88教案网

你的位置: 教案 > 高中教案 > 导航 > 高二数学三角恒等变换34

高中三角函数教案

发表时间:2020-11-12

高二数学三角恒等变换34。

一名爱岗敬业的教师要充分考虑学生的理解性,作为高中教师就要好好准备好一份教案课件。教案可以让学生更好地进入课堂环境中来,有效的提高课堂的教学效率。那么如何写好我们的高中教案呢?为此,小编从网络上为大家精心整理了《高二数学三角恒等变换34》,相信您能找到对自己有用的内容。

第三章三角恒等变换

一、课标要求:
本章学习的主要内容是两角和与差的正弦、余弦、和正切公式,以及运用这些公式进行简单的恒等变换.
三角恒等变换位于三角函数与数学变换的结合点上.通过本章学习,要使学生在学习三角恒等变换的基本思想和方法的过程中,发展推理能力和运算能力,使学生体会三角恒等变换的工具性作用,学会它们在数学中的一些应用.
1.了解用向量的数量积推导出两角差的余弦公式的过程,进一步体会向量方法的作用;
2.理解以两角差的余弦公式导出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,了解它们的内在联系;
3.运用上述公式进行简单的恒等变换,以引导学生推导半角公式,积化和差、和差化积公式(不要求记忆)作为基本训练,使学生进一步提高运用转化的观点去处理问题的自觉性,体会一般与特殊的思想,换元的思想,方程的思想等数学思想在三角恒等变换中的应用.
二、编写意图与特色
1.本章的内容分为两节:“两角和与差的正弦、余弦和正切公式”,“简单的三角恒等变换”,在学习本章之前我们学习了向量的相关知识,因此作者的意图是选择两角差的余弦公式作为基础,运用向量的知识来予以证明,降低了难度,使学生容易接受;
2.本章是以两角差的余弦公式作为基础来推导其它的公式;
3.本章在内容的安排上有明暗两条线,明线是建立公式,学会变换,暗线是发展推理和运算的能力,因此在本章全部内容的安排上,特别注意恰时恰点的提出问题,引导学生用对比、联系、化归的观点去分析、处理问题,强化运用数学思想方法指导设计变换思路的意识;
4.本章在内容的安排上贯彻“删减繁琐的计算、人为技巧化的难题和过分强调细枝末叶的内容”的理念,严格控制了三角恒等变换及其应用的繁、难程度,尤其注意不以半角公式、积化和差、和差化积公式作为变换的依据,而只把这些公式的推导作为变换的基本练习.
三、教学内容及课时安排建议
本章教学时间约8课时,具体分配如下:
3.1两角和与差的正弦、余弦、和正切公式约3课时
3.2简单的恒等变换约3课时
复习约2课时

§3.1两角和与差的正弦、余弦和正切公式
一、课标要求:
本节的中心内容是建立相关的十一个公式,通过探索证明和初步应用,体会和认识公式的特征及作用.
二、编写意图与特色
本节内容可分为四个部分,即引入,两角差的余弦公式的探索、证明及初步应用,和差公式的探索、证明和初步应用,倍角公式的探索、证明及初步应用.
三、教学重点与难点
1.重点:引导学生通过独立探索和讨论交流,导出两角和差的三角函数的十一个公式,并了解它们的内在联系,为运用这些公式进行简单的恒等变换打好基础;
2.难点:两角差的余弦公式的探索与证明.

3.1.1两角差的余弦公式

一、教学目标
掌握用向量方法建立两角差的余弦公式.通过简单运用,使学生初步理解公式的结构及其功能,为建立其它和(差)公式打好基础.
二、教学重、难点
1.教学重点:通过探索得到两角差的余弦公式;
2.教学难点:探索过程的组织和适当引导,这里不仅有学习积极性的问题,还有探索过程必用的基础知识是否已经具备的问题,运用已学知识和方法的能力问题,等等.
三、学法与教学用具
1.学法:启发式教学
2.教学用具:多媒体
四、教学设想:
(一)导入:我们在初中时就知道,,由此我们能否得到大家可以猜想,是不是等于呢?
根据我们在第一章所学的知识可知我们的猜想是错误的!下面我们就一起探讨两角差的余弦公式
(二)探讨过程:
在第一章三角函数的学习当中我们知道,在设角的终边与单位圆的交点为,等于角与单位圆交点的横坐标,也可以用角的余弦线来表示,大家思考:怎样构造角和角?(注意:要与它们的正弦线、余弦线联系起来.)
展示多媒体动画课件,通过正、余弦线及它们之间的几何关系探索与、、、之间的关系,由此得到,认识两角差余弦公式的结构.
思考:我们在第二章学习用向量的知识解决相关的几何问题,两角差余弦公式我们能否用向量的知识来证明?
提示:1、结合图形,明确应该选择哪几个向量,它们是怎样表示的?
2、怎样利用向量的数量积的概念的计算公式得到探索结果?
展示多媒体课件
比较用几何知识和向量知识解决问题的不同之处,体会向量方法的作用与便利之处.
思考:,,再利用两角差的余弦公式得出
(三)例题讲解
例1、利用和、差角余弦公式求、的值.
解:分析:把、构造成两个特殊角的和、差.
点评:把一个具体角构造成两个角的和、差形式,有很多种构造方法,例如:,要学会灵活运用.
例2、已知,是第三象限角,求的值.
解:因为,由此得
又因为是第三象限角,所以
所以
点评:注意角、的象限,也就是符号问题.
(四)小结:本节我们学习了两角差的余弦公式,首先要认识公式结构的特征,了解公式的推导过程,熟知由此衍变的两角和的余弦公式.在解题过程中注意角、的象限,也就是符号问题,学会灵活运用.
(五)作业:

相关阅读

高二数学下册《三角恒等变换》知识点


高二数学下册《三角恒等变换》知识点

知识结构:

1.两角和与差的正弦、余弦和正切公式

重点:通过探索和讨论交流,导出两角差与和的三角函数的十一个公式,并了解它们的内在联系。

难点:两角差的余弦公式的探索和证明。

2.简单的三角恒等变换

重点:掌握三角变换的内容、思路和方法,体会三角变换的特点

难点:公式的灵活应用

三角函数几点说明:

1.对弧长公式只要求了解,会进行简单应用,不必在应用方面加深.

2.用同角三角函数基本关系证明三角恒等式和求值计算,熟练配角和sin和cos的计算.

3.已知三角函数值求角问题,达到课本要求即可,不必拓展.

4.熟练掌握函数y=Asin(wx+j)图象、单调区间、对称轴、对称点、特殊点和最值.

5.积化和差、和差化积、半角公式只作为练习,不要求记忆.

6.两角和与差的正弦、余弦和正切公式

练习题:

1.已知sin2α=-2425,α∈-π4,0,则sinα+cosα=()

A.-15

B.15

C.-75

D.75

解析∵α∈-π4,0,∴cosα0sinα且cosα|sinα|,则sinα+cosα=1+sin2α=1-2425=15.

答案B

2.若sinπ4+α=13,则cosπ2-2α等于()

A.429

B.-429

C.79

D.-79

解析据已知可得cosπ2-2α=sin2α

=-cos2π4+α=-1-2sin2π4+α=-79.

答案D

简单的三角恒等变换


3.2简单的三角恒等变换(三)
教学目标
(一)知识与技能目标
熟练掌握三角公式及其变形公式.
(二)过程与能力目标
抓住角、函数式得特点,灵活运用三角公式解决一些实际问题.
(三)情感与态度目标
培养学生观察、分析、解决问题的能力.
教学重点
和、差、倍角公式的灵活应用.
教学难点
如何灵活应用和、差、倍角公式的进行三角式化简、求值、证明.
教学过程
例1:教材P141面例4
例1.如图,已知OPQ是半径为1,圆心角为的扇形,C是扇形弧上的动点,ABCD是扇形的内接矩形.记∠COP=a,求当角a取何值时,矩形ABCD的面积最大?并求出这个最大面积.

例2:把一段半径为R的圆木锯成横截面为矩形的木料,怎样锯法能使横截面的面积最大?(分别设边与角为自变量)
解:(1)如图,设矩形长为l,则面积,
所以当且仅当
即时,取得最大值,此时S取得最大值,矩形的宽为
即长、宽相等,矩形为圆内接正方形.
(2)设角为自变量,设对角线与一条边的夹角为,矩形长与宽分别为
、,所以面积.
而,所以,当且仅当时,S取最大值,所以当且仅当即时,S取最大值,此时矩形为内接正方形.
变式:已知半径为1的半圆,PQRS是半圆的内接矩形如图,问P点在什么位置时,矩形的面积最大,并求最大面积时的值.
解:设则
故S四边形PQRS
故为时,

课堂小结
建立函数模型利用三角恒等变换解决实际问题.

课后作业
1.阅读教材P.139到P.142;2.《习案》作业三十五.

高中数学必修四3.2三角恒等变换小结导学案


3.2三角恒等变换小结
【学习目标】
1.能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.
2.能运用两角和与差的正弦、余弦、正切公式以及二倍角公式进行简单的恒等变换。
【知识梳理】
1.熟练掌握公式:
两角和与差的正弦、余弦和正切公式
二倍角的正弦、余弦、正切公式

2.几个公式变形:
=__________=_______________
tan±tan
=tan(±)(1tantan)

3.形如asinα+bcosα的化简:
asinα+bcosα=a2+b2sin(α+φ),
其中cosφ=_____,sinφ=______,
即tanφ=ba.

【自学探究】
一、两角和与差的三角函数公式的应用
例1:在△ABC中,角C=120°,tanA+tanB=233,则tanAtanB的值为().
A.14B.13C.12D.53

例2:化简:.

思考感悟:要熟练、准确地运用和、差、倍角公式,同时要熟悉公式的逆用及变形。
二、角的变换
例3、已知sin=-34,则sin2x=__________.

例4、已知0<β<π4<α<34π,cos=35,sin=513,求sin(α+β)的值.

思考感悟:
1.应着眼于“所求角”与“已知角”的和或差的关系,把“所求角”用“已知角”来表示,然后应用诱导公式.
2.常见的配角技巧:
α=(α+β)-β;π4+α=π2-;α=12;β=12;
三、三角函数式的化简、求值
例5:化简:(π<α<2π).
例6:已知34π<α<π,,求的值.

思考感悟:三角函数式的化简要遵循“三看”原则.
(1)一看“角”,找到之间的差别与联系,把角进行合理拆分;
(2)二看“函数名称”,看函数名称间的差异与联系,常见有“切化弦”;
(3)三看“结构特征”,可以帮我们找到变形的方向,常见的有“遇到分式要通分”等.
四、三角恒等式的证明
例7:求证:cos2α1tanα2-tanα2=14sin2α.

例8:已知0<α<π4,0<β<π4,且3sinβ=sin(2α+β),4tanα2=1-tan2α2,证明:α+β=π4.

思考感悟:
1.证明三角恒等式的实质是消除等式两边的差异,有目的的化繁为简、左右归一。
2.三角恒等式的证明主要有两种类型:绝对恒等式与条件恒等式.
(1)证明绝对恒等式要根据两边的特征,化繁为简,左右归一,变更论证,化异为同.
(2)条件恒等式的证明则要比较已知条件与求证等式间的联系,选择适当途径.常用代入法、消元法、两头凑等方法.

【课堂小结】

【当堂达标】
1.化简:sin2αsin2β+cos2αcos2β-12cos2αcos2β.

2.求值:sin50°(1+3tan10°)=__________.

3.已知sinβ=msin(2α+β)(m≠1),求证:tan(α+β)=1+m1-mtanα.

【课后作业】
1.cos2π8-12的值为()
A.1B.12C.22D.24

2.cos25π12+cos2π12+cos5π12cosπ12的值等于()
A.62B.32
C.54D.1+34

3.已知π<α<3π2,且sin(3π2+α)=45,则tanα2等于()
A.3B.2
C.-2D.-3

4.如果tanα2=13,那么cosα的值是()
A.35B.45
C.-35D.-45

5.在△ABC中,若sinBsinC=cos2A2,则此三角形为()
A.等边三角形B.等腰三角形
C.直角三角形D.等腰直角三角形

6.已知sinα=13,2π<α<3π,那么sinα2+cosα2=_____.

7.cos5π8cosπ8=_____.

8.tan19°+tan26°+tan19°tan26°=_____.

9.已知sin22α+sin2αcosα-cos2α=1,α∈(0,π2),求sinα、tanα.

10.已知sin(x-3π4)cos(x-π4)=-14,求cos4x的值.
【延伸探究】
11.已知函数
(1)求的最小正周期;
(2)当时,求的最小值及取得最小值时的集合.

12.把一段半径为R的圆木锯成横截面为矩形的木料,怎样锯法能使横截面的面积最大?(分别设边与角为自变量)

2012届高考数学知识梳理复习三角恒等变换教案


学生们有一个生动有趣的课堂,离不开老师辛苦准备的教案,大家开始动笔写自己的教案课件了。用心制定好教案课件的工作计划,才能更好地安排接下来的工作!你们会写教案课件的范文吗?请您阅读小编辑为您编辑整理的《2012届高考数学知识梳理复习三角恒等变换教案》,欢迎大家阅读,希望对大家有所帮助。

教案42三角恒等变换
一、课前检测
1.若为第三象限角,且,则等于__________。答案:

2.函数的最大值是____________。答案:3

3.函数的值域是___________。答案:

二、知识梳理
1.基本公式
解读:

2.二倍角切化弦公式

解读:

3.降幂公式

解读:

三、典型例题分析
例1.已知tan(α-β)=,β=-,且α、β∈(0,),求2α-β的值.
解:由tanβ=-β∈(0,π)
得β∈(,π)①
由tanα=tan[(α-β)+β]=α∈(0,π)
得0<α<∴0<2α<π
由tan2α=>0∴知0<2α<②
∵tan(2α-β)==1
由①②知2α-β∈(-π,0)
∴2α-β=-
(或利用2α-β=2(α-β)+β求解)

变式训练:在△ABC中,,,,求A的值和△ABC的面积.
解:∵sinA+cosA=①
∵2sinAcosA=-
从而cosA<0A∈()
∴sinA-cosA=
=②
据①②可得sinA=cosA=
∴tanA=-2-
S△ABC=

小结与拓展:

例2.求证:=
证明:左边=
==右边

变式训练:化简sin2sin2+cos2cos2-cos2cos2.
解方法一(复角→单角,从“角”入手)
原式=sin2sin2+cos2cos2-(2cos2-1)(2cos2-1)
=sin2sin2+cos2cos2-(4cos2cos2-2cos2-2cos2+1)
=sin2sin2-cos2cos2+cos2+cos2-
=sin2sin2+cos2sin2+cos2-
=sin2+cos2-=1-=.
方法二(从“名”入手,异名化同名)
原式=sin2sin2+(1-sin2)cos2-cos2cos2
=cos2-sin2(cos2-sin2)-cos2cos2
=cos2-sin2cos2-cos2cos2
=cos2-cos2
=-cos2
=-cos2=.
方法三(从“幂”入手,利用降幂公式先降次)
原式=+-cos2cos2
=(1+cos2cos2-cos2-cos2)+(1+cos2cos2+cos2+cos2)-cos2cos2=.

方法四(从“形”入手,利用配方法,先对二次项配方)
原式=(sinsin-coscos)2+2sinsincoscos-cos2cos2
=cos2(+)+sin2sin2-cos2cos2
=cos2(+)-cos(2+2)
=cos2(+)-[2cos2(+)-1]=.

小结与拓展:

四、归纳与总结(以学生为主,师生共同完成)

1.知识:

2.思想与方法:

3.易错点:

4.教学反思(不足并查漏):