于坐标平面上动点,若存在实数使得,则=.
5.在直角坐标系xOy中,已知点和点,若点C在∠AOB的平分线上,且,则=_________.
6.已知=(5,4),=(3,2),求与2-3平行的单位向量

平面向量坐标表示


平面向量坐标表示
年级高一学科数学课题平面向量坐标表示
授课时间撰写人
学习重点平面向量的坐标运算.

学习难点对平面向量坐标运算的理解
学习目标
1.会用坐标表示平面向量的加减与数乘运算;
2.能用两端点的坐标,求所构造向量的坐标;

教学过程
一自主学习
思考1:设i、j是与x轴、y轴同向的两个单位向量,若设=(x1,y1)=(x2,y2)则=x1i+y1j,=x2i+y2j,根据向量的线性运算性质,向量+,-,λ(λ∈R)如何分别用基底i、j表示?
+=
-=
λ=
思考2:根据向量的坐标表示,向量+,-,λ的坐标分别如何?
+=();-=();
λ=().
两个向量和与差的坐标运算法则:
两个向量和与差的坐标分别等于这两个向量相应坐标的和与差.
实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.
思考3:已知点A(x1,y1),B(x2,y2),那么向量的坐标如何?

二师生互动
例1已知,,求和.

例2已知平行四边形的顶点,,,试求顶点的坐标.

变式:若与的交点为,试求点的坐标.

练1.已知向量的坐标,求,的坐标.




练2.已知、两点的坐标,求,的坐标.



三巩固练习
1.若向量与向量相等,则()
A.B.
C.D.
2.已知,点的坐标为,则的坐标为()
A.B.
C.D.
3.已知,,则等于()
A.B.C.D.
4.设点,,且
,则点的坐标为.
5.作用于原点的两力,,为使它们平衡,则需加力.
6.已知A(-1,5)和向量=(2,3),若=3,则点B的坐标为__________。
A.(7,4)B.(5,4)C.(7,14)D.(5,14)
7.已知点,及,,,求点、、的坐标。

四课后反思

五课后巩固练习
1.若点、、,且,,则点的坐标为多少?点的坐标为多少?向量的坐标为多少?

2.已知向量,,,试用来表示.