88教案网

你的位置: 教案 > 高中教案 > 导航 > 函数及其表示、解析式(学生学案)

高中函数教案

发表时间:2020-02-19

函数及其表示、解析式(学生学案)。

作为优秀的教学工作者,在教学时能够胸有成竹,准备好一份优秀的教案往往是必不可少的。教案可以让学生们有一个良好的课堂环境,帮助高中教师在教学期间更好的掌握节奏。怎么才能让高中教案写的更加全面呢?以下是小编收集整理的“函数及其表示、解析式(学生学案)”,欢迎您参考,希望对您有所助益!

函数及其表示、解析式(学生学案)
知识结构:
1.函数的基本概念
(1)函数的定义:设A、B是非空数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么称f:A→B为从集合A到集合B的一个函数,记作:y=f(x),x∈A.
2.映射的概念
一般地,设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射.
3.分段函数与复合函数
①如果一个函数在定义域的不同子集中因对应关系不同而用几个不同的式子来表示,这样的函数叫做分段函数.分段函数的求法是分别求出解析式再组合在一起,但要注意各区间之间的点不重复、无遗漏。
②如果y=f(u),u=g(x),那么函数y=f[g(x)]叫做复合函数,其中f(u)叫做外层函数,g(x)叫做内层函数。
基础训练:
1.下列各对函数中,表示同一函数的是().
A.f(x)=lgx2,g(x)=2lgxB.f(x)=lg,g(x)=lg(x+1)-lg(x-1)
C.f(u)=,g(v)=D.f(x)=()2,g(x)=
2.设函数,则=________.

3.设集合,,从到有四种对应如图所示:

其中能表示为到的函数关系的有_________.
4.已知函数是一次函数,且,,则____.
5.设函数,,则_________;__________.
6.设函数,,则___________;____;____.
7.(1),,;
(2),,;
(3),,.
上述三个对应__________________是到的映射.
例题选讲:
例1:判断下列对应是否是从集合A到集合B的映射:
(1)A=R,B={x|x0},f:x→|x|;(2)A=N,B=N?,f:x→|x-2|;(3)A={x|x0},B=R,f:x→x2.
例2:设有函数组:①,;②,;③,;④,.其中表示同一个函数的有_________
例3:(1)已知f=lgx,求f(x);
(2)已知函数,求;
(3)已知f(x)是二次函数,若f(0)=0,且f(x+1)=f(x)+x+1,试求f(x)的表达式.
(4)已知f(x)+2f()=2x+1,求f(x).

例4
例4.甲同学家到乙同学家的途中有一公园,甲从家到公园的距离与乙从家到公园的距离都是2km,甲10时出发前往乙家.如图,表示甲从出发到乙家为止经过的路程y(km)与时间x(分)的关系.试写出的函数解析式.
例5.矩形的长,宽,动点、分别在、上,且,(1)将的面积表示为的函数,求函数的解析式;
(2)求的最大值.
巩固作业:
A组:
一、选择题:
1.下列函数中,与函数相同的函数是()
2.已知集合,映射,在作用下点的象是,则集合()
二、填空题:
3.给定映射,点的原象是_______.
4.设有函数组:①,;②,;③,;④,;⑤,.其中表示同一个函数的有______.
5.已知,且,则m等于________.
6.已知a,b为常数,若,,则_______.
第8题
7.设f(x)=,则f[f()]=_____________.
8.如图所示的图象所表示的函数解析式为__________________________.
三、解答题:
9.已知函数与分别由下表给出:

(1)求的值;(2)若2时,求的值;
10.下列从M到N的各对应法则中,哪些是映射?哪些是函数?哪些不是映射?为什么?
(1)M={直线Ax+By+C=0},N=R,f1:求直线Ax+By+C=0的斜率;
(2)M={直线Ax+By+C=0},N={α|0≤α<π},f2:求直线Ax+By+C=0的倾斜角;
(3)当M=N=R,f3:求M中每个元素的正切;
(4)M=N={x|x≥0},f4:求M中每个元素的算术平方根.
11.(1)已知,求;
(2)已知,求;
(3)已知是一次函数,且满足,求;
(4)已知满足,求.
(5)已知,求的解析式
12.已知二次函数的最小值等于4,且,求的解析式.
B组:
一、选择题:
1.(2010·陕西)某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于6时再增选一名代表.那么,各班可推选代表人数y与该班人数x之间的函数关系用取整函数y=[x]([x]表示不大于x的最大整数)可以表示为().
A.y=B.y=C.y=D.y=
2.(2011·辽宁)设函数f(x)=则满足f(x)≤2的x的取值范围是().
A.[-1,2]B.[0,2]C.[1,+∞)D.[0,+∞)
二、填空题:
3.(2011·江苏)已知实数a≠0,函数f(x)=若f(1-a)=f(1+a),则a的值为________.
4.函数,其中P,M为实数集R的两个非空子集,又规定,,给出下列四个命题:
①若,则②若,则
③若,则④若,则
其中真命题的序号有______.
5.设集合对任意实数x恒成立},则下列结论中:
①PQ;②QP;③P=Q;④PQ=.其中正确结论的序号有____________.
三、解答题:
6.已知函数与的图像关于点对称,求的解析式.

7.已知函数f(x)和g(x)的图象关于原点对称,且f(x)=x2+2x.求函数g(x)的解析式.

8.(1)设,求函数的解析式;(2)已知,求函数的解析式.

相关阅读

高三数学理科复习:函数解析式


高三数学理科复习3----函数解析式
【高考要求】:函数的有关概念(B).
【教学目标】:1.理解函数的三种表示方法(图象法、列表法、解析法),会选择恰当的方法表示简单情境中的函数.
2.了解简单的分段函数;能写出简单情境中的分段函数,并能求出给定自变量所对应的函数值,会画函数的图象(不要求根据函数值求自变量的范围).
【教学重难点】:求函数解析式的方法.
【知识复习与自学质疑】
1、已知则____.._____..=.
2、设则的表达式为.
3、函数,则.
4、若,则.
5、设,则.
6、对记,则的最小值为.
【交流展示与互动探究】
1、已知,求的解析式.

2、设二次函数的最小值为4,且求的解析式.

3、如图,是边长为2的正三角形,设直线截这个三角形所得到的位于此直线上方的图形(阴影部分)的面积为,求的解析式.

【矫正反馈】
1、若则..
2、已知则的解析式为.
3、设函数的图像与的图像关于轴对称,则=.
4、一次函数在上的最小值为1,最大值为3,则的解析式为.
5、设,则的解析式为.
【迁移应用】
6、某超市经销某种牙膏,其年销售额为6000盒,每盒进价2.8元,销售价3.4元,全年分若干次进货,每次进货均为盒,已知每次运输劳务费62.5元,全年的保管费元
(1)把该超市经销牙膏一年的利润元表示为每次进货是的函数.
(2)为使利润最大,每次应进多少盒?

7、已知函数有两个实根,求的解析式.

8、已知定义域为R的函数满足
(1)若求又若.
(2)设有且仅有一个实数求的解析式.

函数的表示法学案


俗话说,磨刀不误砍柴工。高中教师要准备好教案,这是老师职责的一部分。教案可以让上课时的教学氛围非常活跃,帮助高中教师提前熟悉所教学的内容。那么怎么才能写出优秀的高中教案呢?下面是小编为大家整理的“函数的表示法学案”,但愿对您的学习工作带来帮助。

1.2.2函数的表示方法
第一课时函数的几种表示方法

一、预习目标
通过预习理解函数的表示
二、预习内容
1.列表法:通过列出与对应的表来表示的方法叫做列表法
2.图象法:以为横坐标,对应的为纵坐标的点的集合,叫做函数y=f(x)的图象,这种用“图形”表示函数的方法叫做图象法.
3.解析法(公式法):用来表达函数y=f(x)(xA)中的f(x),这种表达函数的方法叫解析法,也称公式法。
4.分段函数:在函数的定义域内,对于自变量x的不同取值区间,有着,这样的函数通常叫做。

三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点疑惑内容

课内探究学案
一、学习目标
1.掌握函数的三种主要表示方法
2.能选择恰当的方法表示具体问题中的函数关系
3.会画简单函数的图像
学习重难点:图像法、列表法、解析法表示函数
二、学习过程
表示函数的方法,常用的有解析法、列表法和图象法三种.
⑴解析法:就是把两个变量的函数关系,用一个等式表示,这个等式叫做函数的解析表达式,简称解析式.
例如,s=60,A=,S=2,y=a+bx+c(a0),y=(x2)等等都是用解析式表示函数关系的.
优点:一是简明、全面地概括了变量间的关系;二是可以通过解析式求出任意一个自变量的值所对应的函数值.中学阶段研究的函数主要是用解析法表示的函数.
⑵列表法:就是列出表格来表示两个变量的函数关系.
例如,学生的身高单位:厘米
学号123456789
身高125135140156138172167158169
数学用表中的平方表、平方根表、三角函数表,银行里的利息表,列车时刻表等等都是用列表法来表示函数关系的.公共汽车上的票价表
优点:不需要计算就可以直接看出与自变量的值相对应的函数值.
⑶图象法:就是用函数图象表示两个变量之间的关系.
例如,气象台应用自动记录器描绘温度随时间变化的曲线,课本中我国人口出生率变化的曲线,工厂的生产图象,股市走向图等都是用图象法表示函数关系的.
优点:能直观形象地表示出自变量的变化,相应的函数值变化的趋势,这样使得我们可以通过图象来研究函数的某些性质.
三、例题讲解
例1某种笔记本每个5元,买x{1,2,3,4}个笔记本的钱数记为y(元),试写出以x为自变量的函数y的解析式,并画出这个函数的图像
变式练习1设求f[g(x)]。
例2作出函数的图象
变式练习2画出函数y=∣x∣与函数y=∣x-2∣的图象

三、当堂检测
课本第56页练习1,2,3
课后练习与提高
1.在股票买卖过程中,经常用到两种曲线,一种是即时价格曲线y=f(x)(实线表示),另一种是平均价格曲线y=g(x)(虚线表示)〔如f(2)=3是指开始买卖后两个小时的即时价格为3元;g(2)=3表示两个小时内的平均价格为3元〕,下图给出的四个图象中,其中可能正确的是()
2.函数f(x+1)为偶函数,且x<1时,f(x)=x2+1,则x>1时,f(x)的解析式为()
A.f(x)=x2-4x+4B.f(x)=x2-4x+5
C.f(x)=x2-4x-5D.f(x)=x2+4x+5
3.函数的图象的大致形状是()
4.如图,设点A是单位圆上的一定点,动点P从点A出发在圆上按逆时针方向旋转一周,点P所旋转过的的长为l,弦AP的长为d,则函数d=f(l)的图象大致是()
5.用一根长为12m的铝合金条做成一个“目”字形窗户的框架(不计损耗),要使这个窗户通过的阳光最充足,则框架的长与宽应分别为_________.
6.已知定义域为R的函数f(x)满足f[f(x)-x2+x]=f(x)-x2+x.
(1)若f(2)=3,求f(1);又若f(0)=a,求f(a);
(2)设有且仅有一个实数x0,使得f(x0)=x0,求函数f(x)的解析表达式.

解答:
1解析:解答该题要注意平均变化率是一个累积平均效应,因此可以得到正确选项为C.
答案:C
2解析:因为f(x+1)为偶函数,
所以f(-x+1)=f(x+1),即f(x)=f(2-x).
当x>1时,2-x<1,此时,f(2-x)=(2-x)2+1,即f(x)=x2-4x+5.
答案:B
3解析:该函数为一个分段函数,即为当x>0时函数f(x)=ax的图象单调递增;当x<0时,函数f(x)=-ax的图象单调递减.故选B.
答案:B
4解析:函数在[0,π]上的解析式为
.
在[π,2π]上的解析式为,
故函数d=f(l)的解析式为,l∈[0,2π].
答案:C
5解析:由题意可知,即是求窗户面积最大时的长与宽,设长为xm,则宽为()m,

解得当x=3时,.
∴长为3m,宽为1.5m.
答案:3m,1.5m

1.2.2函数的表示方法
第二课时分段函数
一、预习目标
通过预习理解分段函数并能解决一些简单问题
二、预习内容
在同一直角坐标系中:做出函数的图象和函数的图象。
思考:问题1、所作出R上的图形是否可以作为某个函数的图象?
问题2、是什么样的函数的图象?和以前见到的图像有何异同?
问题3、如何表示这样的函数?

三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点疑惑内容
课内探究学案
一、学习目标
1.根据要求求函数的解析式
2.了解分段函数及其简单应用
3.理解分段函数是一个函数,而不是几个函数
学习重难点:函数解析式的求法
二、学习过程
1、分段函数
由实际生活中,上海至港、澳、台地区信函部分资费表
重量级别资费(元)
20克及20克以内1.50
20克以上至100克4.00
100克以上至250克8.50
250克以上至500克16.70

引出问题:若设信函的重量(克)应支付的资费为元,能否建立函数的解析式?导出分段函数的概念。
通过分析课本第46页的例4、例5进一步巩固分段函数概念,明确建立分段函数解析式的一般步骤,学会分段函数图象的作法
可选例:1、动点P从单位正方形ABCD顶点A开始运动,沿正方形ABCD的运动路程为自变量,写出P点与A点距离与的函数关系式。
2、在矩形ABCD中,AB=4m,BC=6m,动点P以每秒1m的速度,从A点出发,沿着矩形的边按A→D→C→B的顺序运动到B,设点P从点A处出发经过秒后,所构成的△ABP面积为m2,求函数的解析式。
3、以小组为单位构造一个分段函数,并画出该函数的图象。
2、典题
例1国内投寄信函(外埠),每封信函不超过20g付邮资80分,超过20g而不超过40g付邮资160分,依次类推,每封xg(0x100)的信函应付邮资为(单位:分),试写出以x为自变量的函数y的解析式,并画出这个函数的图像

变式练习1作函数y=|x-2|(x+1)的图像

例2画出函数y=|x|=的图象.

变式练习2作出分段函数的图像

变式练习3.作出函数的函数图像

三、当堂检测
教材第47页练习A、B
课后练习与提高
1.定义运算设F(x)=f(x)g(x),若f(x)=sinx,g(x)=cosx,x∈R,则F(x)的值域为()
A.[-1,1]B.C.D.
2.已知则的值为()
A.-2B.-1C.1D.2
3.设函数若f(1)+f(a)=2,则a的所有可能的值是__________.
4.某时钟的秒针端点A到中心点O的距离为5cm,秒针均匀地绕点O旋转,当时间t=0时,点A与钟面上标12的点B重合.将A、B两点间的距离d(cm)表示成t(s)的函数,则d=________,其中t∈[0,60].
5.对定义域分别是Df、Dg的函数y=f(x)、y=g(x),规定:函数h(x)=
.
(1)若函数,g(x)=x2,写出函数h(x)的解析式;
(2)求(1)中函数h(x)的值域;
(3)若g(x)=f(x+α),其中α是常数,且α∈[0,π],请设计一个定义域为R的函数y=f(x)及一个α的值,使得h(x)=cos4x,并予以证明.

解答
1解析:由已知得
即F(x)=
,kZ时,F(x)∈[-1,];
F(x)=cosx,当,k∈Z时,F(x)∈(-1,),故选C.
答案:C
3解析:由已知可得,①当a≥0时,有e0+ea-1=1+ea-1=2,∴ea-1=1.∴a-1=0.∴a=1.②当-1<a<0时,有1+sin(a2π)=2,∴sin(a2π)=1.
∴.
又-1<a<0,∴0<a2<1,
∴当k=0时,有,∴.
综上可知,a=1或.
答案:1或
4解析:由题意,得当时间经过t(s)时,秒针转过的角度的绝对值是弧度,因此当t∈(0,30)时,,由余弦定理,得
,
;当t∈(30,60)时,在△AOB中,,由余弦定理,得,,且当t=0或30或60时,相应的d(cm)与t(s)间的关系仍满足.
综上所述,,其中t∈[0,60].
答案:
5解:(1)
(2)当x≠1时,,
若x>1,则h(x)≥4,当x=2时等号成立;
若x<1,则h(x)≤0,当x=0时等号成立.
∴函数h(x)的值域是(-∞,0]∪{1}∪[4,+∞).
(3)解法一:令f(x)=sin2x+cos2x,,
则=cos2x-sin2x,
于是h(x)=f(x)f(x+α)
=(sin2x+cos2x)(cos2x-sin2x)=cos4x.
解法二:令,,
则,
于是h(x)=f(x)f(x+α)=()()
=1-2sin22x=cos4x.

高考数学(理科)一轮复习函数及其表示学案带答案


第二章函数
学案4函数及其表示

导学目标:1.了解构成函数的要素,会求一些简单函数的定义域和值域,了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法等)表示函数.3.了解简单的分段函数,并能简单应用.
自主梳理
1.函数的基本概念
(1)函数定义
设A,B是非空的,如果按照某种确定的对应关系f,使对于集合A中的,在集合B中,称f:A→B为从集合A到集合B的一个函数,x的取值范围A叫做函数的__________,__________________叫做函数的值域.
(2)函数的三要素
__________、________和____________.
(3)函数的表示法
表示函数的常用方法有:________、________、________.
(4)函数相等
如果两个函数的定义域和__________完全一致,则这两个函数相等,这是判定两函数相等的依据.
(5)分段函数:在函数的________内,对于自变量x的不同取值区间,有着不同的____________,这样的函数通常叫做分段函数.
分段函数是一个函数,它的定义域是各段取值区间的________,值域是各段值域的________.
2.映射的概念
(1)映射的定义
设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的.?
(2)由映射的定义可以看出,映射是概念的推广,函数是一种特殊的映射,要注意构成函数的两个集合,A、B必须是数集.
自我检测
1.(2011佛山模拟)设集合M={x|0≤x≤2},N={y|0≤y≤2},给出下列4个图形,其中能表示集合M到N的函数关系的有()
A.0个B.1个
C.2个D.3个
2.(2010湖北)函数y=1log0.54x-3的定义域为()
A.(34,1)B.(34,+∞)
C.(1,+∞)D.(34,1)∪(1,+∞)
3.(2010湖北)已知函数f(x)=log3x,x02x,x≤0,则f(f(19))等于()
A.4B.14
C.-4D.-14
4.下列函数中,与函数y=x相同的函数是()
A.y=x2xB.y=(x)2
C.y=lg10xD.y=2log2x
5.(2011衡水月考)函数y=lg(ax2-ax+1)的定义域是R,求a的取值范围.
探究点一函数与映射的概念
例1(教材改编)下列对应关系是集合P上的函数的是________.
(1)P=Z,Q=N*,对应关系f:对集合P中的元素取绝对值与集合Q中的元素相对应;
y=x2,x∈P,y∈Q;
(2)P={-1,1,-2,2},Q={1,4},对应关系:f:x→y=x2,x∈P,y∈Q;?
(3)P={三角形},Q={x|x0},对应关系f:对P中三角形求面积与集合Q中元素对应.

变式迁移1已知映射f:A→B.其中B.其中A=B=R,对应关系f:x→y=-x2+2x,对于实数k∈B,在集合A中不存在元素与之对应,则k的取值范围是()
A.k1B.k≥1
C.k1D.k≤1
探究点二求函数的定义域
例2(1)求函数y=x+1+x-10lg2-x的定义域;
(2)已知函数f(2x+1)的定义域为(0,1),求f(x)的定义域.

变式迁移2已知函数y=f(x)的定义域是[0,2],那么g(x)=fx21+lgx+1的定义域是________________________________________________________________________.
探究点三求函数的解析式
例3(1)已知f(2x+1)=lgx,求f(x);
(2)已知f(x)是一次函数,且满足3f(x+1)-2f(x-1)=2x+17,求f(x);
(3)已知f(x)满足2f(x)+f(1x)=3x,求f(x).
变式迁移3(2011武汉模拟)给出下列两个条件:
(1)f(x+1)=x+2x;
(2)f(x)为二次函数且f(0)=3,f(x+2)-f(x)=4x+2.试分别求出f(x)的解析式.
探究点四分段函数的应用
例4设函数f(x)=x2+bx+c,x≤0,2,x0.若f(-4)=f(0),f(-2)=-2,则关于x的方程f(x)=x的解的个数为()
A.1B.2C.3D.4
变式迁移4(2010江苏)已知函数f(x)=x2+1,x≥0,1,x0,则满足不等式f(1-x2)f(2x)的x的范围是________________.

1.与定义域有关的几类问题
第一类是给出函数的解析式,这时函数的定义域是使解析式有意义的自变量的取值范围;
第二类是实际问题或几何问题,此时除要考虑解析式有意义外,还应考虑使实际问题或几何问题有意义;
第三类是不给出函数的解析式,而由f(x)的定义域确定函数f[g(x)]的定义域或由f[g(x)]的定义域确定函数f(x)的定义域.
第四类是已知函数的定义域,求参数范围问题,常转化为恒成立问题来解决.
2.解析式的求法
求函数解析式的一般方法是待定系数法和换元法,除此还有代入法、拼凑法和方程组法.

(满分:75分)

一、选择题(每小题5分,共25分)
1.下列各组中的两个函数是同一函数的为()
(1)y1=x+3x-5x+3,y2=x-5;
(2)y1=x+1x-1,y2=x+1x-1;
(3)f(x)=x,g(x)=x2;
(4)f(x)=3x4-x3,F(x)=x3x-1;
(5)f1(x)=(2x-5)2,f2(x)=2x-5.
A.(1)(2)B.(2)(3)
C.(4)D.(3)(5)
2.函数y=f(x)的图象与直线x=1的公共点数目是()
A.1B.0
C.0或1D.1或2
3.(2011洛阳模拟)已知f(x)=x+2x≤-1,x2-1x2,2xx≥2,若f(x)=3,则x的值是()
A.1B.1或32
C.1,32或±3D.3
4.(2009江西)函数y=lnx+1-x2-3x+4的定义域为()
A.(-4,-1)B.(-4,1)
C.(-1,1)D.(-1,1]
5.(2011台州模拟)设f:x→x2是从集合A到集合B的映射,如果B={1,2},则A∩B为()
A.B.{1}
C.或{2}D.或{1}
题号12345
答案
二、填空题(每小题4分,共12分)
6.下列四个命题:(1)f(x)=x-2+1-x有意义;(2)函数是其定义域到值域的映射;(3)函数y=2x(x∈N)的图象是一条直线;(4)函数y=x2,x≥0,-x2,x0的图象是抛物线.其中正确的命题个数是________.
7.设f(x)=3x+1x≥0x2x0,g(x)=2-x2x≤12x1,
则f[g(3)]=________,g[f(-12)]=________.
8.(2010陕西)已知函数f(x)=3x+2,x1,x2+ax,x≥1,若f(f(0))=4a,则实数a=______.
三、解答题(共38分)
9.(12分)(1)若f(x+1)=2x2+1,求f(x)的表达式;
(2)若2f(x)-f(-x)=x+1,求f(x)的表达式;
(3)若函数f(x)=xax+b,f(2)=1,又方程f(x)=x有唯一解,求f(x)的表达式.

10.(12分)已知f(x)=x2+2x-3,用图象法表示函数g(x)=fx+|fx|2,并写出g(x)的解析式.

11.(14分)(2011湛江模拟)某产品生产厂家根据以往的生产销售经验得到下面有关销售的统计规律:每生产产品x(百台),其总成本为G(x)万元,其中固定成本为2万元,并且每生产100台的生产成本为1万元(总成本=固定成本+生产成本),销售收入R(x)(万元)满足R(x)=-0.4x2+4.2x-0.8,0≤x≤5,10.2,x5.假定该产品产销平衡,那么根据上述统计规律:
(1)要使工厂有盈利,产品x应控制在什么范围?
(2)工厂生产多少台产品时盈利最大?此时每台产品的售价为多少?

答案自主梳理
1.(1)数集任意一个数x都有唯一确定的数f(x)和它对应定义域函数值的集合{f(x)|x∈A}(2)定义域值域对应关系(3)解析法列表法图象法(4)对应关系(5)定义域对应关系并集并集2.(1)都有唯一一个映射(2)函数非空
自我检测
1.B[对于题图(1):M中属于(1,2]的元素,在N中没有象,不符合定义;
对于题图(2):M中属于(43,2]的元素的象,不属于集合N,因此它不表示M到N的函数关系;对于题图(3):符合M到N的函数关系;对于题图(4):其象不唯一,因此也不表示M到N的函数关系.]
2.A3.B4.C
5.解函数y=lg(ax2-ax+1)的定义域是R,即ax2-ax+10恒成立.
①当a=0时,10恒成立;
②当a≠0时,应有a0,Δ=a2-4a0,
∴0a4.
综上所述,a的取值范围为0≤a4.
课堂活动区
例1解题导引函数是一种特殊的对应,要检验给定的两个变量之间是否具有函数关系,只需要检验:①定义域和对应关系是否给出;②根据给出的对应关系,自变量在其定义域中的每一个值,是否都有唯一确定的函数值.
(2)
解析由于(1)中集合P中元素0在集合Q中没有对应元素,并且(3)中集合P不是数集,所以(1)和(3)都不是集合P上的函数.由题意知,(2)正确.
变式迁移1A[由题意知,方程-x2+2x=k无实数根,即x2-2x+k=0无实数根.∴Δ=4(1-k)0,∴k1时满足题意.]
例2解题导引在(2)中函数f(2x+1)的定义域为(0,1)是指x的取值范围还是2x+1的取值范围?f(x)中的x与f(2x+1)中的2x+1的取值范围有什么关系?
解(1)要使函数有意义,
应有x+1≥0,x-1≠0,2-x0,2-x≠1,即x≥-1,x≠1,x2,
解得-1≤x2,x≠1.
所以函数的定义域是{x|-1≤x1或1x2}.
(2)∵f(2x+1)的定义域为(0,1),
∴12x+13,
所以f(x)的定义域是(1,3).
变式迁移2(-1,-910)∪(-910,2]
解析由0≤x2≤2x+101+lgx+1≠0得-1x≤2且x≠-910.
即定义域为(-1,-910)∪(-910,2].
例3解题导引函数解析式的类型与求法
(1)若已知函数的类型(如一次函数、二次函数),可用待定系数法.
(2)已知复合函数f(g(x))的解析式,可用换元法,此时要注意变量的取值范围.
(3)已知f(x)满足某个等式,这个等式除f(x)是未知量外,还出现其他未知量,如f(-x)、f(1x)等,要根据已知等式再构造其他等式组成方程组,通过解方程组求出f(x).
解(1)令2x+1=t,则x=2t-1,
∴f(t)=lg2t-1,
∴f(x)=lg2x-1,x∈(1,+∞).
(2)设f(x)=ax+b,(a≠0)
则3f(x+1)-2f(x-1)=3ax+3a+3b-2ax+2a-2b
=ax+b+5a=2x+17,
∴a=2,b+5a=17,
∴a=2,b=7,故f(x)=2x+7.
(3)2f(x)+f(1x)=3x,①
把①中的x换成1x,得
2f(1x)+f(x)=3x,②
①×2-②,得3f(x)=6x-3x,
∴f(x)=2x-1x.
变式迁移3解(1)令t=x+1,
∴t≥1,x=(t-1)2.
则f(t)=(t-1)2+2(t-1)=t2-1,
即f(x)=x2-1,x∈[1,+∞).
(2)设f(x)=ax2+bx+c(a≠0),
∴f(x+2)=a(x+2)2+b(x+2)+c,
则f(x+2)-f(x)=4ax+4a+2b=4x+2.
∴4a=4,4a+2b=2.∴a=1,b=-1.
又f(0)=3,∴c=3,∴f(x)=x2-x+3.
例4解题导引①本题可以先确定解析式,然后通过解方程f(x)=x来确定解的个数;也可利用数形结合,更为简洁.
②对于分段函数,一定要明确自变量所属的范围,以便于选择与之相应的对应关系.
③分段函数体现了数学的分类讨论思想,相应的问题处理应分段解决.
C[方法一若x≤0,则f(x)=x2+bx+c.
∵f(-4)=f(0),f(-2)=-2,
∴-42+b-4+c=c,-22+b-2+c=-2,
解得b=4,c=2.∴f(x)=x2+4x+2,x≤0,2,x0.
当x≤0,由f(x)=x,得x2+4x+2=x,
解得x=-2,或x=-1;
当x0时,由f(x)=x,得x=2.
∴方程f(x)=x有3个解.
方法二由f(-4)=f(0)且f(-2)=-2,可得f(x)=x2+bx+c的对称轴是x=-2,且顶点为(-2,-2),于是可得到f(x)的简图(如图所示).方程f(x)=x的解的个数就是函数图象y=f(x)与y=x的图象的交点的个数,所以有3个解.]
变式迁移4(-1,2-1)
解析函数f(x)=x2+1,x≥0,1,x0的图象如图所示:
f(1-x2)f(2x)1-x22x1-x20,
解得-1x2-1.
课后练习区
1.C[(1)定义域不同;(2)定义域不同;(3)对应关系不同;(4)定义域相同,且对应关系相同;(5)定义域不同.]
2.C[有可能是没有交点的,如果有交点,那么对于x=1仅有一个函数值.]
3.D[该分段函数的三段各自的值域为(-∞,1],[0,4),[4,+∞),而3∈[0,4),∴f(x)=x2=3,x=±3,而-1x2,∴x=3.]
4.C
5.D[由已知x2=1或x2=2,解之得,x=±1或x=±2,若1∈A,则A∩B={1},若1A,则A∩B=,
故A∩B=或{1}.]
6.1
解析(1)x≥2且x≤1,不存在;(2)函数是特殊的映射;(3)该图象是由离散的点组成的;(4)该图象是两个不同的抛物线的两部分组成的,不是抛物线.故只有(2)正确.
7.73116
8.2
9.解(1)令t=x+1,则x=t-1,∴f(t)=2(t-1)2+1=2t2-4t+3,∴f(x)=2x2-4x+3.………………………………………………………………………………………………(4分)
(2)∵2f(x)-f(-x)=x+1,用-x去替换式子中的x,得2f(-x)-f(x)=-x+1,……(6分)
即有2fx-f-x=x+12f-x-fx=-x+1,
解方程组消去f(-x),得f(x)=x3+1.……………………………………………………(8分)
(3)由f(2)=1得22a+b=1,即2a+b=2;
由f(x)=x得xax+b=x,变形得x(1ax+b-1)=0,解此方程得x=0或x=1-ba,…(10分)
又∵方程有唯一解,
∴1-ba=0,解得b=1,代入2a+b=2得a=12,
∴f(x)=2xx+2.……………………………………………………………………………(12分)
10.解函数f(x)的图象如图所示,
……………………………………(6分)
g(x)=x2+2x-3x≤-3或x≥10-3x1…………………………………………………(12分)
11.解依题意,G(x)=x+2,设利润函数为f(x),则
f(x)=-0.4x2+3.2x-2.8,0≤x≤5,8.2-x,x5.………………………………………………(4分)
(1)要使工厂赢利,则有f(x)0.
当0≤x≤5时,有-0.4x2+3.2x-2.80,
得1x7,所以1x≤5.………………………………………………………………(8分)
当x5时,有8.2-x0,
得x8.2,所以5x8.2.
综上所述,要使工厂赢利,应满足1x8.2,即产品应控制在大于100台小于820台的范围内.……………………………………………………………………………………(10分)
(2)当0≤x≤5时,f(x)=-0.4(x-4)2+3.6.
故当x=4时,f(x)有最大值3.6.…………………………………………………………(12分)
而当x5时,f(x)8.2-5=3.2.
所以当工厂生产400台产品时,赢利最大,x=4时,每台产品售价为R44=2.4(万元/百台)=240(元/台).……………………………………………………………………………(14分)

高中数学必修一《函数及其表示》教案


高中数学必修一《函数及其表示》教案

教学准备

1.教学目标

1、知识与技能:

函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依

赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想与意识.

2、过程与方法:

(1)通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;

(2)了解构成函数的要素;

(3)会求一些简单函数的定义域和值域;

(4)能够正确使用“区间”的符号表示函数的定义域;

3、情感态度与价值观,使学生感受到学习函数的必要性和重要性,激发学习的积极性.

2.教学重点/难点

重点:理解函数的模型化思想,用集合与对应的语言来刻画函数;

难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;

3.教学用具

多媒体

4.标签

函数及其表示

教学过程

(一)创设情景,揭示课题

1、复习初中所学函数的概念,强调函数的模型化思想;

2、阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:

(1)炮弹的射高与时间的变化关系问题;

(2)南极臭氧空洞面积与时间的变化关系问题;

(3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题.

3、分析、归纳以上三个实例,它们有什么共同点;

4、引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;

5、根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.

(二)研探新知

1、函数的有关概念

(1)函数的概念:

设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数(function).

记作:y=f(x),x∈A.

其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域(range).

注意:

①“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;

②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.

(2)构成函数的三要素是什么?

定义域、对应关系和值域

(3)区间的概念

①区间的分类:开区间、闭区间、半开半闭区间;

②无穷区间;

③区间的数轴表示.

(4)初中学过哪些函数?它们的定义域、值域、对应法则分别是什么?

通过三个已知的函数:y=ax+b(a≠0)

y=ax2+bx+c(a≠0)

y=(k≠0)比较描述性定义和集合,与对应语言刻画的定义,谈谈体会.

师:归纳总结

(三)质疑答辩,排难解惑,发展思维。

1、如何求函数的定义域

例1:已知函数f(x)=+

(1)求函数的定义域;

(2)求f(-3),f()的值;

(3)当a>0时,求f(a),f(a-1)的值.

分析:函数的定义域通常由问题的实际背景确定,如前所述的三个实例.如果只给出解析式y=f(x),而没有指明它的定义域,那么函数的定义域就是指能使这个式子有意义的实数的集合,函数的定义域、值域要写成集合或区间的形式.

例2、设一个矩形周长为80,其中一边长为x,求它的面积关于x的函数的解析式,并写出定义域.

分析:由题意知,另一边长为x,且边长x为正数,所以0<x<40.

所以s==(40-x)x(0<x<40)

引导学生小结几类函数的定义域:

(1)如果f(x)是整式,那么函数的定义域是实数集R.

2)如果f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合.

(3)如果f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数的集合.

(4)如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合.(即求各集合的交集)

(5)满足实际问题有意义.

巩固练习:课本P19第1

2、如何判断两个函数是否为同一函数

例3、下列函数中哪个与函数y=x相等?

分析:

1构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)

2两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。

解:

课本P18例2

(四)归纳小结

①从具体实例引入了函数的概念,用集合与对应的语言描述了函数的定义及其相关概念;②初步介绍了求函数定义域和判断同一函数的基本方法,同时引出了区间的概念.

(五)设置问题,留下悬念

1、课本P24习题1.2(A组)第1—7题(B组)第1题

2、举出生活中函数的例子(三个以上),并用集合与对应的语言来描述函数,同时说出函数的定义域、值域和对应关系.

课堂小结