88教案网

你的位置: 教案 > 高中教案 > 导航 > §3.1.4空间向量的正交分解及坐标表示

高中向量的教案

发表时间:2020-11-12

§3.1.4空间向量的正交分解及坐标表示。

一名优秀的教师在每次教学前有自己的事先计划,教师要准备好教案为之后的教学做准备。教案可以让上课时的教学氛围非常活跃,帮助教师提高自己的教学质量。那么一篇好的教案要怎么才能写好呢?小编收集并整理了“§3.1.4空间向量的正交分解及坐标表示”,希望能对您有所帮助,请收藏。

§3.1.4空间向量的正交分解及坐标表示
【学情分析】:
本小节首先把平面向量的基本定理推广到空间向量的基本定理这种推广对学生学习已无困难但仍要一步步地进行,学生要时刻牢记,现在研究的范围已由平面扩大到空间这样做,一方面复习了平面向量、学习了空间向量,另一方面可加深学生的空间观念让学生从二维到三维发现规律,培养学生的探索创新能力。
【教学目标】:
(1)知识与技能:掌握空间向量基本定理,会判断空间向量共面
(2)过程与方法:正交分解推导入手,掌握空间向量基本定理
(3)情感态度与价值观:认识将空间向量的正交分解,能够将空间向量在某组基上进行分解
【教学重点】:
空间向量正交分解,空间向量的基本定理地使用
【教学难点】:
空间向量的分解
【教学过程设计】:
教学环节教学活动设计意图
一.温故知新回顾平面向量的正交分解和平面向量的基本定理由此为基础,推导空间向量的正交分解和基本定理
二.新课讲授1.空间向量的正交分解
设,,是空间的三个两两垂直的向量,且有公共起点O。对于空间任意一个向量,设Q为点P在,所确定的平面上的正投影,由平面向量基本定理可知,在,所确定的平面上,存在实数z,使得
而在,所确定的平面上,由平面向量基本定理可知,存在有序实数对,使得
从而
以平面向量的基本定理为基础,层层递进,得到空间向量的正交分解形式。
由此可知,对空间任一向量,存在一个有序实数组{},使得,称,,为向量在,,上的分向量。
2.空间向量的基本定理
如果三个向量不共面,那么对空间任一向量,存在一个唯一的有序实数组,使
由此定理,若三向量不共面,那么空间的任一向量都可由线性表示,我们把{}叫做空间的一个基底,叫做基向量。
空间任意三个不共面的向量都可以构成空间的一个基底
如果空间一个基底的三个基向量两两互相垂直,那么这个基底叫做正交基底,特别地,当一个正交基底的三个基向量都是单位向量时,称这个基底为单位正交基底,对空间任一向量,存在一个唯一的有序实数组,使记
推论:设是不共面的四点,则对空间任一点,都存在唯一的三个有序实数,使
注意介绍单位正交基、正交基、基的特殊与一般的关系,以帮助学生理解概念。
三.典例讲练例1.如图,已知空间四边形,其对角线,分别是对边的中点,点在线段上,且,用基底向量表示向量
解:


向量的分解过程中注意向量的运算的正确使用。
四.练习巩固1、如图,在正方体中,,点E是AB与OD的交点,M是OD/与CE的交点,试分别用向量表示和
解:
课本P94练习1、2、3
五.拓展与提高1.设A、B、C、D是空间任意四个点,令u=,v=,w=,则u、v、w三个向量()
A.互不相等B.至多有两个相等C.至少有两个相等D.有且只有两个相等
2.若a、b、c是空间的一个基底,下列各组
①la、mb、nc(lmn≠0);
②a+2b、2b+3c、3a-9c;
③a+2b、b+2c、c+2a;
④a+3b、3b+2c、-2a+4c
中,仍能构成空间基底的是()
A.①②B.②③C.①③D.②④
充分认识基底的特征,即线性无关的三个向量就可以构成空间的一个基底。
六.小结1.正交分解的推导和空间向量基本定理
2.如何将向量用坐标表示
3.任意空间向量在某组基底下的分解
七.作业课本P97习题3.1第6题Jab88.coM

练习与测试:
(基础题)
1如图,在正方体中,,点E是AB与OD的交点,M是OD/与CE的交点,试分别用向量表示和
解:

2.设向量是空间一个基底,则一定可以与向量构成空间的另一个基底的向量是()
A.B.C.D.
3.设A、B、C、D是空间任意四个点,令u=,v=,w=,则u、v、w三个向量()
A.互不相等B.至多有两个相等C.至少有两个相等D.有且只有两个相等
4.若a、b、c是空间的一个基底,下列各组
①la、mb、nc(lmn≠0);②a+2b、2b+3c、3a-9c;
③a+2b、b+2c、c+2a;④a+3b、3b+2c、-2a+4c
中,仍能构成空间基底的是()
A.①②B.②③C.①③D.②④
5.设A,B,C,D是空间不共面的四点,且满足,,,则△BCD是()
A.钝角三角形B.直角三角形C.锐角三角形D.不确定
6.已知S是△ABC所在平面外一点,D是SC的中点,若=,
则x+y+z=.
7.在空间四边形ABCD中,AC和BD为对角线,
G为△ABC的重心,E是BD上一点,BE=3ED,
以{,,}为基底,则=.

(中等题)
8.已知四面体中,两两互相垂直,则下列结论中,不一定成立的是()
(1).(2).
(3).(4).
不一定成立的是.

9,已知非零向量不共线,如果,求证:A、B、C、D共面。

延伸阅读

平面向量的正交分解和坐标表示及运算


作为优秀的教学工作者,在教学时能够胸有成竹,作为教师就要在上课前做好适合自己的教案。教案可以让学生更好的消化课堂内容,使教师有一个简单易懂的教学思路。关于好的教案要怎么样去写呢?以下是小编为大家收集的“平面向量的正交分解和坐标表示及运算”供您参考,希望能够帮助到大家。

平面向量的正交分解和坐标表示及运算
教学目的:
(1)理解平面向量的坐标的概念;
(2)掌握平面向量的坐标运算;
(3)会根据向量的坐标,判断向量是否共线.
教学重点:平面向量的坐标运算
教学难点:向量的坐标表示的理解及运算的准确性.
授课类型:新授课
教具:多媒体、实物投影仪
教学过程:
一、复习引入:
1.平面向量基本定理:如果,是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1,λ2使=λ1+λ2
(1)我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;
(2)基底不惟一,关键是不共线;
(3)由定理可将任一向量a在给出基底e1、e2的条件下进行分解;
(4)基底给定时,分解形式惟一.λ1,λ2是被,,唯一确定的数量
二、讲解新课:
1.平面向量的坐标表示
如图,在直角坐标系内,我们分别取与轴、轴方向相同的两个单位向量、作为基底.任作一个向量,由平面向量基本定理知,有且只有一对实数、,使得
…………○1
我们把叫做向量的(直角)坐标,记作
…………○2
其中叫做在轴上的坐标,叫做在轴上的坐标,○2式叫做向量的坐标表示.与相等的向量的坐标也为.
特别地,,,.
如图,在直角坐标平面内,以原点O为起点作,则点的位置由唯一确定.
设,则向量的坐标就是点的坐标;反过来,点的坐标也就是向量的坐标.因此,在平面直角坐标系内,每一个平面向量都是可以用一对实数唯一表示.
2.平面向量的坐标运算
(1)若,,则,
两个向量和与差的坐标分别等于这两个向量相应坐标的和与差.
设基底为、,则
即,同理可得
(2)若,,则
一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标.
==(x2,y2)(x1,y1)=(x2x1,y2y1)
(3)若和实数,则.
实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.
设基底为、,则,即
三、讲解范例:
例1已知A(x1,y1),B(x2,y2),求的坐标.
例2已知=(2,1),=(-3,4),求+,-,3+4的坐标.
例3已知平面上三点的坐标分别为A(2,1),B(1,3),C(3,4),求点D的坐标使这四点构成平行四边形四个顶点.
解:当平行四边形为ABCD时,由得D1=(2,2)
当平行四边形为ACDB时,得D2=(4,6),当平行四边形为DACB时,得D3=(6,0)
例4已知三个力(3,4),(2,5),(x,y)的合力++=,求的坐标.
解:由题设++=得:(3,4)+(2,5)+(x,y)=(0,0)
即:∴∴(5,1)
四、课堂练习:
1.若M(3,-2)N(-5,-1)且,求P点的坐标
2.若A(0,1),B(1,2),C(3,4),则2=.
3.已知:四点A(5,1),B(3,4),C(1,3),D(5,-3),求证:四边形ABCD是梯形.
五、小结(略)
六、课后作业(略)
七、板书设计(略)
八、课后记:

§3.1.5空间向量运算的坐标表示


作为优秀的教学工作者,在教学时能够胸有成竹,教师要准备好教案,这是每个教师都不可缺少的。教案可以让学生们能够更好的找到学习的乐趣,帮助教师能够更轻松的上课教学。怎么才能让教案写的更加全面呢?下面是由小编为大家整理的“§3.1.5空间向量运算的坐标表示”,相信您能找到对自己有用的内容。

§3.1.5空间向量运算的坐标表示
【学情分析】:
平面向量有座标表示,空间向量也有座标表示,在上一节中,单位正交分解就能够完成向量坐标向空间直角坐标系坐标的转化。现在,通过本节的学习,我们可以将向量的地定性公式定量化,在解题特别是在解决立体几何问题的过程中,可以大大简化问题的难度。
【教学目标】:
(1)知识与技能:能用坐标表示空间向量
(2)过程与方法:由平面坐标运算类别空间坐标运算,掌握空间向量的坐标运算
(3)情感态度与价值观:类比学习,注重类比,运用向量的运算解决问题,培养学生的开拓能力。
【教学重点】:
空间向量的坐标运算
【教学难点】:
空间向量的坐标运算
【教学过程设计】:
教学环节教学活动设计意图
一.温故知新平面向量的坐标运算
二.新课讲授1.空间向量的直角坐标运算律
(1)若,,则,


(2)若,,则.
一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。注重类比学习,举一反三,在平面向量中有坐标运算,空间向量中也有,运
2.数量积:即=
3.夹角:.
4.模长公式:若,
则.
5.平行与垂直:
6.距离公式:若,,
则,
或.
算规律和结论的本质是一样的。
三.典例例1.如图,在正方体中,,分别是,的一个四等分点,求与所成的角的余弦值。
解:不妨设正方体的棱长为1,分别以,,为单位正交基底建立空间直角坐标系,
则,,,
所以,
,,
将空间向量的运算与向量的坐标表示结合起来,不仅可以解决夹角和距离的计算问题,而且可以使一些问题的解决变得简单。
讲练所以,
因此,与所成角的余弦值是
例2.如图,正方体中,,分别是,的中点,求证:
证明:不妨设正方体的棱长为1,分别以,,为单位正交基底建立空间直角坐标系,
则,所以,又,,所以,
所以,
因此,即

四.练习巩固课本P97练习1,2,3
五.拓展与提高1.如图在正方体AC1中,M、N分别是AA1、BB1的中点,求直线CM与D1N所成的角。

学习注意触类旁通,举一反三,引进向量的坐标运算式把定性的向量定量化的有效办法。这样可以把向量问题转化为代数问
2.已知三角形的顶点A(1,-1,1),B(2,1,-1),C(-1,-1,-2),这个三角形的面积是()
A.B.C.2D.
题。
六.小结1.空间向量的直角坐标运算律
2.数量积与夹角
3.模长与距离
4.平行于垂直
七.作业课本P98习题3.1,A组第8、9、11题

练习与测试:
(基础题)
1.已知向量的夹角为()
A.0°B.45°C.90°D.180°
2.已知()
A.B.5,2C.D.-5,-2

(中等题)
3.已知,,求:
(1)线段的中点坐标和长度;
(2)到两点的距离相等的点的坐标满足的条件
解:(1)设是线段的中点,则.
∴的中点坐标是,

(2)∵点到两点的距离相等,
则,
化简得:,
所以,到两点的距离相等的点的坐标满足的条件是.
点评:到两点的距离相等的点构成的集合就是线段AB的中垂面,若将点的坐标满足的条件的系数构成一个向量,发现与共线。
4,已知三角形的顶点是,,,试求这个三角形的面积。
分析:可用公式来求面积
解:∵,,
∴,,

∴,
∴所以.
5.已知,则向量与的夹角是()
A.90°B.60°C.30°D.0°
6.已知,则的最小值是()
A.B.C.D.
7.已知,则的取值范围是()
A.B.C.D.

空间向量的坐标表示学案练习题


§3.1.4空间向量的坐标表示
一、知识要点
1.用坐标表示空间向量;
2.空间向量的坐标运算;
3.根据向量的坐标判断两个空间向量平行。
二、典型例题
例1.已知,求。

例2.已知,试求实数的值,使。

例3.已知空间四点和,
求证:四边形是梯形。
三、巩固练习
1.设,则=,=,;
2.已知点在同一直线上,则=,=。

四、小结

五、作业
1.若为一个单位正交基底,试写出下列向量的坐标:
⑴;⑵;⑶。

2.已知,则向量=,=。
3.已知,为线段上一点,且满足,则点的坐标为;
4.若,则重心坐标为;
5.已知,若三向量共面,则=;
6.与向量共线的单位向量=;
7.设,且,求实数的值。

8.已知中,,求其余顶点与向量。

9.已知正方体的棱长为2,分别为的中点,建立如图所示的空间直角坐标系。
⑴写出的坐标;⑵证明四点共面。

订正栏:

高中数学必修四2.3.2平面向量的正交分解和坐标表示导学案


一名爱岗敬业的教师要充分考虑学生的理解性,作为高中教师就要根据教学内容制定合适的教案。教案可以让学生更好地进入课堂环境中来,减轻高中教师们在教学时的教学压力。那么一篇好的高中教案要怎么才能写好呢?下面是小编为大家整理的“高中数学必修四2.3.2平面向量的正交分解和坐标表示导学案”,供大家借鉴和使用,希望大家分享!

2.3.2平面向量的正交分解和坐标表示
【学习目标】
1.了解平面向量基本定理;理解平面向量的坐标的概念;
2.理解平面里的任何一个向量都可以用两个不共线的向量来表示,初步掌握应用向量解决实际问题的重要思想方法;
3.能够在具体问题中适当选取基底,使其他向量都能够用基底来表达.
【新知自学】
知识回顾:1.平面向量基本定理:如果,是同一平面内的两个向量,那么对于这一平面内的任一向量,有且只有一对实数λ1,λ2;
使得
给定基底,分解形式惟一.λ1,λ2由,,唯一确定.
2.向量的夹角:已知两个非零向量、,作,,则∠AOB=,叫向量、的夹角,
当=,、同向;当=,、反向(同向、反向通称平行);
当=°,称与垂直,记作。
新知梳理:
由前面知识知道,平面中的任意一个向量都可以用给定的一组基底来表示;当然也可以用两个互相垂直的向量来表示,这样能给我们研究向量带来许多方便。
1.平面向量的正交分解:把向量分解为两个的向量。
思考:在平面直角坐标系中,每一个点都可以用一对有序实数表示,平面内的每一个向量,如何表示呢?
2.平面向量的坐标表示
如图,在直角坐标系内,我们分别取与轴、轴方向相同的两个单位向量、作为基底.任作一个向量,由平面向量基本定理知,有且只有一对实数、,使得=x+y………○1
我们把叫做向量的(直角)坐标,记作=(x,y)………○2
其中叫做在轴上的坐标,叫做在轴上的坐标,○2式叫做向量的坐标表示.与相等的向量的坐标也为.
特别地,=(1,0)=(0,1),=(0,0).
3.在平面直角坐标系中,一个平面向量和其坐标是一一对应的。
如图,在直角坐标平面内,以原点为起点作=,则点的位置由唯一确定.
设=x+y,则向量的坐标就是点的坐标;反过来,点的坐标也就是向量的坐标.
对点练习:
1.如图,向量、是两个互相垂直的单位向量,向量与的夹角是30°,且||=4,以向量、为基底,向量=_________

2.在平面直角坐标系下,起点是坐标原点,终点A落在直线上,且模长为1的向量的坐标是___________

【合作探究】
典例精析:
例1:请写出图中向量,,的坐标

变式1:请在平面直角坐标系中作出向量、,其中=(1,-3)、=(-3,-1).

例2:如图所示,用基底、分别表示向量、、、并求出它们的坐标。

变式2:已知O为坐标原点,点A在第一象限,,,求向量的坐标

【课堂小结】
向量的坐标表示是一种向量与坐标的对应关系,它使得向量具有代数意义。
将向量的起点平移到坐标原点,则平移后向量的终点坐标就是向量的坐标。
【当堂达标】
1、已知力在水平方向与竖直方向的分力分别是4和3,则力的实际大小是__________,若水平方向为x轴的正方向,竖直方向为y轴的正方向,则力的坐标表示是______________

2、若,(,为单位向量),则的坐标(x,y)就是____的坐标,即若=(x,y),则点A的坐标就是_______________。

3、如右图:|OA|=4,B(1,2),求向量的坐标。

【课时作业】
1.设、是平面直角坐标系内分别与x轴、y轴方向相同的两个单位向量,且,,则△OAB的面积等于()
A、15B、10C、7.5D、5
2、在平面直角坐标系中,A(2,3),B(-3,4),如图所示,x轴,y轴上的两个单位向量分别是和,则下列说法正确的是__________
①2+3;②3+4;
③-5+;④5-.

3、如图所示的直角坐标系中,四边形OABC为等腰梯形,BC‖OA,OC=6,,则用坐标表示下列向量:_______________;
______________;______________;
______________;

4.在直角坐标系xoy中,向量的方向如图所示,且,分别写出他们的坐标。

5.如图,已知O为坐标原点,点A在第一象限,,,求向量的坐标。

【延伸探究】
在平面直角坐标系中,A(1,1),B(-2,4),则向量的坐标是_________