88教案网

你的位置: 教案 > 高中教案 > 导航 > 函数的最大值和最小值教案

高中函数的应用教案

发表时间:2020-11-12

函数的最大值和最小值教案。

为了促进学生掌握上课知识点,老师需要提前准备教案,大家正在计划自己的教案课件了。只有规划好教案课件计划,这样我们接下来的工作才会更加好!有哪些好的范文适合教案课件的?急您所急,小编为朋友们了收集和编辑了“函数的最大值和最小值教案”,欢迎大家阅读,希望对大家有所帮助。

1.本节教材的地位与作用
本节主要研究闭区间上的连续函数最大值和最小值的求法和实际应用,分两课时,这里是第一课时,它是在学生已经会求某些函数的最值,并且已经掌握了性质:“如果f(x)是闭区间[a,b]上的连续函数,那么f(x)在闭区间[a,b]上有最大值和最小值”,以及会求可导函数的极值之后进行学习的,学好这一节,学生将会求更多的函数的最值,运用本节知识可以解决科技、经济、社会中的一些如何使成本最低、产量最高、效益最大等实际问题.这节课集中体现了数形结合、理论联系实际等重要的数学思想方法,学好本节,对于进一步完善学生的知识结构,培养学生用数学的意识都具有极为重要的意义.
2.教学重点
会求闭区间上连续开区间上可导的函数的最值.
3.教学难点
高三年级学生虽然已经具有一定的知识基础,但由于对求函数极值还不熟练,特别是对优化解题过程依据的理解会有较大的困难,所以这节课的难点是理解确定函数最值的方法.
4.教学关键
本节课突破难点的关键是:理解方程f′(x)=0的解,包含有指定区间内全部可能的极值点.
【教学目标】
根据本节教材在高中数学知识体系中的地位和作用,结合学生已有的认知水平,制定本节如下的教学目标:
1.知识和技能目标
(1)理解函数的最值与极值的区别和联系.
(2)进一步明确闭区间[a,b]上的连续函数f(x),在[a,b]上必有最大、最小值.
(3)掌握用导数法求上述函数的最大值与最小值的方法和步骤.
2.过程和方法目标
(1)了解开区间内的连续函数或闭区间上的不连续函数不一定有最大、最小值.
(2)理解闭区间上的连续函数最值存在的可能位置:极值点处或区间端点处.
(3)会求闭区间上连续,开区间内可导的函数的最大、最小值.
3.情感和价值目标
(1)认识事物之间的的区别和联系.
(2)培养学生观察事物的能力,能够自己发现问题,分析问题并最终解决问题.
(3)提高学生的数学能力,培养学生的创新精神、实践能力和理性精神.
【教法选择】
根据皮亚杰的建构主义认识论,知识是个体在与环境相互作用的过程中逐渐建构的结果,而认识则是起源于主客体之间的相互作用.
本节课在帮助学生回顾肯定了闭区间上的连续函数一定存在最大值和最小值之后,引导学生通过观察闭区间内的连续函数的几个图象,自己归纳、总结出函数最大值、最小值存在的可能位置,进而探索出函数最大值、最小值求解的方法与步骤,并优化解题过程,让学生主动地获得知识,老师只是进行适当的引导,而不进行全部的灌输.为突出重点,突破难点,这节课主要选择以合作探究式教学法组织教学.
【学法指导】
对于求函数的最值,高三学生已经具备了良好的知识基础,剩下的问题就是有没有一种更一般的方法,能运用于更多更复杂函数的求最值问题?教学设计中注意激发起学生强烈的求知欲望,使得他们能积极主动地观察、分析、归纳,以形成认识,参与到课堂活动中,充分发挥他们作为认知主体的作用.

精选阅读

函数的最值


一名合格的教师要充分考虑学习的趣味性,教师要准备好教案,这是老师职责的一部分。教案可以让学生更好地进入课堂环境中来,帮助授课经验少的教师教学。怎么才能让教案写的更加全面呢?小编收集并整理了“函数的最值”,仅供参考,欢迎大家阅读。

1.3.1.2函数的最值
【内容与解析】
本节课要学的内容有函数的最值指的是函数值的最大值和最小值,理解它关键就是把握好最值的定义。学生已经学过了函数的相关知识,本节课的内容函数的最值就是在此基础上的发展的。由于它还与函数的单调性、值域等内容有必要的联系,所以在本学科有着很重要的地位,是学习后面知识的基础,是本学科的核心内容。教学的重点是最值的定义,所以解决重点的关键是通过大量实例,归纳出最值的定义。
【教学目标与解析】
1.教学目标
(1)理解函数最值的含义及其几何意义;
(2)初步掌握用定义及函数的单调性求最值的方法;
2.目标解析
(1)理解函数最值的含义及其几何意义指的是能叙述函数最大值、最小值的概念,理解函数的最大值与图像最高点纵坐标的对应,最小值与图像最低点纵坐标的对应;
(2)初步掌握用定义求最值的方法指的是能够利用定义证明或者求解一些简单函数的最值;
【问题诊断分析】
在本节课的教学中,学生可能遇到的问题是最值的定义难以归纳出来,产生这一问题的原因是:最值中的“最”不是“大于其它”或者“小于其它”,而是“不小于”与“不大于”。要解决这一问题,就要在教学中通过具体函数的图像,让学生去说,其中关键是选例精当,引导到位。
【教学过程】
问题1:我们已经学习过函数的图像,并利用图像研究了函数的单调性,下面,请看几张幻灯片:
1.1这些函数图像是否具备单调性?
1.2请观察图像的特殊点,你有什么发现?
1.3对于最高点和最低点,你有什么发现?
设计意图:通过以上问题,让学生通过函数图像,对最值有一个直观的认识。
问题2:图像仅仅是函数的表示法之一,对于一般的函数,不一定用图像来表达,那么,相应于刚才我们研究的结论,如何将其一般化?
2.1图像的最高点、最低点可能有很多,对应到一般的函数,就对到什么?
2.2图像的最高点、最低点也可能很多,也可能没有,在叙述中要注意什么?
2.3最高点或最低点对应的函数值应在值域中,这点如何表达?
2.4如果我们把最高点的纵坐标叫做相应函数的最大值,请你说出最大值的含义。
2.5仿照最大值的含义,你能说出最小值的含义吗?
设计意图:通过这些问题,让学生理解最值的含义的发生、发展过程,并且自主归纳出函数最值的含义,实现有特殊到一般,由具体形象到一般概念的转化。
问题3:判断下列函数的最值,并说明理由:
(1),
(2),
(3),
设计意图:通过这些问题,让学生理解用定义的方法来处理最值问题,需要先对最值有一个判断,可能是猜测的,可能是有图像的最高点、最低点获得直观感受的,但,要对问题做出完整的解答,最终是必须要依据定义的;同时,通过这些问题,让学生进一步明确函数最值可能存在可能不存在,可能存在多个最值,最大值和最小值也有可能相等.
【课堂目标检测】
1,已知函数
(1)判断
(2)根据
设计意图:通过这些问题,让学生理解利用函数的单调性来求函数的最值的一般方法,并复习前面学习过的函数的单调性。
【课堂小结】
1、最大值和最小值的含义;
2、利用定义来说明函数的最小值;
3、利用函数的单调性来求函数的最值。

§1.3.3函数的最大(小)值与导数(1课时)


一名合格的教师要充分考虑学习的趣味性,高中教师要准备好教案,这是高中教师需要精心准备的。教案可以让学生更好地进入课堂环境中来,帮助高中教师提高自己的教学质量。优秀有创意的高中教案要怎样写呢?急您所急,小编为朋友们了收集和编辑了“§1.3.3函数的最大(小)值与导数(1课时)”,供大家参考,希望能帮助到有需要的朋友。

§1.3.3函数的最大(小)值与导数(1课时)
【学情分析】:
这部分是在高一学过的函数单调性的基础上,给出判定可导函数增减性的方法,然后讨论函数的极值,由极值的意义,结合图象,得到利用导数判别可导函数极值的方法,最后在可以确定函数极值的前提下,给出求可导函数的最大值与最小值的方法
【教学目标】:
(1)使学生理解函数的最大值和最小值的概念,能区分最值与极值的概念
(2)使学生掌握用导数求函数最值的方法和步骤
【教学重点】:
利用导数求函数的最大值和最小值的方法.
【教学难点】:
函数的最大值、最小值与函数的极大值和极小值的区别与联系.熟练计算函数最值的步骤
【教学过程设计】:
教学环节教学活动设计意图
复习引入设函数f(x)在点x0附近有定义,f(x0)是函数f(x)的一个极大值f(x0),x0是极大值点,则对x0附近的所有的点,都有f(x)____f(x0)
设函数f(x)在点x0附近有定义,f(x0)是函数f(x)的一个极小值f(x0),x0是极小值点,则对x0附近的所有的点,都有f(x)____f(x0)知识的巩固
概念对比回顾以前所学关于最值的概念,形成对比认识:
函数最大值的概念:
设函数y=f(x)的定义域为I.如果存在实数M满足:
(1)对于任意的_____,都有f(x)___M
(2)存在__________,使得_______
则称M为函数y=f(x)的最________值
函数最小值的概念:
设函数y=f(x)的定义域为I.如果存在实数M满足:
(1)对于任意的_____,都有f(x)___M
(2)存在__________,使得_______
则称M为函数y=f(x)的最________值

思考:你觉得极值与最值的区别在哪里?让学生发现极值与最值的概念区别,
概念辨析练习(1)函数的极大(小)值一定是函数的最大(小)值,极大(小)值点就是最大(小)值点
(2)函数的最大(小)值一定是函数的极大(小)值,最大(小)值点就是极大(小)值点
(3)函数y=f(x)在x=a处取得极值是函数y=f(x)在x=a处
取得最值的____________(充要性)通过练习深化他们对函数取极值与最值的区别
对极值与最值概念的深化理解(1)函数的最值是比较整个定义域内的函数值得出的;函数的极值是比较极值点附近函数值得出的.
(2)函数的最值是描述函数在整个定义域上的整体性质,函数的极值是描述函数在某个局部的性质
(3)函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个点评提高
闭区间上的函数最值问题(1)在闭区间上函数最值的存在性:
通过观察一系列函数在闭区间上的函数图像,并指出函数的最值及相应的最值点:
a.函数y=-x+2在区间[-3,2]的图像
b.函数在区间[1/2,3]的图像
c.函数在区间[-3,0]的图像
d.函数图像如下:
一般性总结:
在闭区间上连续的函数在上必有最大值与最小值.
(连续函数的闭区间定理——数学分析)

(2)在闭区间上函数最值点的分析:
既然在闭区间上连续的函数在上必有最值,那么最值点会是哪些点呢?
通过上述图像的观察,可以发现最值点可能是闭区间的端点,函数的极值点
有无其他可能?
没有——反证法可说明本节的主要内容及主要结论,也是求函数最值的理论根据和方法指引
需要注意的地方判断正误:
(1)在开区间内连续的函数一定有最大值与最小值
(2)函数在闭区间上一定有最大值与最小值
(3)函数在闭区间上连续,是在闭区间上有最大值与最小值的充分条件而非必要条件.
说明:
开区间内的可导函数不一定有最值,若有唯一的极值,则此极值必是函数的最值(1)F;(2)F;(3)T
例题精讲求闭区间上的连续函数的最值
对于教材例5的处理方式:
此题课本直接求出了极值和相应的极值点,个人认为还是让学生经历一个求极值的过程:
先要求学生求函数在区间上的极值及极值点
再提问学生是否可以马上下结论:最值是多少?
务必让学生牢记:求函数的最值不光要求极值,还要计算函数在闭区间端点处的函数值

整个例题的使用务必让学生体会求函数最值的方法与步骤

求闭区间上的连续函数的最值,务必勤加练习,方能熟练掌握其方法,思维方法周密、不缺漏

除教材提供的练习外还可以补充以下练习:
在[0,3]上的最大值和最小值
在上的最大值和最小值
在上的最大值和最小值
在[0,4]上的最大值和最小值
上的最大值和最小值

求闭区间上连续函数最值的方法与步骤总结设函数在上连续,在内可导,则求在上的最大值与最小值的步骤如下:
⑴求在内的极值;
⑵将的各极值与、比较得出函数在上的最值

课后练习:
1、函数在区间上的最大值和最小值分别为()
A5,-15B5,-4C-4,-15D5,-16
答案D
2、函数在区间上的最小值为()
ABCD
答案D

3、函数的最大值为()
ABCD
答案A令,当时,;当时,,,在定义域内只有一个极值,所以
4、函数在上的最大值是__________最小值是__________
答案

5、函数在区间上的最大值是
答案,比较处的函数值,得

6、求函数
(1)求函数的单调递减区间
(2)函数在区间上的最大值是20,求它在该区间上的最小值
答案:
,为减区间
为增区间
所以
a=-2,所以最小值为

含绝对值的函数


学案17含绝对值的函数
一、课前准备:
【自主梳理】含绝对值的函数本质上是分段函数,往往需要先去绝对值再结合函数图像进行研究,主要有以下3类:
1.形如的函数,由于,因此研究此类函数往往结合函数图像,可以看成由的图像在x轴上方部分不变,下方部分关于x轴对称得到;
2.形如的函数,此类函数是偶函数,因此可以先研究的情况,的情况可以根据对称性得到;
3.函数解析式中部分含有绝对值,如等,这种函数是普通的分段函数,一般先去绝对值,再做出图像进行研究.
【自我检测】
1.函数的单调增区间为_.
2.函数的单调减区间为_______.
3.方程有两个不同的实数根,则实数a的取值范围是___________.
4.函数在上是增函数,则a的取值范围是___________.
5.函数的值域为___________.
6.函数是奇函数的充要条件是___________.
二、课堂活动:
【例1】填空题:
(1)已知函数f(x)=loga|x|在(0,+∞)上单调递增,则f(-2)f(a+1).(填写“”,“=”,“”之一).
(2)函数的图像与函数的图像的所有交点的横坐标之和为________.
(3)函数的定义域为,值域为[0,2],则b-a的最小值为_______.
(4)关于函数,有下列命题:①其图像关于y轴对称;②的最小值为lg2;③的递增区间为(-1,0);④没有最大值.其中正确的是_____________(把正确的命题序号都填上).

【例2】设a为实数,函数
(1)若函数是偶函数,试求a的值;
(2)在(1)的条件下,求的最小值.

【例3】设函数为常数)
(1)a=2时,讨论函数的单调性;
(2)若a-2,函数的最小值为2,求a的值.

课堂小结

三、课后作业
1.函数关于直线___________对称.
2.函数是奇函数,则________;___.
3.关于x的方程有4个不同实数解,则a的取值范围是__________.
4.函数的递减区间是_______.
5.函数的值域为__________.
6.函数的值域是___________.
7.已知,则方程的实数解的个数是___________.
8.关于x的方程有唯一实数解,则m的值为___________.
9.已知函数(a为正常数),且函数与的图像在y轴上的截距相等.
(1)求a的值;
(2)求函数+的单调递增区间.

10.已知函数.
(1)研究函数的单调性;
(2)求函数在上的值域(t0).

四、纠错分析
错题卡题号错题原因分析
参考答案:
【自我检测】
1.2.3.4.(0,1)5.6..
课堂活动
例1.(1);(2)4;(3);(4)①②④.
例2.(1)由成立得;(2)时,是增函数,最小值为,由是偶函数,关于y轴对称可知,函数在R上的最小值为.
例3.(1)时,,结合图像知,函数的单调增区间为,减区间为;
(2),,结合图像可得
当时函数的最小值为=2,解得a=3符合题意;
当时函数的最小值为,无解;
综上,a=3.
课后作业
1.;2.0,0;3.;4.;
5.;6.{2,0,-2};7.2;8.-2
9.(1);(2)减区间,增区间
10.(1)增区间,减区间;
(2)时,值域为;,时,值域为;
时,值域为.

函数的极值与最值


23.函数的极值与最值
一、课前准备:
【自主梳理】
1.若函数f(x)在点x0的附近恒有(或),则称函数f(x)在点x0处取得极大值(或极小值),称点x0为极大值点(或极小值点).
2.求可导函数极值的步骤:
①求导数;
②求方程的根;
③检验在方程根的左右的符号,如果左正右负,那么函数y=f(x)在这个根处取得极值;如果左负右正,那么函数y=f(x)在这个根处取得极值.
3.求可导函数最大值与最小值的步骤:
①求y=f(x)在[a,b]内的极值;
②将y=f(x)在各极值点的极值与f(a)、f(b)比较,其中最大的一个为最大值,最小的一个是最小值。
【自我检测】
1.函数的极大值为.
2.函数在上的最大值为.
3.若函数既有极大值又有极小值,则的取值范围为.
4.已知函数,若对任意都有,则的取值范围是.
(说明:以上内容学生自主完成,原则上教师课堂不讲)

二、课堂活动:
【例1】填空题:
(1)函数的极小值是__________.
(2)函数在区间上的最小值是________;最大值是__________.
(3)若函数在处取极值,则实数=_.
(4)已知函数在时有极值0,则=_.

【例2】设函数.
(Ⅰ)求的最小值;
(Ⅱ)若对恒成立,求实数的取值范围.

【例3】如图6所示,等腰的底边,高,点是线段上异于点的动点,点在边上,且,现沿将折起到的位置,使,记,表示四棱锥的体积.
(1)求的表达式;
(2)当为何值时,取得最大值?
课堂小结
三、课后作业
1.若没有极值,则的取值范围为.?
2.如图是导数的图象,对于下列四个判断:?
①在[-2,-1]上是增函数;?
②是的极小值点;?
③在[-1,2]上是增函数,在[2,4]上是减函数;?
④是的极小值点.?
其中判断正确的是.?
3.若函数在(0,1)内有极小值,则的取值范围为.
4.函数,在x=1时有极值10,则的值为.
5.下列关于函数的判断正确的是.
①f(x)0的解集是{x|0x2};?
②f(-)是极小值,f()是极大值;?
③f(x)没有最小值,也没有最大值.?
6.设函数在处取得极值,则的值为.
7.已知函数(为常数且)有极值9,则的值为.
8.若函数在上的最大值为,则的值为.

9.设函数在及时取得极值.
(Ⅰ)求a、b的值;
(Ⅱ)若对于任意的,都有成立,求c的取值范围.

10.已知函数,求函数在[1,2]上的最大值.
四、纠错分析
错题卡题号错题原因分析

参考答案:
【自我检测】
1.72.3.4.
例1:(1)0(2)1,(3)3(4)11

例2:解:(Ⅰ),
当时,取最小值,
即.
(Ⅱ)令,
由得,(不合题意,舍去).
当变化时,的变化情况如下表:

递增极大值
递减
在内有最大值.
在内恒成立等价于在内恒成立,
即等价于,
所以的取值范围为.

例3:解:(1)由折起的过程可知,PE⊥平面ABC,,
V(x)=()
(2),所以时,,V(x)单调递增;时,V(x)单调递减;因此x=6时,V(x)取得最大值;

课后作业
1.[-1,2]2.②③3.0b14.a=-4,b=11
5.?①②6.17.28.
9.解:(Ⅰ),
因为函数在及取得极值,则有,.

解得,.
(Ⅱ)由(Ⅰ)可知,,

当时,;
当时,;
当时,.
所以,当时,取得极大值,又,.
则当时,的最大值为.
因为对于任意的,有恒成立,
所以,
解得或,
因此的取值范围为.
10.解:∵,∴
令,即,得.?
∴f(x)在(-∞,0),上是减函数,在上是增函数.?
①当,即时,在(1,2)上是减函数,?∴.
②当,即时,在上是减函数,
?∴.
③当,即时,在上是增函数,?
∴.
综上所述,当时,的最大值为,?
当时,的最大值为,
当时,的最大值为.