88教案网

你的位置: 教案 > 高中教案 > 导航 > 2015届高考数学教材知识点复习导数的应用极值与最值导学案

小学数学复习教案

发表时间:2020-11-24

2015届高考数学教材知识点复习导数的应用极值与最值导学案。

一名优秀负责的教师就要对每一位学生尽职尽责,作为高中教师就要早早地准备好适合的教案课件。教案可以让讲的知识能够轻松被学生吸收,帮助授课经验少的高中教师教学。您知道高中教案应该要怎么下笔吗?下面是小编为大家整理的“2015届高考数学教材知识点复习导数的应用极值与最值导学案”,欢迎您参考,希望对您有所助益!

【学习目标】
理解极值的概念,会用导数求多项式函数的极大值、极小值及闭区间上的最大值、最小值或以极值、最值为载体求参数的范围.
预习案
1.函数的极值
(1)设函数f(x)在点x0附近有定义,如果对x0附近的所有的点,都有f(x)f(x0),那么f(x0)是函数f(x)的一个极大值,记作y极大值=f(x0);如果对x0附近的所有的点,都有f(x)f(x0),那么f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0).极大值与极小值统称为极值.
(2)当函数f(x)在x0处连续时,判别f(x0)是极大(小)值的方法:
如果xx0有f′(x)0,xx0有f′(x)0,那么f(x0)是极大值;
如果xx0有f′(x)0,xx0有f′(x)0,那么f(x0)是极小值.
2.求可导函数f(x)极值的步骤
(1);(2);
(3)检验f′(x)在方程f′(x)=0的的符号,如果在根的左侧附近为正,右侧附近为负,那么函数y=f(x)在这个根处取得;如果在根的左侧附近为负,右侧附近为正,那么函数y=f(x)在这个根处取得.
3.函数的最值的概念
设函数y=f(x)在上连续,在内可导,函数f(x)在上一切函数值中的最大(最小)值,叫做函数y=f(x)的最大(最小)值.
4.求函数最值的步骤
设函数y=f(x)在上连续,在(a,b)内可导,求f(x)在上的最值,可分两步进行:
(1);
(2).
【预习自测】
1.已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是()
A.x0∈R,f(x0)=0B.函数y=f(x)的图像是中心对称图形
C.若x0是f(x)的极小值点,则f(x)在区间(-∞,x0)上单调递减
D.若x0是f(x)的极值点,则f′(x0)=0
2.若函数y=ex+mx有极值,则实数m的取值范围()
A.m0B.m0C.m1D.m1

3.函数y=ln2xx的极小值为________.

4.已知函数f(x)=x3+3mx2+nx+m2在x=-1时有极值0,则m=________,n=________.

5.若函数f(x)=(1-x2)(x2+ax+b)的图像关于直线x=-2对称,则f(x)的最大值为________.

探究案
题型一利用导数求函数极值
例1.设f(x)=a(x-5)2+6lnx,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线与y轴相交于点(0,6).
(1)确定a的值;(2)求函数f(x)的单调区间与极值.
探究1:已知a∈R,求函数f(x)=x2eax的单调区间与极值.
题型二利用极值求参数值

例2:(1)函数f(x)=x3+3ax2+3有极大值又有极小值,则a的取值范围是________.

(2)已知f(x)=ax5-bx3+c(a0).若f(x)在x=±1处有极值,且极大值为4,极小值为1,则a=,b=,c=
(3)已知函数f(x)=x3-3ax2+3x+1.
①设a=2,求f(x)的单调区间;
②设f(x)在区间(2,3)中至少有一个极值点,求a的取值范围

题型三利用导数求函数最值:
例3:已知函数f(x)=lnx-ax(a∈R).
(1)求函数f(x)的单调区间;(2)当a0时,求函数f(x)在上的最小值.

题型四利用最值求参数值
例4:设f(x)=-13x3+12x2+2ax.
(1)若f(x)在(23,+∞)上存在单调递增区间,求a的取值范围;
(2)当0a2时,f(x)在上的最小值为-163,求f(x)在该区间上的最大值.

我的学习总结:
(1)我对知识的总结.
(2)我对数学思想及方法的总结

相关阅读

2015届高考数学教材知识点复习变化率与导数导学案


【课本导读】
1.导数的概念
(1)f(x)在x=x0处的导数就是f(x)在x=x0处的,记作:或f′(x0),
即f′(x0)=limΔx→0fx0+Δx-fx0Δx.
(2)当把上式中的x0看做变量x时,f′(x)即为f(x)的,简称导数,即y′=f′(x)=limΔx→0fx+Δx-fxΔx.
2.导数的几何意义
函数f(x)在x=x0处的导数就是,即曲线y=f(x)在点P(x0,f(x0))处的切线的斜率k=f′(x0),切线方程为.
3.基本初等函数的导数公式
(1)C′=(C为常数);(2)(xn)′=(n∈Q*);
(3)(sinx)′=;(4)(cosx)′=;
(5)(ax)′=;(6)(ex)′=;
(7)(logax)′=;(8)(lnx)′=.
4.两个函数的四则运算的导数
若u(x)、v(x)的导数都存在,则
(1)(u±v)′=;(2)(uv)′=;
(3)(uv)′=;(4)(cu)′=(c为常数).

【教材回归】
1.(课本习题改编)某汽车的路程函数是s(t)=2t3-12gt2(g=10m/s2),则当t=2s时,汽车的加速度是()
A.14m/s2B.4m/s2
C.10m/s2D.-4m/s2
2.计算:
(1)(x4-3x3+1)′=________.
(2)(ln1x)′=________.
(3)(xex)′=______.
(4)(sinxcosx)′=______.
3.曲线y=xex+2x+1在点(0,1)处的切线方程为________.
4.设正弦函数y=sinx在x=0和x=π2附近的平均变化率为k1,k2,则k1,k2的大小关系为()
A.k1k2B.k1k2
C.k1=k2D.不确定
5.若曲线y=xα+1(α∈R)在点(1,2)处的切线经过坐标原点,则α=________.

【授人以渔】
题型一利用定义求系数
例1(1)用导数的定义求函数f(x)=1x在x=1处的导数

(2)设f(x)=x3-8x,则limΔx→0f2+Δx-f2Δx=______;
limx→2fx-f2x-2=______;limk→0f2-k-f22k=______.

思考题1(1)求函数y=x2+1在x0到x0+Δx之间的平均变化率.

(2)已知f′(a)=3,则limh→0fa+3h-fa-hh=________.

题型二导数运算
例2求下列函数的导数:
(1)y=(3x3-4x)(2x+1);(2)y=x2sinx2cosx2;
(3)y=3xex-2x+e;(4)y=lnxx2+1.

思考题2(1)求下列各函数的导数:
①y=x+x5+sinxx2;
②y=(1-x)(1+1x);
③y=-sinx2(1-2cos2x4);
④y=tanx;
(2)等比数列{an}中,a1=2,a8=4,函数f(x)=x(x-a1)(x-a2)…(x-a8),则f′(0)等于()
A.26B.29
C.212D.215

题型三导数的几何意义
例3已知曲线y=13x3+43.
(1)求曲线在点P(2,4)处的切线方程;
(2)求曲线过点P(2,4)的切线方程;
(3)求满足斜率为1的曲线的切线方程.

思考题3求过点(1,-1)的曲线y=x3-2x的切线方程.

【本课总结】
1.求f(x)在x=x0处的导数f′(x0),有两种方法:
(1)定义法:f′(x0)=limΔx→0fx0+Δx-fx0Δx.
(2)利用导函数求值,即先求f(x)在(a,b)内的导函数f′(x),再求f′(x0).
2.求复合函数的导数时,应选好中间变量,将复合函数分解为几个基本函数,然后从外层到内层依次求导.
3.若f(x)在x=x0处存在导数,则f′(x)即为曲线f(x)在点x0处的切线斜率.
4.求曲线的切线方程时,若不知切点,应先设切点,列等式求切点.
【自助餐】
1.有一机器人的运动方程为s=t2+3t(t是时间,s是位移),则该机器人在时刻t=2时的瞬时速度为________.
2.若曲线y=ax2-lnx在点(1,a)处的切线平行于x轴,则a=________.
3.f(x)与g(x)是定义在R上的两个可导函数,若f(x),g(x)满足f′(x)=g′(x),则f(x)与g(x)满足()
A.f(x)=g(x)
B.f(x)=g(x)=0
C.f(x)-g(x)为常数函数
D.f(x)+g(x)为常数函数
4.设函数y=xsinx+cosx的图像上在点(x0,y0)处的切线的斜率为k,若k=g(x0),则函数k=g(x0)的图像大致为()
5.若函数f(x)=ax4+bx3+cx2+dx+e的图像过点P(0,1),且在x=1处的切线方程为y=x-2,求y=f(x)的解析式.

2015届高考数学教材知识点复习三角函数的值域与最值导学案


题型一:型的最值问题
例1.(1)已知函数f(x)=4cosxsin(x+π6)-1.
①求f(x)的最小正周期;②求f(x)在区间上的最大值和最小值.

(2)已知函数f(x)=2asin(2x-π3)+b的定义域为,函数的最大值为1,最小值为-5,求a和b的值
拓展1.已知函数f(x)=cos(π3+x)cos(π3-x),g(x)=12sin2x-14.
(1)求函数f(x)的最小正周期;
(2)求函数h(x)=f(x)-g(x)的最大值,并求使h(x)取得最大值的x的集合.

题型二:可化为型的值域问题
例2.求下列函数的值域:
(1)y=sin2xsinx1-cosx;(2)y=sinx+cosx+sinxcosx.

拓展2.(1)求函数y=6cos4x+5sin2x-4cos2x的值域

(2)求f(x)=cos2x+asinx的最小值.

题型三:数形结合求三角函数的值域
例3.(1)求函数f(x)=2-sinx2+cosx的值域.
(2)已知f(x)=12(sinx+cosx)-12|sinx-cosx|,求f(x)的值域

拓展3.求y=1+sinx3+cosx的值域.

我的学习总结:
(1)我对知识的总结.
(2)我对数学思想及方法的总结

2015届高考数学教材知识点复习函数与方程导学案


作为优秀的教学工作者,在教学时能够胸有成竹,作为高中教师准备好教案是必不可少的一步。教案可以让学生能够在课堂积极的参与互动,帮助高中教师缓解教学的压力,提高教学质量。那么怎么才能写出优秀的高中教案呢?为满足您的需求,小编特地编辑了“2015届高考数学教材知识点复习函数与方程导学案”,希望对您的工作和生活有所帮助。

【学习目标】
1.结合二次函数的图像,判断一元二次方程根的存在性及根的个数,了解函数的零点与方程根的联系.
2.根据具体函数的图像,能够用二分法求相应方程的近似解.
预习案

1.函数零点的概念:(零点不是点!)
(1)从“数”的角度看:即是使f(x)=0的实数x;
(2)从“形”的角度看:即是函数f(x)的图像与x轴交点的坐标.
2.函数零点与方程根的关系
方程f(x)=0有实数根函数y=f(x)的图像与有交点函数y=f(x)有.
3.函数零点的判断
如果函数y=f(x)在区间上的图像是连续不断的一条曲线,并且有.那么,函数y=f(x)在区间内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.
4.二分法的定义
对于在上连续不断,且的函数y=f(x),通过不断地把函数f(x)的所在的区间,使区间的两端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.
5.用二分法求函数f(x)零点近似值
(1)确定区间,验证,给定精确度ε;
(2)求区间(a,b)的中点x1;
(3)计算f(x1);
①若,则x1就是函数的零点;
②若,则令b=x1,(此时零点x0∈(a,x1));
③若,则令a=x1,(此时零点x0∈(x1,b)).
(4)判断是否达到精确度ε:即若|a-b|ε,则得到零点近似值a(或b);否则重复(2)~(4).
【预习自测】
1.函数f(x)=-x2+5x-6的零点是()
A.-2,3B.2,3C.2,-3D.-2,-3
2.函数f(x)=-(12)x的零点个数为()
A.0B.1C.2D.3

3.函数f(x)=x3-x2-x+1在上()
A.有两个零点B.有三个零点C.仅有一个零点D.无零点

4.下列函数图像与x轴均有交点,但不宜用二分法求函数零点的是()

5.二次函数f(x)=ax2+bx+c中,ac0,则函数的零点个数是________.
()
探究案
题型一零点的个数及求法
例1.(1)函数f(x)=xcos2x在区间上的零点的个数为()
A.2B.3C.4D.5

(2)函数f(x)=2x+x3-2在区间(0,1)内的零点个数是________.

(3)判断下列函数在给定区间是否存在零点.
①f(x)=x2-3x-18,x∈;②f(x)=log2(x+2)-x,x∈.
探究1.(1)设f(x)=3x-x2,则在下列区间中,使函数f(x)有零点的区间是()
A.B.C.D.

(2)“k3”是“函数f(x)=x-2,x∈存在零点的”()
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件

(3)(已知a0且a≠1,函数f(x)=ax-|logax|的零点个数为________.

题型二零点性质的应用
例2.若函数f(x)=|4x-x2|+a有4个零点,求实数a的取值范围.

探究2.(1)已知函数y=x3-3x+c的图像与x轴恰有两个公共点,则c=()
A.-2或2B.-9或3C.-1或1D.-3或1
(2)已知函数f(x)=12x+34,x≥2,log2x,0x2.若函数g(x)=f(x)-k有两个不同的零点,则实数k的取值范围是________.

例3.若二次函数f(x)=x2-2ax+4在(1,+∞)内有两个零点,求实数a的取值范围.

探究3.m为何值时,f(x)=x2+2mx+3m+4.
(1)有且仅有一个零点;(2)有两个零点且均比-1大.

例4.若方程x2-32x-k=0在(-1,1)上有实根,求k的取值范围.

探究4.已知函数f(x)=x2+ax+3-a,当x∈时,函数至少有一个零点,求a的取值范围.

题型三用二分法求方程的近似解
例5.求方程lnx+2x-6=0在内的近似解(精确到0.01).

探究5.(1)为了求函数f(x)=2x-x2的一个零点,某同学利用计算器,得到自变量x和函数值f(x)的部分对应值(精确到0.01)如下表所示:
x0.61.01.41.82.22.63.0
f(x)1.161.000.680.24-0.24-0.70-1.00
则函数f(x)的一个零点所在的区间是()
A.(0.6,1.0)B.(1.4,1.8)C.(1.8,2.2)D.(2.6,3.0)

(2)用二分法研究函数f(x)=x3+3x-1的零点时,第一次经计算f(0)0,f(0.5)0,可得其中一个零点x0∈________,第二次应计算________.

我的学习总结:
(1)我对知识的总结.
(2)我对数学思想及方法的总结

函数的极值与最值


23.函数的极值与最值
一、课前准备:
【自主梳理】
1.若函数f(x)在点x0的附近恒有(或),则称函数f(x)在点x0处取得极大值(或极小值),称点x0为极大值点(或极小值点).
2.求可导函数极值的步骤:
①求导数;
②求方程的根;
③检验在方程根的左右的符号,如果左正右负,那么函数y=f(x)在这个根处取得极值;如果左负右正,那么函数y=f(x)在这个根处取得极值.
3.求可导函数最大值与最小值的步骤:
①求y=f(x)在[a,b]内的极值;
②将y=f(x)在各极值点的极值与f(a)、f(b)比较,其中最大的一个为最大值,最小的一个是最小值。
【自我检测】
1.函数的极大值为.
2.函数在上的最大值为.
3.若函数既有极大值又有极小值,则的取值范围为.
4.已知函数,若对任意都有,则的取值范围是.
(说明:以上内容学生自主完成,原则上教师课堂不讲)

二、课堂活动:
【例1】填空题:
(1)函数的极小值是__________.
(2)函数在区间上的最小值是________;最大值是__________.
(3)若函数在处取极值,则实数=_.
(4)已知函数在时有极值0,则=_.

【例2】设函数.
(Ⅰ)求的最小值;
(Ⅱ)若对恒成立,求实数的取值范围.

【例3】如图6所示,等腰的底边,高,点是线段上异于点的动点,点在边上,且,现沿将折起到的位置,使,记,表示四棱锥的体积.
(1)求的表达式;
(2)当为何值时,取得最大值?
课堂小结
三、课后作业
1.若没有极值,则的取值范围为.?
2.如图是导数的图象,对于下列四个判断:?
①在[-2,-1]上是增函数;?
②是的极小值点;?
③在[-1,2]上是增函数,在[2,4]上是减函数;?
④是的极小值点.?
其中判断正确的是.?
3.若函数在(0,1)内有极小值,则的取值范围为.
4.函数,在x=1时有极值10,则的值为.
5.下列关于函数的判断正确的是.
①f(x)0的解集是{x|0x2};?
②f(-)是极小值,f()是极大值;?
③f(x)没有最小值,也没有最大值.?
6.设函数在处取得极值,则的值为.
7.已知函数(为常数且)有极值9,则的值为.
8.若函数在上的最大值为,则的值为.

9.设函数在及时取得极值.
(Ⅰ)求a、b的值;
(Ⅱ)若对于任意的,都有成立,求c的取值范围.

10.已知函数,求函数在[1,2]上的最大值.
四、纠错分析
错题卡题号错题原因分析

参考答案:
【自我检测】
1.72.3.4.
例1:(1)0(2)1,(3)3(4)11

例2:解:(Ⅰ),
当时,取最小值,
即.
(Ⅱ)令,
由得,(不合题意,舍去).
当变化时,的变化情况如下表:

递增极大值
递减
在内有最大值.
在内恒成立等价于在内恒成立,
即等价于,
所以的取值范围为.

例3:解:(1)由折起的过程可知,PE⊥平面ABC,,
V(x)=()
(2),所以时,,V(x)单调递增;时,V(x)单调递减;因此x=6时,V(x)取得最大值;

课后作业
1.[-1,2]2.②③3.0b14.a=-4,b=11
5.?①②6.17.28.
9.解:(Ⅰ),
因为函数在及取得极值,则有,.

解得,.
(Ⅱ)由(Ⅰ)可知,,

当时,;
当时,;
当时,.
所以,当时,取得极大值,又,.
则当时,的最大值为.
因为对于任意的,有恒成立,
所以,
解得或,
因此的取值范围为.
10.解:∵,∴
令,即,得.?
∴f(x)在(-∞,0),上是减函数,在上是增函数.?
①当,即时,在(1,2)上是减函数,?∴.
②当,即时,在上是减函数,
?∴.
③当,即时,在上是增函数,?
∴.
综上所述,当时,的最大值为,?
当时,的最大值为,
当时,的最大值为.