88教案网

你的位置: 教案 > 高中教案 > 导航 > 函数的应用

高中函数的应用教案

发表时间:2020-02-19

函数的应用。

一名合格的教师要充分考虑学习的趣味性,教师要准备好教案为之后的教学做准备。教案可以让讲的知识能够轻松被学生吸收,帮助教师更好的完成实现教学目标。教案的内容要写些什么更好呢?下面是由小编为大家整理的“函数的应用”,大家不妨来参考。希望您能喜欢!

2.3函数的应用(Ⅰ)
一.学习目标:1.进一步巩固函数模型在实际中的应用;2.掌握应用题的解答步骤;
3.掌握数学建模的基本思路;
二.上节回顾:1.函数模型:2.数学建模步骤:
三.典例分析:
例1:(见课本第67页例4)
变式训练:南方某地市场信息中心为了分析本地区蔬菜的供求情况,通过调查得到家种野菜“芦蒿”的市场需求量和供应量数据(见下表)
需求量吨
403837.13632.830
价值千元/吨22.42.62.83.44

价值千元/吨22.53.24.4655.3
供应量吨
293236.340.944.647

(1)试写出描述芦蒿市场需求量关于价格的近似函数关系式;
(2)试根据这些信息,探求市场对芦蒿的供求平衡量(需求量与供应量相等,又称供求平衡)(近似到吨).

例2.为了尽快改善职工住房困难,鼓励个人购房和积累建房公基金,决定住房的职工必须按基本工资的高低交纳建房公积金,假设办法如下表:
每月工资公积金
100元以下不交纳
100元至200元交纳超过100元部分的5%
200元至300元100元至200元部分交纳5%,
超过200元部分交纳10%
300元以上100元至200元部分交纳5%,
200元至300元部分交纳10%,
300元以上部分交纳15%
设职工每月工资为元,交纳公积金后实得工资为元,求与之间的关系式.

变式练习:《国务院关于修改<中华人民共和国个人所得税法实施条例>的决定》已于2008年3月1日起施行,个人所得税率表示如下:
级数全月应纳税所得额税率
1不超过500元的部分5%
2超过500元至2000元的部分10%
3超过2000至5000元的部分15%
………
9超过10000元的部分45%
注:本表所称全月应纳税所得额每月改入额减去2000元的余额.
若个人月收入额为元,应缴税费为元,当时,写出与之间的函数关系式.
例3.向高为的水瓶注水,注满为止,如果注水量与水深的函数亲系的图象如
图所示,那么水瓶的形状是()

变式练习:如右图高为的圆形被高度为的水平线截
得阴影面积为,则的图象大致是()

限时训练:
1.甲、乙两学生在操场上煅炼身体,操场一圈300米,甲学生以速度跑第一圈,然后以速度走完第二圈,而乙学生以速度走完第一圈,然后以速度跑第二圈,则能反映出两人时间与路程的函数图象是(粗线是甲的图象)()
2.某工厂八年来某种产品总产量与时间(年)的函数关系如右图,下列四种说法:
○1前三年中产量增长速度越来越快;
○2前三年中产量增长速度越来越慢;
○3第三年后,这种产品停止生产;
○4第三年后,年产量保持不变.
其中说法正确的是______.
3.如下图所示,向高为H的水瓶A、B、C、D同时以等速注水,注满为止.
(1)若水量V与水深h的函数图象是下图的(a),则水瓶的形状是____;(2)若水深h与注水时间t的函数图象是下图的(b),则水瓶的形状是____;(3)若注水时间t与水深h的函数图象是下图的(c),则水瓶的形状是____;(4)若水量V与注水时间t的函数的图象是下图中的(d),则水瓶的形状是__.

4.某市一种出租车标价为1.2元/km,但事实上的收费标准如下:最开始4km内不管车行驶路程多少,均收费10元(即起步费),4km后到15km之间,每公里收费1.20元,15km后每公里再加收50%,即每公里1.80元。试写出收费金额与打车路程之间的函数关系(其他因素产生的费用不计)

5.机车开始行驶时,油箱中有油4升,如果每小时耗油0.5升,那么油箱中余油(升)与它工作的时间(小时)之间的函数关系的图象是()

6.下图中的折线为甲地向乙地打长途电话所需付电话费(元)与通话时间(分钟)之间的函数关系图象.当时,该图象的解析式为_______________;从图象可知,通话2分钟需付电话费__________元;通话7分钟需付电话费__________元.

7.如图所示,一动点P从边长为1的正方形ABCD的顶点A出发,顺次经过B、C、D点再回到A点,设x表示P点的行程,y表示线段PA的长,求出y关于x的函数关系式.

8.某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为,其中x为销售量(单位:辆),若该公司在这两地共销售15辆车,则能获得的最大利润为()
(A)45.606万元(B)45.6万元(C)45.56万元(D)45.51万元
9.某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:
,其中x是仪器的月产量.
(1)将利润表示为月产量的函数;
(2)当月产量为何值时,公司所获利润最大?最大利润是多少元?(总收入=总成本+利润)

相关推荐

函数概念的应用


1.2.1函数的概念
第二课时函数概念的应用

课前预习学案
一、预习目标
1.通过预习熟知函数的概念
2.了解函数定义域及值域的概念
二、预习内容
1.函数的概念:设A、B是__________,如果按照某个确定的对应关系f,使对于集合A中的_______数x,在集合B中都有__________的数f(x)和它对应,那么就称_______为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的_______;与x的值相对应的y值叫做函数值,函数值的集合_________叫做函数的值域.值域是集合B的______。
注意:①如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;②函数的定义域、值域要写成_________的形式.
定义域补充:能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母________;(2)偶次方根的被开方数_________;(3)对数式的真数_______;(4)指数、对数式的底_________.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以_______(6)实际问题中的函数的定义域还要保证实际问题有意义.
2.构成函数的三要素:_______、_________和__________
注意:(1)函数三个要素中.由于值域是由定义域和对应关系决定的,所以,如果两个函数的_______和_________完全一致,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。
相同函数的判断方法:①____________________;②______________________(两点必须同时具备)
3.函数图象的画法
①描点法:②图象变换法:常用变换方法有三种,即平移变换、__________和___________
4.区间的概念(1)区间的分类:________、_________、_________;
说明:实数集可以表示成(–∞,+∞)不可以表示成[–∞,+∞]--------切记高.考.资.源.
5.什么叫做映射:一般地,设A、B是两个____的集合,如果按某一个确定的对应法则f,使对于集合A中的________元素x,在集合B中都有_________的元素y与之对应,那么就称对应_________为从集合A到集合B的一个映射。
说明:函数是一种特殊的映射,映射是一种特殊的对应
①集合A、B及对应法则f是确定的②对应法则有“方向性”,即强调从集合A到集合B的对应,它与从B到A的对应关系一般是不同的;③对于映射f:A→B来说,则应满足:(Ⅰ)集合A中的每一个元素,在集合B中都有____与之对应(Ⅱ)集合A中不同的元素,在集合B中对应的象可以是____;(Ⅲ)不要求集合B中的每一个元素在集合A中都有对应的元素。
6.函数最大值:一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:
(1)__________________________________(2)________________________________
那么我们称M是函数y=f(x)的最大值;
函数最小值:一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:
(1)__________________________________(2)__________________________________
那么我们称M是函数y=f(x)的最小值
7:分段函数
在定义域的不同部分上有不同的解析表达式的函数。在不同的范围里求函数值时必须把自变量代入相应的表达式。分段函数的解析式不能写成几个不同的方程,而应把几种不同的表达式用一个左大括号括起来,并分别注明各部分的自变量的取值情况.说明:(1)分段函数是一个函数,不要把它误认为是几个函数;(2)分段函数的定义域是各段定义域的____,值域是各段值域的_____.
三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点疑惑内容

课内探究学案
一、学习目标
1.进一步加深对函数概念的理解,掌握同一函数的标准;
2.了解函数值域的概念并能熟练求解常见函数的定义域和值域.
学习重点
能熟练求解常见函数的定义域和值域.
学习难点
对同一函数标准的理解,尤其对函数的对应法则相同的理解.
二、学习过程
创设情境
下列函数f(x)与g(x)是否表示同一个函数?为什么?
(1)f(x)=(x-1)0;g(x)=1;(2)f(x)=x;g(x)=x2;
(3)f(x)=x2;g(x)=(x+1)2;、(4)f(x)=|x|;g(x)=x2.
讲解新课
总结同一函数的标准:定义域相同、对应法则相同
例1求下列函数的定义域:
(1);(2);

变式练习1求下列函数的定义域:(1);(2).

若A是函数的定义域,则对于A中的每一个x,在集合B都有一个值输出值y与之对应.我们将所有的输出值y组成的集合称为函数的值域.

因此我们可以知道:对于函数f:AB而言,如果如果值域是C,那么,因此不能将集合B当成是函数的值域.
我们把函数的定义域、对应法则、值域称为函数的三要素.如果函数的对应法则与定义域都确定了,那么函数的值域也就确定了.

例2.求下列两个函数的定义域与值域:
(1)f(x)=(x-1)2+1,x∈{-1,0,1,2,3};
(2)f(x)=(x-1)2+1.

变式练习2求下列函数的值域:
(1),,;
(2);

三、当堂检测
(1)P25练习7;
(2)求下列函数的值域:
①;②,,6].③.

课后练习与提高
1.函数满足则常数等于()
A.B.C.D.
2.设,则的值为()
A.B.C.D.
3.已知函数定义域是,则的定义域是()
A.B.C.D.
4.函数的值域是()
A.B.C.D.
5.已知f(x)=x5+ax3+bx-8,f(-2)=10,则f(2)=____.
6.若函数,则=

函数的综合应用


函数的综合应用

一.复习目标
1.函数的综合应用包括函数内容本身的综合,函数与其他数学知识的综合,以及与实际应用问题的综合,理解函数的工具性.
2.掌握应用问题处理的一般步骤,培养应用意识,体会各种数学思想方法的运用.
二、课前热身
1.函数的图象关于()
Ax轴对称B直线y=x对称C原点对称Dy轴对称
2.设在上存在,使,则a的范围是()
ABCDa-1
3.在区间上,函数与函数同时取到相同的最小值,则函数在区间上的最大值为()
A8B6C5D4
4.关于x的方程有三个不相等的实数根,则实数a的值是
5.已知函数满足:,

三.例题探究
例1..已知函数(a0且a≠1)
(1)证明:的图象在y轴一侧;
(2)设是图象上两点,证明:AB的斜率大于0;
(3)函数与图象的交点坐标

例2.如图,两铁路线垂直相交于站A,若已知AB=100千米,甲火车从A站出发,沿AC方向以50千米/小时的速度行驶,同时乙火车以v千米/小时的速度从B站沿BA方向行驶致A站即停止前行(甲车仍继续行驶)
(1)求甲,乙两车的最近距离(两车的车长忽略不计)
(2)若甲,乙两车开始行驶到甲,乙两车相距最近所用时间为小时,问v为何值时最大?
例3.已知函数
(1)若在时恒有意义,求实数a的取值范围;
(2)当,且时,求证:

四、方法点拨
1.学会数形相互转化;
2.掌握应用问题处理的基本步骤;
3.会用分析法证明较复杂的代数不等式..
冲刺强化训练(7)
1.设函数表示x除以3的余数,对都有()
AB
CD
2.已知函数(b为常数),若时,恒成立,则()
Ab≤1Bb1CbDb=1
3.拟定从甲地到乙地通话分钟的电话费由(元)决定,其中m0,是大于或等于m的最小整数,(如,),则从甲地到乙地通话时间为5.5分钟的电话费为()
A3.71元B3.97元C4.24元D4.77元
4.已知,则方程在上的根的个数是()
A3B2C1D0
5.函数是增函数的一个充分而不必要的条件是()
Am-1且n3Bm1且n1Cm1且n-1Dm-2且n2
6.若函数在区间内单调递增,则a的取值范围是
7.已知函数
(1)当时,求函数的最小值;
(2)若对任意,恒成立,试求实数a的取值范围.

8.过点M(-1,0)的直线与抛物线交于两点.记线段的中点为P,过点P和抛物线的焦点F的直线为;的斜率为k,试把直线的斜率与直线的斜率之比表示为k的函数,并指出这个函数的定义域,单调区间,同时说明在每单调区间上它是增函数还是减函数.

9.设函数的定义域为D,若存在,使成立,则称以为坐标的点为函数图象上的不动点.
(1)若函数图象上有两个关于原点对称的不动点,求a,b应满足的条件;
(2)在(1)的条件下,若a=8,记函数图象上的两个不动点分别为A,B,M为函数图象上的另一点,且其纵坐标,求点M到直线AB距离的最小值及取得最小值时M点的坐标;
(3)下述命题“若定义在R上的奇函数图象上存在有限个不动点,则不动点有奇数个”是否正确?若正确,请给予证明,并举出一例;若不正确,请举一反例说明.
参考答案
一、[课前热身]
1.C2.C3.D4.a=-1或a=-5.24
二、[例题探究]
1.(1)由已知得:
①当a1时,x0,则图象在y轴右侧
②当0a1时,x0,则图象在y轴左侧;
(2)令,则
①当a1时,t在上递增,又递增,
②当0a1时,t在上递减,又递减
综上:
(3)由得
由得
函数与图象的交点坐标为
2.(1)设乙车行驶t小时到D,甲车行驶t小时到E
①若,则,
.当t=时,DE取最小值,其最小值为
②若时,乙车停止,甲车继续前进,DE越来越大,无最小值
综上:甲,乙两车的最近距离为千米

(2).当且仅当即t=50千米/小时时,最大
3.(1)由已知得(1)即
(2)要证原不等式成立.即证:
又0a1

冲刺强化训练(7)
1.A2.A3.C4.C5.D6.
7.(1)a=利用定义证明(略):

函数单调性的应用


1.3.1函数单调性的应用
一、内容与解析
(一)内容:函数单调性的应用
(二)解析:本节课要学的内容指的是会判定函数在某个区间上的单调性、会确定函数的单调区间、能证明函数的单调性,其关键是利用形式化的定义处理有关的单调性问题,理解它关键就是要学会转换式子.学生已经掌握了函数单调性的定义、代数式的变换、函数的概念等知识,本节课的内容就是在此基础上的应用.教学的重点是应用定义证明函数在某个区间上的单调性,解决重点的关键是严格按过程进行证明。
二、教学目标及解析
(一)教学目标:
掌握用定义证明函数单调性的步骤,会求函数的单调区间,提高应用知识解决问题的能力.
(二)解析:
会证明就是指会利用三步曲证明函数的单调性;会求函数的单调区间就是指会利用函数的图象写出单调增区间或减区间;应用知识解决问题就是指能利用函数单调性的意义去求参变量的取值情况或转化成熟悉的问题。

三、问题诊断分析
在本节课的教学中,学生可能遇到的问题是如何才能准确确定的符号,产生这一问题的原因是学生对代数式的恒等变换不熟练.要解决这一问题,就是要根据学生的实际情况进行知识补习,特别是因式分解、二次根式中的分母有理化的补习.

四、教学支持条件分析
在本节课()的教学中,准备使用(),因为使用(),有利于().

五、教学过程
问题1.用三种语言描述函数单调性的意义

问题2.基本例题
例1如图是定义在区间[-5,5]上的函数y=f(x),根据图象说出函数的单调区间,以及在每一单调区间上,它是增函数还是减函数?

活动:教师提示利用函数单调性的几何意义.学生先思考或讨论后再回答,教师点拨、提示并及时评价学生.图象上升则在此区间上是增函数,图象下降则在此区间上是减函数.
解:函数y=f(x)的单调区间是[-5,2),[-2,1),[1,3),[3,5].其中函数y=f(x)在区间[-5,2),[1,3)上是减函数,在区间[-2,1),[3,5]上是增函数.
点评:本题主要考查函数单调性的几何意义,以及图象法判断函数单调性.图象法判断函数的单调性适合于选择题和填空题.如果解答题中给出了函数的图象,通常用图象法判断单调性.
图象法求函数单调区间的步骤是第一步:画函数的图象;第二步:观察图象,利用函数单调性的几何意义写出单调区间.
变式训练
课本P32练习1、3.
例2物理学中的玻意耳定律p=(k为正常数)告诉我们,对于一定量的气体,当其体积V减少时,压强p将增大.试用函数的单调性证明.
活动:学生先思考或讨论,再到黑板上书写.当学生没有证明思路时,教师再提示,及时纠正学生解答过程出现的问题,并标出关键的地方,以便学生总结定义法的步骤.体积V减少时,压强p将增大是指函数p=是减函数;刻画体积V减少时,压强p将增大的方法是用不等式表达.已知函数的解析式判断函数的单调性时,常用单调性的定义来解决.
解:利用函数单调性的定义只要证明函数p=在区间(0,+∞)上是减函数即可.
点评:本题主要考查函数的单调性,以及定义法判断函数的单调性.
定义法判断或证明函数的单调性的步骤是第一步:在所给的区间上任取两个自变量x1和x2,通常令x1x2;第二步:比较f(x1)和f(x2)的大小,通常是用作差比较法比较大小,此时比较它们大小的步骤是作差、变形、看符号;第三步:再归纳结论.定义法的步骤可以总结为:一“取(去)”、二“比”、三“再(赛)”,因此简称为:“去比赛”.
变式训练
课本P32练习4.
1.利用图象法写出基本初等函数的单调性.
解:①正比例函数:y=kx(k≠0)
当k0时,函数y=kx在定义域R上是增函数;当k0时,函数y=kx在定义域R上是减函数.
②反比例函数:y=(k≠0)
当k0时,函数y=的单调递减区间是(-∞,0),(0,+∞),不存在单调递增区间;当k0时,函数y=的单调递增区间是(-∞,0),(0,+∞),不存在单调递减区间.
③一次函数:y=kx+b(k≠0)
当k0时,函数y=kx+b在定义域R上是增函数;当k0时,函数y=kx+b在定义域R上是减函数.
④二次函数:y=ax2+bx+c(a≠0)
当a0时,函数y=ax2+bx+c的单调递减区间是(-∞,],单调递增区间是[,+∞);
当a0时,函数y=ax2+bx+c的单调递减区间是[,+∞),单调递增区间是(-∞,].
点评:以上基本初等函数的单调性作为结论记住,可以提高解题速度.
2.已知函数y=kx+2在R上是增函数,求实数k的取值范围.
答案:k∈(0,+∞).
3.二次函数f(x)=x2-2ax+m在(-∞,2)上是减函数,在(2,+∞)上是增函数,求实数a的值.
答案:a=2.

问题3。能力型例题
例1(1)画出已知函数f(x)=-x2+2x+3的图象;
(2)证明函数f(x)=-x2+2x+3在区间(-∞,1]上是增函数;
(3)当函数f(x)在区间(-∞,m]上是增函数时,求实数m的取值范围.
图1-3-1-4
解:(1)函数f(x)=-x2+2x+3的图象如图1-3-1-4所示.
(2)设x1、x2∈(-∞,1],且x1x2,则有
f(x1)-f(x2)=(-x12+2x1+3)-(-x22+2x2+3)
=(x22-x12)+2(x1-x2)
=(x1-x2)(2-x1-x2).
∵x1、x2∈(-∞,1],且x1x2,∴x1-x20,x1+x22.
∴2-x1-x20.∴f(x1)-f(x2)0.∴f(x1)f(x2).
∴函数f(x)=-x2+2x+3在区间(-∞,1]上是增函数.
(3)函数f(x)=-x2+2x+3的对称轴是直线x=1,在对称轴的左侧是增函数,那么当区间(-∞,m]位于对称轴的左侧时满足题意,则有m≤1,即实数m的取值范围是(-∞,1].
点评:本题主要考查二次函数的图象、函数的单调性及其应用.讨论有关二次函数的单调性问题时,常用数形结合的方法,结合二次函数图象的特点来分析;二次函数在对称轴两侧的单调性相反;二次函数在区间D上是单调函数,那么二次函数的对称轴不在区间D内.
判断函数单调性时,通常先画出其图象,由图象观察出单调区间,最后用单调性的定义证明.
判断函数单调性的三部曲:
第一步,画出函数的图象,观察图象,描述函数值的变化趋势;
第二步,结合图象来发现函数的单调区间;
第三步,用数学符号即函数单调性的定义来证明发现的结论.
函数的单调性是函数的一个重要性质,是高考的必考内容之一.因此应理解单调函数及其几何意义,会根据定义判断、证明函数的单调性,会求函数的单调区间,能综合运用单调性解决一些问题,会判断复合函数的单调性.函数的单调性与函数的值域、不等式等知识联系极为密切,是高考命题的热点题型.
例2.已知函数f(x)是R上的增函数,设F(x)=f(x)-f(a-x).用函数单调性定义证明F(x)是R上的增函数;
活动:(1)本题中的函数解析式不明确即为抽象函数,用定义法判断单调性的步骤是要按格式书写;解:(1)设x1、x2∈R,且x1x2.则
F(x1)-F(x2)=[f(x1)-f(a-x1)]-[f(x2)-f(a-x2)]
=[f(x1)-f(x2)]+[f(a-x2)-f(a-x1)].
又∵函数f(x)是R上的增函数,x1x2,∴a-x2a-x1.
∴f(x1)f(x2),f(a-x2)f(a-x1).
∴[f(x1)-f(x2)]+[f(a-x2)-f(a-x1)]0.
∴F(x1)F(x2).∴F(x)是R上的增函数.
知能训练
课本P32练习2.
例3.已知f(x)是定义在(0,+∞)上的减函数,若f(a+1)f(-4a+1)成立,则a的取值范围是______.
点评:本题实质是解不等式,但是这是一个不具体的不等式,是抽象不等式.解与函数有关的抽象不等式时,常用的技巧是利用函数的单调性“剥掉外衣”,转化为整式不等式.
拓展提升
例4.1.画出函数y=的图象,根据图象指出单调区间.
2.试分析函数y=x+的单调性.

六、课堂小结
本节学习了:①函数的单调性;②判断函数单调性的方法:定义法和图象法.
活动:学生先思考或讨论,再回答.教师提示、点拨,及时评价.
引导方法:从基本知识和基本技能两方面来总结.

反函数性质的应用


一名优秀的教师就要对每一课堂负责,作为高中教师就要早早地准备好适合的教案课件。教案可以让学生们有一个良好的课堂环境,帮助高中教师缓解教学的压力,提高教学质量。高中教案的内容具体要怎样写呢?下面是由小编为大家整理的“反函数性质的应用”,欢迎阅读,希望您能阅读并收藏。

反函数性质的应用

只有定义域和值域一一对应的函数才有反函数,反函数是由原函数派生出来的,它的定义域、对应法则、值域完全由原函数决定。因此利用这一关系可以将原函数的问题与反函数的问题相互转化,使问题容易解决。现在看一下反函数性质的应用。
⒈利用反函数的定义求函数的值域
例1:求函数y=的值域。
分析:这种函数可以利用分离常数法或反函数法求值域,下面利用反函数法来求解。解:由y=得y(2x+1)=x-1
∴(2y-1)x=-y-1
∴x=
∵x是自变量,是存在的,
∴2y-10,∴y。
故函数y=的值域为:{y│y}。
点评:形如y=的函数都可以用反函数法求它的值域。
⒉原函数与反函数定义域、值域互换的应用
例2:已知f(x)=4-2,求f(0)。
分析:要求f(0),只需求f(x)=0时自变量x的值。
解:令f(x)=0,得4-2=0,∴2(2-2)=0,
∴2=2或2=0(舍),
∴x=1。
故f(0)=1。
点评:反函数的函数值都可以转化为求与之对应的原函数的自变量之值,反之也成立。
⒊原函数与反函数的图像关于直线y=x对称的应用
例3:求函数y=(x(-1,+))的图像与其反函数图像的交点。
分析:可以先求反函数,再联立方程组求解;也可以利用原函数与反函数的图像关于直线y=x对称求解,这里用后一种方法求解。只要原函数与反函数不是同一函数,它们的交点就在直线y=x上。
解:由得或
∴原函数和反函数图像的交点为(0,0)和(1,1)。
点评:利用利用原函数与反函数的图像关于直线y=x对称的性质,可以简化运算,提高准确率。但要注意原函数与反函数不能是同一函数,它们的交点才在直线y=x上。

⒋原函数与反函数的单调性相同的应用
例4:已知f(x)=2+1的反函数为f(x),求f(x)0的解集。
分析:因为f(x)=2+1在R上为增函数,所以f(x)在R上也为增函数。又因为原函数与反函数定义域、值域互换,所以f(x)中的x的范围就是f(x)的范围。
解:由f(x)=2+11得f(x)中的x1。
又∵f(x)0且f(x)=2+1在R上为增函数,
∴ff(0),
∴xf(0)=2。
故f(x)0的解集为:{x│1x2}。
点评:利用原函数与反函数的单调性相同的性质,可以避免求反函数这一复杂的运算,从而减少了失误。
⒌原函数与反函数的还原性即x及=x的应用
例5:函数f(x)=(a、b、c是常数)的反函数是=,求a、b、c的值。
分析:本题可以利用=x,将反函数的条件转化为原函数的关系来应用,利用恒等找到关于a、b、c的方程组,即可求解。
解:∵=
∴====x
∴(3a+b)x-a+2b=(c+3)+(2c-1)x


点评:上述解法利用了原函数与反函数的还原性,避免了求反函数,若求反函数,步骤非常烦琐,容易出现计算失误。