88教案网

你的位置: 教案 > 高中教案 > 导航 > 高三数学复习距离

小学数学复习教案

发表时间:2022-02-13

高三数学复习距离。

经验告诉我们,成功是留给有准备的人。作为高中教师就要早早地准备好适合的教案课件。教案可以让学生能够听懂教师所讲的内容,帮助高中教师掌握上课时的教学节奏。你知道怎么写具体的高中教案内容吗?为满足您的需求,小编特地编辑了“高三数学复习距离”,供您参考,希望能够帮助到大家。

二.课前预习1..是两个平行平面,a.b,a与b之间的距离为d1,与之间的距离为d2,则()(A)d1=d2;(B)d1>d2;(C)d1<d2;(D)d1≥d22.△ABC中,AB=9,AC=15,∠BAC=120°,△ABC所在平面外一点P到三个顶点A.B.C的距离都是14,则P到平面的距离为()(A)7;(B)9;(C)11;(D)13;3.在长方体,ABCD-A1B1C1D1中,已知AB=4,AA1=3,AD=1,则点C1到直线A1B的距离为;4.已知Rt△ABC的直角顶点C在平面内,斜边AB∥,AB=2,AC.BC分别和平面成

相关阅读

高三 数学 不等式 会考复习


不等式会考复习
知识提要
一、不等式性质
3、同向不等式可相加,不可相减:且,则;
4、正项同向不等式可相乘,不可相除:,且,则;
5、乘法法则:,则;
6、开方法则:,则;
7、倒数不等式:,或时,有;
时,;
8、函数

重要不等式
1、如果,那么(当且仅当时取“=”号)
2、如果是正数,那么(当且仅当时取“=”号)
3、若,则
(当且仅当时取“=”号)
4、若,则(当且仅当时取“=”号)
5、
二、不等式证明
比较法(作差法、作商法)、分析法、综合法(综合法—由因导果,分析法—持果索因;一般利用分析法分析思路,再用综合法写出证明过程)、反证法、换元法(三角换元)、放缩法、函数法(利用函数单调性)等
三、不等式解法
1、含绝对值不等式的解法:
(1)、
(2)、
(3)、
2、含多个绝对值的不等式:零点区间讨论法
3、高次不等式:数轴标根法
4、分式不等式:整式不等式


四、绝对值不等式和含参不等式
1、含绝对值不等式的性质定理及推论定理:1、|a|-|b||a+b||a|+|b|
2、|a|-|b||a-b||a|+|b|
推论:|a1+a2+a3||a1|+|a2|+|a3|
2、含参不等式
针对参数进行正确地分类;分类讨论思想的运用
典例解读
1.设a<0,-1<b<0,则a,ab,ab2三者的大小关系为_________

2.已知三个不等式:①ab>0,②-ca<-db,③bc>ad.以其中两个作条件,余下一个作结论,则可组成___个正确的命题
3.已知正数x,y满足x+2y=1,求的最小值

4.若恒成立.则常数a的取值范围是___________

5.“a>0且b>0”是“”成立的()
(A)充分而非必要条件(B)必要而非充分条件
(C)充要条件(D)既非充分又非必要条件

6.甲、乙两车从A地沿同一路线到达B地,甲车一半时间的速度为a,另一半时间的速度为b;乙车用速度a行走了一半路程,用速度b行走了另一半路程,若a≠b,则两车到达B地的情况是()
(A)甲车先到达B地(B)乙车先到达B地
(C)同时到达(D)不能判定

7.方程的解集是()
(A)(-1,0)∪(3,+∞)(B)(-∞,-1)∪(0,3)
(C)(-1,0)∪[3,+∞](D)(-∞,-1)∪[0,3]

8.不等式ax2-bx+c>0的解集是(-1/2,2),对于a、b、c有以下结论:①a>0;②b>0;③c>0;④a+b+c>0;⑤a-b+c>0.其中正确结论的序号是__________

9.如果函数y=log(1/3)(x2-2ax+a+2)的单调递增区间是(-∞,a),那么实数a的取值范围是__________

10.解不等式:
12.设f(x)=ax2+bx,且1≤f(-1)≤2,2≤f(1)≤4,求f(-2)的取值范围

13.在某两个正数x,y之间,若插入一个正数a,使x,a,y成等比数列;若另插入两个正数b,c,使x,b,c,y成等差数列,求证:(a+1)2≤(b+1)(c+1)

14.已知f(x)是偶函数,在(-∞,0)上是增函数,且f(2a2-3a+2)0的解集,求实数m,n
15.关于x的不等式(a+b)x+(2a-3b)<0>

16.若f(x)是定义在(0,+∞)上的增函数,且对一切x>0,y>0,满足
(1)求f(1)的值;
(2)若f(2)=1,解不等式

2012届高三理科数学数列总复习


一名优秀的教师就要对每一课堂负责,作为教师就要早早地准备好适合的教案课件。教案可以让学生能够听懂教师所讲的内容,帮助教师提前熟悉所教学的内容。那么怎么才能写出优秀的教案呢?下面是小编为大家整理的“2012届高三理科数学数列总复习”,相信您能找到对自己有用的内容。

第六章数列

高考导航

考试要求重难点击命题展望
1.数列的概念和简单表示法?
(1)了解数列的概念和几种简单的表示方法(列表、图象、通项公式);?(2)了解数列是自变量为正整数的一类函数.?
2.等差数列、等比数列?
(1)理解等差数列、等比数列的概念;?
(2)掌握等差数列、等比数列的通项公式与前n项和公式;?
(3)能在具体问题情境中识别数列的等差关系或等比关系,并能用有关知识解决相应的问题;?
(4)了解等差数列与一次函数、等比数列与指数函数的关系.本章重点:1.等差数列、等比数列的定义、通项公式和前n项和公式及有关性质;
2.注重提炼一些重要的思想和方法,如:观察法、累加法、累乘法、待定系数法、倒序相加求和法、错位相减求和法、裂项相消求和法、分组求和法、函数与方程思想、数学模型思想以及离散与连续的关系.?
本章难点:1.数列概念的理解;2.等差等比数列性质的运用;3.数列通项与求和方法的运用.仍然会以客观题考查等差数列与等比数列的通项公式和前n项和公式及性质,在解答题中,会保持以前的风格,注重数列与其他分支的综合能力的考查,在高考中,数列常考常新,其主要原因是它作为一个特殊函数,使它可以与函数、不等式、解析几何、三角函数等综合起来,命出开放性、探索性强的问题,更体现了知识交叉命题原则得以贯彻;又因为数列与生产、生活的联系,使数列应用题也倍受欢迎.

知识网络

6.1数列的概念与简单表示法

典例精析
题型一归纳、猜想法求数列通项
【例1】根据下列数列的前几项,分别写出它们的一个通项公式:
(1)7,77,777,7777,…
(2)23,-415,635,-863,…
(3)1,3,3,5,5,7,7,9,9,…
【解析】(1)将数列变形为79(10-1),79(102-1),79(103-1),…,79(10n-1),
故an=79(10n-1).
(2)分开观察,正负号由(-1)n+1确定,分子是偶数2n,分母是1×3,3×5,5×7,…,(2n-1)(2n+1),故数列的通项公式可写成an=(-1)n+1.
(3)将已知数列变为1+0,2+1,3+0,4+1,5+0,6+1,7+0,8+1,9+0,….
故数列的通项公式为an=n+.
【点拨】联想与转换是由已知认识未知的两种有效的思维方法,观察归纳是由特殊到一般的有效手段,本例的求解关键是通过分析、比较、联想、归纳、转换获得项与项序数的一般规律,从而求得通项.
【变式训练1】如下表定义函数f(x):
x12345
f(x)54312
对于数列{an},a1=4,an=f(an-1),n=2,3,4,…,则a2008的值是()
A.1B.2C.3D.4
【解析】a1=4,a2=1,a3=5,a4=2,a5=4,…,可得an+4=an.
所以a2008=a4=2,故选B.
题型二应用an=求数列通项
【例2】已知数列{an}的前n项和Sn,分别求其通项公式:
(1)Sn=3n-2;
(2)Sn=18(an+2)2(an>0).
【解析】(1)当n=1时,a1=S1=31-2=1,
当n≥2时,an=Sn-Sn-1=(3n-2)-(3n-1-2)=2×3n-1,
又a1=1不适合上式,
故an=
(2)当n=1时,a1=S1=18(a1+2)2,解得a1=2,
当n≥2时,an=Sn-Sn-1=18(an+2)2-18(an-1+2)2,
所以(an-2)2-(an-1+2)2=0,所以(an+an-1)(an-an-1-4)=0,
又an>0,所以an-an-1=4,
可知{an}为等差数列,公差为4,
所以an=a1+(n-1)d=2+(n-1)4=4n-2,
a1=2也适合上式,故an=4n-2.
【点拨】本例的关键是应用an=求数列的通项,特别要注意验证a1的值是否满足“n≥2”的一般性通项公式.
【变式训练2】已知a1=1,an=n(an+1-an)(n∈N*),则数列{an}的通项公式是()
A.2n-1B.(n+1n)n-1C.n2D.n
【解析】由an=n(an+1-an)an+1an=n+1n.
所以an=anan-1×an-1an-2×…×a2a1=nn-1×n-1n-2×…×32×21=n,故选D.
题型三利用递推关系求数列的通项
【例3】已知在数列{an}中a1=1,求满足下列条件的数列的通项公式:
(1)an+1=an1+2an;(2)an+1=2an+2n+1.
【解析】(1)因为对于一切n∈N*,an≠0,
因此由an+1=an1+2an得1an+1=1an+2,即1an+1-1an=2.
所以{1an}是等差数列,1an=1a1+(n-1)2=2n-1,即an=12n-1.
(2)根据已知条件得an+12n+1=an2n+1,即an+12n+1-an2n=1.
所以数列{an2n}是等差数列,an2n=12+(n-1)=2n-12,即an=(2n-1)2n-1.
【点拨】通项公式及递推关系是给出数列的常用方法,尤其是后者,可以通过进一步的计算,将其进行转化,构造新数列求通项,进而可以求得所求数列的通项公式.
【变式训练3】设{an}是首项为1的正项数列,且(n+1)a2n+1-na2n+an+1an=0(n=1,2,3,…),求an.
【解析】因为数列{an}是首项为1的正项数列,
所以anan+1≠0,所以(n+1)an+1an-nanan+1+1=0,
令an+1an=t,所以(n+1)t2+t-n=0,
所以[(n+1)t-n](t+1)=0,
得t=nn+1或t=-1(舍去),即an+1an=nn+1.
所以a2a1a3a2a4a3a5a4…anan-1=12233445…n-1n,所以an=1n.
总结提高
1.给出数列的前几项求通项时,常用特征分析法与化归法,所求通项不唯一.
2.由Sn求an时,要分n=1和n≥2两种情况.
3.给出Sn与an的递推关系,要求an,常用思路是:一是利用Sn-Sn-1=an(n≥2)转化为an的递推关系,再求其通项公式;二是转化为Sn的递推关系,先求出Sn与n之间的关系,再求an.

6.2等差数列

典例精析
题型一等差数列的判定与基本运算
【例1】已知数列{an}前n项和Sn=n2-9n.
(1)求证:{an}为等差数列;(2)记数列{|an|}的前n项和为Tn,求Tn的表达式.
【解析】(1)证明:n=1时,a1=S1=-8,
当n≥2时,an=Sn-Sn-1=n2-9n-[(n-1)2-9(n-1)]=2n-10,
当n=1时,也适合该式,所以an=2n-10(n∈N*).
当n≥2时,an-an-1=2,所以{an}为等差数列.
(2)因为n≤5时,an≤0,n≥6时,an>0.
所以当n≤5时,Tn=-Sn=9n-n2,
当n≥6时,Tn=a1+a2+…+a5+a6+…+an
=-a1-a2-…-a5+a6+a7+…+an
=Sn-2S5=n2-9n-2×(-20)=n2-9n+40,

所以,

【点拨】根据定义法判断数列为等差数列,灵活运用求和公式.
【变式训练1】已知等差数列{an}的前n项和为Sn,且S21=42,若记bn=,则数列{bn}()
A.是等差数列,但不是等比数列B.是等比数列,但不是等差数列
C.既是等差数列,又是等比数列D.既不是等差数列,又不是等比数列
【解析】本题考查了两类常见数列,特别是等差数列的性质.根据条件找出等差数列{an}的首项与公差之间的关系从而确定数列{bn}的通项是解决问题的突破口.{an}是等差数列,则S21=21a1+21×202d=42.
所以a1+10d=2,即a11=2.所以bn==22-(2a11)=20=1,即数列{bn}是非0常数列,既是等差数列又是等比数列.答案为C.
题型二公式的应用
【例2】设等差数列{an}的前n项和为Sn,已知a3=12,S12>0,S13<0.
(1)求公差d的取值范围;
(2)指出S1,S2,…,S12中哪一个值最大,并说明理由.
【解析】(1)依题意,有
S12=12a1+12×(12-1)d2>0,S13=13a1+13×(13-1)d2<0,

由a3=12,得a1=12-2d.③
将③分别代入①②式,得
所以-247<d<-3.
(2)方法一:由d<0可知a1>a2>a3>…>a12>a13,
因此,若在1≤n≤12中存在自然数n,使得an>0,an+1<0,
则Sn就是S1,S2,…,S12中的最大值.
由于S12=6(a6+a7)>0,S13=13a7<0,
即a6+a7>0,a7<0,因此a6>0,a7<0,
故在S1,S2,…,S12中,S6的值最大.
方法二:由d<0可知a1>a2>a3>…>a12>a13,
因此,若在1≤n≤12中存在自然数n,使得an>0,an+1<0,
则Sn就是S1,S2,…,S12中的最大值.
故在S1,S2,…,S12中,S6的值最大.
【变式训练2】在等差数列{an}中,公差d>0,a2008,a2009是方程x2-3x-5=0的两个根,Sn是数列{an}的前n项的和,那么满足条件Sn<0的最大自然数n=.
【解析】由题意知又因为公差d>0,所以a2008<0,a2009>0.当
n=4015时,S4015=a1+a40152×4015=a2008×4015<0;当n=4016时,S4016=a1+a40162×4016=a2008+a20092×4016>0.所以满足条件Sn<0的最大自然数n=4015.
题型三性质的应用
【例3】某地区2010年9月份曾发生流感,据统计,9月1日该地区流感病毒的新感染者有40人,此后,每天的新感染者人数比前一天增加40人;但从9月11日起,该地区医疗部门采取措施,使该种病毒的传播得到控制,每天的新感染者人数比前一天减少10人.
(1)分别求出该地区在9月10日和9月11日这两天的流感病毒的新感染者人数;
(2)该地区9月份(共30天)该病毒新感染者共有多少人?
【解析】(1)由题意知,该地区9月份前10天流感病毒的新感染者的人数构成一个首项为40,公差为40的等差数列.
所以9月10日的新感染者人数为40+(10-1)×40=400(人).
所以9月11日的新感染者人数为400-10=390(人).
(2)9月份前10天的新感染者人数和为S10=10(40+400)2=2200(人),
9月份后20天流感病毒的新感染者的人数,构成一个首项为390,公差为-10的等差数列.
所以后20天新感染者的人数和为T20=20×390+20(20-1)2×(-10)=5900(人).
所以该地区9月份流感病毒的新感染者共有2200+5900=8100(人).
【变式训练3】设等差数列{an}的前n项和为Sn,若S4≥10,S5≤15,则a4的最大值为
.
【解析】因为等差数列{an}的前n项和为Sn,且S4≥10,S5≤15,

所以5+3d2≤a4≤3+d,即5+3d≤6+2d,所以d≤1,
所以a4≤3+d≤3+1=4,故a4的最大值为4.
总结提高
1.在熟练应用基本公式的同时,还要会用变通的公式,如在等差数列中,am=an+(m-n)d.
2.在五个量a1、d、n、an、Sn中,知其中的三个量可求出其余两个量,要求选用公式要恰当,即善于减少运算量,达到快速、准确的目的.
3.已知三个或四个数成等差数列这类问题,要善于设元,目的仍在于减少运算量,如三个数成等差数列时,除了设a,a+d,a+2d外,还可设a-d,a,a+d;四个数成等差数列时,可设为a-3m,a-m,a+m,a+3m.
4.在求解数列问题时,要注意函数思想、方程思想、消元及整体消元的方法的应用.

6.3等比数列

典例精析
题型一等比数列的基本运算与判定
【例1】数列{an}的前n项和记为Sn,已知a1=1,an+1=n+2nSn(n=1,2,3,…).求证:
(1)数列{Snn}是等比数列;(2)Sn+1=4an.
【解析】(1)因为an+1=Sn+1-Sn,an+1=n+2nSn,
所以(n+2)Sn=n(Sn+1-Sn).
整理得nSn+1=2(n+1)Sn,所以Sn+1n+1=2Snn,
故{Snn}是以2为公比的等比数列.
(2)由(1)知Sn+1n+1=4Sn-1n-1=4ann+1(n≥2),
于是Sn+1=4(n+1)Sn-1n-1=4an(n≥2).
又a2=3S1=3,故S2=a1+a2=4.
因此对于任意正整数n≥1,都有Sn+1=4an.
【点拨】①运用等比数列的基本公式,将已知条件转化为关于等比数列的特征量a1、q的方程是求解等比数列问题的常用方法之一,同时应注意在使用等比数列前n项和公式时,应充分讨论公比q是否等于1;②应用定义判断数列是否是等比数列是最直接,最有依据的方法,也是通法,若判断一个数列是等比数列可用an+1an=q(常数)恒成立,也可用a2n+1=anan+2恒成立,若判定一个数列不是等比数列则只需举出反例即可,也可以用反证法.
【变式训练1】等比数列{an}中,a1=317,q=-12.记f(n)=a1a2…an,则当f(n)最大时,n的值为()
A.7B.8C.9D.10
【解析】an=317×(-12)n-1,易知a9=317×1256>1,a10<0,0<a11<1.又a1a2…a9>0,故f(9)=a1a2…a9的值最大,此时n=9.故选C.
题型二性质运用
【例2】在等比数列{an}中,a1+a6=33,a3a4=32,an>an+1(n∈N*).
(1)求an;
(2)若Tn=lga1+lga2+…+lgan,求Tn.
【解析】(1)由等比数列的性质可知a1a6=a3a4=32,
又a1+a6=33,a1>a6,解得a1=32,a6=1,
所以a6a1=132,即q5=132,所以q=12,
所以an=32(12)n-1=26-n.
(2)由等比数列的性质可知,{lgan}是等差数列,
因为lgan=lg26-n=(6-n)lg2,lga1=5lg2,
所以Tn=(lga1+lgan)n2=n(11-n)2lg2.
【点拨】历年高考对性质考查较多,主要是利用“等积性”,题目“小而巧”且背景不断更新,要熟练掌握.
【变式训练2】在等差数列{an}中,若a15=0,则有等式a1+a2+…+an=a1+a2+…+a29-n(n<29,n∈N*)成立,类比上述性质,相应地在等比数列{bn}中,若b19=1,能得到什么等式?
【解析】由题设可知,如果am=0,在等差数列中有
a1+a2+…+an=a1+a2+…+a2m-1-n(n<2m-1,n∈N*)成立,
我们知道,如果m+n=p+q,则am+an=ap+aq,
而对于等比数列{bn},则有若m+n=p+q,则aman=apaq,
所以可以得出结论:
若bm=1,则有b1b2…bn=b1b2…b2m-1-n(n<2m-1,n∈N*)成立.
在本题中则有b1b2…bn=b1b2…b37-n(n<37,n∈N*).
题型三综合运用
【例3】设数列{an}的前n项和为Sn,其中an≠0,a1为常数,且-a1,Sn,an+1成等差数列.
(1)求{an}的通项公式;
(2)设bn=1-Sn,问是否存在a1,使数列{bn}为等比数列?若存在,则求出a1的值;若不存在,说明理由.
【解析】(1)由题意可得2Sn=an+1-a1.
所以当n≥2时,有
两式相减得an+1=3an(n≥2).
又a2=2S1+a1=3a1,an≠0,
所以{an}是以首项为a1,公比为q=3的等比数列.
所以an=a13n-1.
(2)因为Sn=a1(1-qn)1-q=-12a1+12a13n,所以bn=1-Sn=1+12a1-12a13n.
要使{bn}为等比数列,当且仅当1+12a1=0,即a1=-2,此时bn=3n.
所以{bn}是首项为3,公比为q=3的等比数列.
所以{bn}能为等比数列,此时a1=-2.
【变式训练3】已知命题:若{an}为等差数列,且am=a,an=b(m<n,m、n∈N*),则am+n=bn-amn-m.现在已知数列{bn}(bn>0,n∈N*)为等比数列,且bm=a,bn=b(m<n,m,n∈N*),类比上述结论得bm+n=.
【解析】n-mbnam.
总结提高
1.方程思想,即等比数列{an}中五个量a1,n,q,an,Sn,一般可“知三求二”,通过求和与通项两公式列方程组求解.
2.对于已知数列{an}递推公式an与Sn的混合关系式,利用公式an=Sn-Sn-1(n≥2),再引入辅助数列,转化为等比数列问题求解.
3.分类讨论思想:当a1>0,q>1或a1<0,0<q<1时,等比数列{an}为递增数列;当a1>0,0<q<1或a1<0,q>1时,{an}为递减数列;q<0时,{an}为摆动数列;q=1时,{an}为常数列.

6.4数列求和

典例精析
题型一错位相减法求和
【例1】求和:Sn=1a+2a2+3a3+…+nan.
【解析】(1)a=1时,Sn=1+2+3+…+n=n(n+1)2.
(2)a≠1时,因为a≠0,
Sn=1a+2a2+3a3+…+nan,①
1aSn=1a2+2a3+…+n-1an+nan+1.②
由①-②得(1-1a)Sn=1a+1a2+…+1an-nan+1=1a(1-1an)1-1a-nan+1,
所以Sn=a(an-1)-n(a-1)an(a-1)2.
综上所述,Sn=
【点拨】(1)若数列{an}是等差数列,{bn}是等比数列,则求数列{anbn}的前n项和时,可采用错位相减法;
(2)当等比数列公比为字母时,应对字母是否为1进行讨论;
(3)当将Sn与qSn相减合并同类项时,注意错位及未合并项的正负号.
【变式训练1】数列{2n-32n-3}的前n项和为()
A.4-2n-12n-1B.4+2n-72n-2C.8-2n+12n-3D.6-3n+22n-1
【解析】取n=1,2n-32n-3=-4.故选C.
题型二分组并项求和法
【例2】求和Sn=1+(1+12)+(1+12+14)+…+(1+12+14+…+12n-1).
【解析】和式中第k项为ak=1+12+14+…+12k-1=1-(12)k1-12=2(1-12k).
所以Sn=2[(1-12)+(1-122)+…+(1-12n)]
=-(12+122+…+12n)]
=2[n-12(1-12n)1-12]=2[n-(1-12n)]=2n-2+12n-1.
【变式训练2】数列1,1+2,1+2+22,1+2+22+23,…,1+2+22+…+2n-1,…的前n项和为()
A.2n-1B.n2n-n
C.2n+1-nD.2n+1-n-2
【解析】an=1+2+22+…+2n-1=2n-1,
Sn=(21-1)+(22-1)+…+(2n-1)=2n+1-n-2.故选D.
题型三裂项相消法求和
【例3】数列{an}满足a1=8,a4=2,且an+2-2an+1+an=0(n∈N*).
(1)求数列{an}的通项公式;
(2)设bn=1n(14-an)(n∈N*),Tn=b1+b2+…+bn(n∈N*),若对任意非零自然数n,Tn>m32恒成立,求m的最大整数值.
【解析】(1)由an+2-2an+1+an=0,得an+2-an+1=an+1-an,
从而可知数列{an}为等差数列,设其公差为d,则d=a4-a14-1=-2,
所以an=8+(n-1)×(-2)=10-2n.
(2)bn=1n(14-an)=12n(n+2)=14(1n-1n+2),
所以Tn=b1+b2+…+bn=14[(11-13)+(12-14)+…+(1n-1n+2)]
=14(1+12-1n+1-1n+2)=38-14(n+1)-14(n+2)>m32,
上式对一切n∈N*恒成立.
所以m<12-8n+1-8n+2对一切n∈N*恒成立.
对n∈N*,(12-8n+1-8n+2)min=12-81+1-81+2=163,
所以m<163,故m的最大整数值为5.
【点拨】(1)若数列{an}的通项能转化为f(n+1)-f(n)的形式,常采用裂项相消法求和.
(2)使用裂项相消法求和时,要注意正负项相消时,消去了哪些项,保留了哪些项.
【变式训练3】已知数列{an},{bn}的前n项和为An,Bn,记cn=anBn+bnAn-anbn(n∈N*),则数列{cn}的前10项和为()
A.A10+B10B.A10+B102C.A10B10D.A10B10
【解析】n=1,c1=A1B1;n≥2,cn=AnBn-An-1Bn-1,即可推出{cn}的前10项和为A10B10,故选C.
总结提高
1.常用的基本求和法均对应数列通项的特殊结构特征,分析数列通项公式的特征联想相应的求和方法既是根本,也是关键.
2.数列求和实质就是求数列{Sn}的通项公式,它几乎涵盖了数列中所有的思想策略、方法和技巧,对学生的知识和思维有很高的要求,应充分重视并系统训练.

6.5数列的综合应用

典例精析
题型一函数与数列的综合问题
【例1】已知f(x)=logax(a>0且a≠1),设f(a1),f(a2),…,f(an)(n∈N*)是首项为4,公差为2的等差数列.
(1)设a是常数,求证:{an}成等比数列;
(2)若bn=anf(an),{bn}的前n项和是Sn,当a=2时,求Sn.
【解析】(1)f(an)=4+(n-1)×2=2n+2,即logaan=2n+2,所以an=a2n+2,
所以anan-1=a2n+2a2n=a2(n≥2)为定值,所以{an}为等比数列.
(2)bn=anf(an)=a2n+2logaa2n+2=(2n+2)a2n+2,
当a=2时,bn=(2n+2)(2)2n+2=(n+1)2n+2,
Sn=223+324+425+…+(n+1)2n+2,
2Sn=224+325+…+n2n+2+(n+1)2n+3,
两式相减得
-Sn=223+24+25+…+2n+2-(n+1)2n+3=16+24(1-2n-1)1-2-(n+1)2n+3,
所以Sn=n2n+3.
【点拨】本例是数列与函数综合的基本题型之一,特征是以函数为载体构建数列的递推关系,通过由函数的解析式获知数列的通项公式,从而问题得到求解.
【变式训练1】设函数f(x)=xm+ax的导函数f′(x)=2x+1,则数列{1f(n)}(n∈N*)的前n项和是()
A.nn+1B.n+2n+1C.nn+1D.n+1n
【解析】由f′(x)=mxm-1+a=2x+1得m=2,a=1.
所以f(x)=x2+x,则1f(n)=1n(n+1)=1n-1n+1.

所以Sn=1-12+12-13+13-14+…+1n-1n+1=1-1n+1=nn+1.故选C.
题型二数列模型实际应用问题
【例2】某县位于沙漠地带,人与自然长期进行着顽强的斗争,到2009年底全县的绿化率已达30%,从2010年开始,每年将出现这样的局面:原有沙漠面积的16%将被绿化,与此同时,由于各种原因,原有绿化面积的4%又被沙化.
(1)设全县面积为1,2009年底绿化面积为a1=310,经过n年绿化面积为an+1,求证:an+1=45an+425;
(2)至少需要多少年(取整数)的努力,才能使全县的绿化率达到60%?
【解析】(1)证明:由已知可得an确定后,an+1可表示为an+1=an(1-4%)+(1-an)16%,
即an+1=80%an+16%=45an+425.
(2)由an+1=45an+425有,an+1-45=45(an-45),
又a1-45=-12≠0,所以an+1-45=-12(45)n,即an+1=45-12(45)n,
若an+1≥35,则有45-12(45)n≥35,即(45)n-1≤12,(n-1)lg45≤-lg2,
(n-1)(2lg2-lg5)≤-lg2,即(n-1)(3lg2-1)≤-lg2,
所以n≥1+lg21-3lg2>4,n∈N*,
所以n取最小整数为5,故至少需要经过5年的努力,才能使全县的绿化率达到60%.
【点拨】解决此类问题的关键是如何把实际问题转化为数学问题,通过反复读题,列出有关信息,转化为数列的有关问题.
【变式训练2】规定一机器狗每秒钟只能前进或后退一步,现程序设计师让机器狗以“前进3步,然后再后退2步”的规律进行移动.如果将此机器狗放在数轴的原点,面向正方向,以1步的距离为1单位长移动,令P(n)表示第n秒时机器狗所在的位置坐标,且P(0)=0,则下列结论中错误的是()
A.P(2006)=402B.P(2007)=403
C.P(2008)=404D.P(2009)=405
【解析】考查数列的应用.构造数列{Pn},由题知P(0)=0,P(5)=1,P(10)=2,P(15)=3.所以P(2005)=401,P(2006)=401+1=402,P(2007)=401+1+1=403,P(2008)=401+
3=404,P(2009)=404-1=403.故D错.
题型三数列中的探索性问题
【例3】{an},{bn}为两个数列,点M(1,2),An(2,an),Bn(n-1n,2n)为直角坐标平面上的点.
(1)对n∈N*,若点M,An,Bn在同一直线上,求数列{an}的通项公式;
(2)若数列{bn}满足log2Cn=a1b1+a2b2+…+anbna1+a2+…+an,其中{Cn}是第三项为8,公比为4的等比数列,求证:点列(1,b1),(2,b2),…,(n,bn)在同一直线上,并求此直线方程.
【解析】(1)由an-22-1=2n-2n-1n-1,得an=2n.
(2)由已知有Cn=22n-3,由log2Cn的表达式可知:
2(b1+2b2+…+nbn)=n(n+1)(2n-3),①
所以2[b1+2b2+…+(n-1)bn-1]=(n-1)n(2n-5).②
①-②得bn=3n-4,所以{bn}为等差数列.
故点列(1,b1),(2,b2),…,(n,bn)共线,直线方程为y=3x-4.
【变式训练3】已知等差数列{an}的首项a1及公差d都是整数,前n项和为Sn(n∈N*).若a1>1,a4>3,S3≤9,则通项公式an=.
【解析】本题考查二元一次不等式的整数解以及等差数列的通项公式.
由a1>1,a4>3,S3≤9得
令x=a1,y=d得
在平面直角坐标系中画出可行域如图所示.符合要求的整数点只有(2,1),即a1=2,d=1.所以an=2+n-1=n+1.故答案填n+1.
总结提高
1.数列模型应用问题的求解策略
(1)认真审题,准确理解题意;
(2)依据问题情境,构造等差、等比数列,然后应用通项公式、前n项和公式以及性质求解,或通过探索、归纳构造递推数列求解;
(3)验证、反思结果与实际是否相符.
2.数列综合问题的求解策略
(1)数列与函数综合问题或应用数学思想解决数列问题,或以函数为载体构造数列,应用数列的知识求解;
(2)数列的几何型综合问题,探究几何性质和规律特征建立数列的递推关系式,然后求解问题.

2012届高三数学概率统计总复习


一名合格的教师要充分考虑学习的趣味性,作为教师就要好好准备好一份教案课件。教案可以让学生更好的消化课堂内容,帮助教师掌握上课时的教学节奏。您知道教案应该要怎么下笔吗?下面是小编为大家整理的“2012届高三数学概率统计总复习”,欢迎大家与身边的朋友分享吧!

高三特长班数学复习概率统计(一)
一、知识梳理
1.三种抽样方法的联系与区别:
类别共同点不同点相互联系适用范围
简单随机抽样都是等概率抽样从总体中逐个抽取总体中个体比较少
系统抽样将总体均匀分成若干部分;按事先确定的规则在各部分抽取在起始部分采用简单随机抽样总体中个体比较多
分层抽样将总体分成若干层,按个体个数的比例抽取在各层抽样时采用简单随机抽样或系统抽样总体中个体有明显差异
(1)从含有N个个体的总体中抽取n个个体的样本,每个个体被抽到的概率为
(2)系统抽样的步骤:①将总体中的个体随机编号;②将编号分段;③在第1段中用简单随机抽样确定起始的个体编号;④按照事先研究的规则抽取样本.
(3)分层抽样的步骤:①分层;②按比例确定每层抽取个体的个数;③各层抽样;④汇合成样本.
(4)要懂得从图表中提取有用信息
如:在频率分布直方图中①小矩形的面积=组距=频率②众数是最高矩形的中点的横坐标③中位数的左边与右边的直方图的面积相等,可以由此估计中位数的值
2.方差和标准差都是刻画数据波动大小的数字特征,一般地,设一组样本数据,,…,,其平均数为则方差,标准差
3.古典概型的概率公式:如果一次试验中可能出现的结果有个,而且所有结果都是等可能的,如果事件包含个结果,那么事件的概率P=
特别提醒:古典概型的两个共同特点:
○1,即试中有可能出现的基本事件只有有限个,即样本空间Ω中的元素个数是有限的;
○2,即每个基本事件出现的可能性相等。
4.几何概型的概率公式:P(A)=
特别提醒:几何概型的特点:试验的结果是无限不可数的;○2每个结果出现的可能性相等。
二、夯实基础
(1)某单位有职工160名,其中业务人员120名,管理人员16名,后勤人员24名.为了解职工的某种情况,要从中抽取一个容量为20的样本.若用分层抽样的方法,抽取的业务人员、管理人员、后勤人员的人数应分别为____________.
(2)某赛季,甲、乙两名篮球运动员都参加了
11场比赛,他们所有比赛得分的情况用如图2所示的茎叶图表示,
则甲、乙两名运动员得分的中位数分别为()
A.19、13B.13、19C.20、18D.18、20
(3)统计某校1000名学生的数学会考成绩,
得到样本频率分布直方图如右图示,规定不低于60分为
及格,不低于80分为优秀,则及格人数是;
优秀率为。
(4)在一次歌手大奖赛上,七位评委为歌手打出的分数如下:
9.48.49.49.99.69.49.7
去掉一个最高分和一个最低分后,所剩数据的平均值
和方差分别为()
A.9.4,0.484B.9.4,0.016C.9.5,0.04D.9.5,0.016
(5)将一颗骰子先后抛掷2次,观察向上的点数,则以第一次向上点数为横坐标x,第二次向上的点数为纵坐标y的点(x,y)在圆x2+y2=27的内部的概率________.
(6)在长为12cm的线段AB上任取一点M,并且以线段AM为边的正方形,则这正方形的面积介于36cm2与81cm2之间的概率为()
三、高考链接
07、某班50名学生在一次百米测试中,成绩全部介于13秒与19秒之间,将测试结果按如下方式分成六组:第一组,成绩大于等于13秒且小于14秒;第二组,成绩大于等于14秒且小于15秒
;第六组,成绩大于等于18秒且小于等于19秒.右图
是按上述分组方法得到的频率分布直方图.设成绩小于17秒
的学生人数占全班总人数的百分比为,成绩大于等于15秒
且小于17秒的学生人数为,则从频率分布直方图中可分析
出和分别为()
08、从某项综合能力测试中抽取100人的成绩,统计如表,则这100人成绩的标准差为()
分数54321
人数2010303010

09、在区间上随机取一个数x,的值介于0到之间的概率为().
08、现有8名奥运会志愿者,其中志愿者通晓日语,通晓俄语,通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.
(Ⅰ)求被选中的概率;(Ⅱ)求和不全被选中的概率.

高三理科数学复数总复习教学案


一位优秀的教师不打无准备之仗,会提前做好准备,作为教师准备好教案是必不可少的一步。教案可以让学生们充分体会到学习的快乐,帮助教师缓解教学的压力,提高教学质量。优秀有创意的教案要怎样写呢?为了让您在使用时更加简单方便,下面是小编整理的“高三理科数学复数总复习教学案”,希望能为您提供更多的参考。

第十五章复数

高考导航

考试要求重难点击命题展望
1.理解复数的基本概念、复数相等的充要条件.
2.了解复数的代数表示法及其几何意义.
3.会进行复数代数形式的四则运算.了解复数的代数形式的加、减运算及其运算的几何意义.
4.了解从自然数系到复数系的关系及扩充的基本思想,体会理性思维在数系扩充中的作用.本章重点:1.复数的有关概念;2.复数代数形式的四则运算.
本章难点:运用复数的有关概念解题.近几年高考对复数的考查无论是试题的难度,还是试题在试卷中所占比例都是呈下降趋势,常以选择题、填空题形式出现,多为容易题.在复习过程中,应将复数的概念及运算放在首位.

知识网络

15.1复数的概念及其运算

典例精析
题型一复数的概念
【例1】(1)如果复数(m2+i)(1+mi)是实数,则实数m=;
(2)在复平面内,复数1+ii对应的点位于第象限;
(3)复数z=3i+1的共轭复数为z=.
【解析】(1)(m2+i)(1+mi)=m2-m+(1+m3)i是实数1+m3=0m=-1.
(2)因为1+ii=i(1+i)i2=1-i,所以在复平面内对应的点为(1,-1),位于第四象限.
(3)因为z=1+3i,所以z=1-3i.
【点拨】运算此类题目需注意复数的代数形式z=a+bi(a,b∈R),并注意复数分为实数、虚数、纯虚数,复数的几何意义,共轭复数等概念.
【变式训练1】(1)如果z=1-ai1+ai为纯虚数,则实数a等于()
A.0B.-1C.1D.-1或1
(2)在复平面内,复数z=1-ii(i是虚数单位)对应的点位于()
A.第一象限B.第二象限C.第三象限D.第四象限
【解析】(1)设z=xi,x≠0,则
xi=1-ai1+ai1+ax-(a+x)i=0或故选D.
(2)z=1-ii=(1-i)(-i)=-1-i,该复数对应的点位于第三象限.故选C.
题型二复数的相等
【例2】(1)已知复数z0=3+2i,复数z满足zz0=3z+z0,则复数z=;
(2)已知m1+i=1-ni,其中m,n是实数,i是虚数单位,则m+ni=;
(3)已知关于x的方程x2+(k+2i)x+2+ki=0有实根,则这个实根为,实数k的值为.
【解析】(1)设z=x+yi(x,y∈R),又z0=3+2i,
代入zz0=3z+z0得(x+yi)(3+2i)=3(x+yi)+3+2i,
整理得(2y+3)+(2-2x)i=0,
则由复数相等的条件得
解得所以z=1-.
(2)由已知得m=(1-ni)(1+i)=(1+n)+(1-n)i.
则由复数相等的条件得
所以m+ni=2+i.
(3)设x=x0是方程的实根,代入方程并整理得
由复数相等的充要条件得
解得或
所以方程的实根为x=2或x=-2,
相应的k值为k=-22或k=22.
【点拨】复数相等须先化为z=a+bi(a,b∈R)的形式,再由相等得实部与实部相等、虚部与虚部相等.
【变式训练2】(1)设i是虚数单位,若1+2i1+i=a+bi(a,b∈R),则a+b的值是()
A.-12B.-2C.2D.12
(2)若(a-2i)i=b+i,其中a,b∈R,i为虚数单位,则a+b=.
【解析】(1)C.1+2i1+i=(1+2i)(1-i)(1+i)(1-i)=3+i2,于是a+b=32+12=2.
(2)3.2+ai=b+ia=1,b=2.
题型三复数的运算
【例3】(1)若复数z=-12+32i,则1+z+z2+z3+…+z2008=;
(2)设复数z满足z+|z|=2+i,那么z=.
【解析】(1)由已知得z2=-12-32i,z3=1,z4=-12+32i=z.
所以zn具有周期性,在一个周期内的和为0,且周期为3.
所以1+z+z2+z3+…+z2008
=1+z+(z2+z3+z4)+…+(z2006+z2007+z2008)
=1+z=12+32i.
(2)设z=x+yi(x,y∈R),则x+yi+x2+y2=2+i,
所以解得所以z=+i.
【点拨】解(1)时要注意x3=1(x-1)(x2+x+1)=0的三个根为1,ω,ω-,
其中ω=-12+32i,ω-=-12-32i,则
1+ω+ω2=0,1+ω-+ω-2=0,ω3=1,ω-3=1,ωω-=1,ω2=ω-,ω-2=ω.
解(2)时要注意|z|∈R,所以须令z=x+yi.
【变式训练3】(1)复数11+i+i2等于()
A.1+i2B.1-i2C.-12D.12
(2)(2010江西鹰潭)已知复数z=23-i1+23i+(21-i)2010,则复数z等于()
A.0B.2C.-2iD.2i
【解析】(1)D.计算容易有11+i+i2=12.
(2)A.
总结提高
复数的代数运算是重点,是每年必考内容之一,复数代数形式的运算:①加减法按合并同类项法则进行;②乘法展开、除法须分母实数化.因此,一些复数问题只需设z=a+bi(a,b∈R)代入原式后,就可以将复数问题化归为实数问题来解决.