88教案网

你的位置: 教案 > 高中教案 > 导航 > 单调性与最大小值教学设计

高中函数单调性教案

发表时间:2020-02-19

单调性与最大小值教学设计。

一名优秀的教师就要对每一课堂负责,作为教师就要好好准备好一份教案课件。教案可以让学生更好的消化课堂内容,帮助教师有计划有步骤有质量的完成教学任务。你知道怎么写具体的教案内容吗?为了让您在使用时更加简单方便,下面是小编整理的“单调性与最大小值教学设计”,仅供参考,大家一起来看看吧。www.jaB88.cOM

教学设计
1.3.1单调性与最大(小)值
第1课时
整体设计
教学目标
1.使学生从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法.
2.通过对函数单调性定义的探究,渗透数形结合的思想方法,培养学生观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力.
3.通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯,让学生经历从具体到抽象,从特殊到一般,从感性到理性的认知过程.
重点难点
教学重点:函数单调性的概念、判断及证明.
教学难点:归纳抽象函数单调性的定义以及根据定义证明函数的单调性.
教学方法
教师启发讲授,学生探究学习.
教学手段
计算机、投影仪.
教学过程
创设情境,引入课题
课前布置任务:
(1)由于某种原因,2008年北京奥运会开幕式时间由原定的7月25日推迟到8月8日,请查阅资料说明做出这个决定的主要原因.
(2)通过查阅历史资料研究北京奥运会开幕式当天气温变化情况.
课上通过交流,可以了解到开幕式推迟主要是天气的原因,北京的天气到8月中旬,平均气温、平均降雨量和平均降雨天数等均开始下降,比较适宜举办大型国际体育赛事.
下图是北京市某年8月8日一天24小时内气温随时间变化的曲线图.
图1
引导学生识图,捕捉信息,启发学生思考.
问题:观察图形,能得到什么信息?
预案:(1)当天的最高温度、最低温度以及何时达到;
(2)在某时刻的温度;
(3)某些时段温度升高,某些时段温度降低.
在生活中,我们关心很多数据的变化规律,了解这些数据的变化规律,对我们的生活是很有帮助的.
问题:还能举出生活中其他的数据变化情况吗?
预案:水位高低、燃油价格、股票价格等.
归纳:用函数观点看,其实就是随着自变量的变化,函数值是变大还是变小.
【设计意图】由生活情境引入新课,激发兴趣.
归纳探索,形成概念
对于自变量变化时,函数值是变大还是变小,初中时同学们就有了一定的认识,但是没有严格的定义,今天我们的任务首先就是建立函数单调性的严格定义.
1.借助图象,直观感知
问题1:分别作出函数y=x+2,y=-x+2,y=x2,y=1x的图象,并且观察自变量变化时,函数值有什么变化规律?
图2
预案:(1)函数y=x+2在整个定义域内y随x的增大而增大;函数y=-x+2在整个定义域内y随x的增大而减小.
(2)函数y=x2在[0,+∞)上y随x的增大而增大,在(-∞,0)上y随x的增大而减小.
(3)函数y=1x在(0,+∞)上y随x的增大而减小,在(-∞,0)上y随x的增大而减小.
引导学生进行分类描述(增函数、减函数),同时明确函数的单调性是对定义域内某个区间而言的,是函数的局部性质.
问题2:能不能根据自己的理解说说什么是增函数、减函数?
预案:如果函数f(x)在某个区间上随自变量x的增大,y也越来越大,我们说函数f(x)在该区间上为增函数;如果函数f(x)在某个区间上随自变量x的增大,y越来越小,我们说函数f(x)在该区间上为减函数.
教师指出:这种认识是从图象的角度得到的,是对函数单调性的直观认识.
【设计意图】从图象直观感知函数单调性,完成对函数单调性的第一次认识.
2.探究规律,理性认识
问题1:下图是函数y=x+2x(x>0)的图象,能说出这个函数分别在哪个区间为增函数和减函数吗?
图3
学生的困难是难以确定分界点的确切位置.
通过讨论,使学生感受到用函数图象判断函数单调性虽然比较直观,但有时不够精确,需要结合解析式进行严密化、精确化的研究.
【设计意图】使学生体会到用数量大小关系严格表述函数单调性的必要性.
问题2:如何从解析式的角度说明f(x)=x2在[0,+∞)为增函数?
预案:(1)在给定区间内取两个数,例如1和2,因为12<22,所以f(x)=x2在[0,+∞)为增函数.
(2)仿(1),取很多组验证均满足,所以f(x)=x2在[0,+∞)为增函数.
(3)任取x1,x2∈[0,+∞),且x1<x2,因为x12-x22=(x1+x2)(x1-x2)<0,即x12<x22,
所以f(x)=x2在[0,+∞)为增函数.
对于学生错误的回答,引导学生分别用图形语言和文字语言进行辨析,使学生认识到问题的根源在于自变量不可能被穷举,从而引导学生在给定的区间内任意取两个自变量x1,x2.
【设计意图】把对单调性的认识由感性上升到理性的高度,完成对概念的第二次认识.事实上也给出了证明单调性的方法,为证明单调性做好了铺垫.
3.抽象思维,形成概念
问题:你能用准确的数学符号语言表述出增函数的定义吗?
师生共同探究,得出增函数严格的定义,然后学生类比得出减函数的定义.
(1)板书定义
(2)巩固概念
判断题:
①已知f(x)=1x,因为f(-1)<f(2),所以函数f(x)是增函数.
②若函数f(x)满足f(2)<f(3),则函数f(x)在区间[2,3]上为增函数.
③若函数f(x)在区间(1,2]和(2,3)上均为增函数,则函数f(x)在区间(1,3)上为增函数.
④因为函数f(x)=1x在区间(-∞,0)和(0,+∞)上都是减函数,所以f(x)=1x在(-∞,0)∪(0,+∞)上是减函数.
通过判断题,强调三点:
①单调性是对定义域内某个区间而言的,离开了定义域和相应区间就谈不上单调性.
②对于某个具体函数的单调区间,可以是整个定义域(如一次函数),可以是定义域内某个区间(如二次函数),也可以根本不单调(如常函数).
③函数在定义域内的两个区间A,B上都是增(或减)函数,一般不能认为函数在A∪B上是增(或减)函数.
思考:如何说明一个函数在某个区间上不是单调函数?
【设计意图】让学生由特殊到一般,从具体到抽象归纳出单调性的定义,通过对判断题的辨析,加深学生对定义的理解,完成对概念的第三次认识.
掌握证法,适当延展
【例】证明函数f(x)=x+2x在(2,+∞)上是增函数.
1.分析解决问题
针对学生可能出现的问题,组织学生讨论、交流.
证明:任取x1,x2∈(2,+∞),且x1<x2,设元
f(x1)-f(x2)=x1+2x1-x2+2x2求差
=(x1-x2)+2x1-2x2
=(x1-x2)+2(x2-x1)x1x2=(x1-x2)1-2x1x2=(x1-x2)x1x2-2x1x2,变形
∵2<x1<x2,
∴x1-x2<0,x1x2>2,∴f(x1)-f(x2)<0,即f(x1)<f(x2),断号
∴函数f(x)=x+2x在(2,+∞)上是增函数.定论
2.归纳解题步骤
引导学生归纳证明函数单调性的步骤:设元、作差、变形、断号、定论.
练习:证明函数f(x)=x在[0,+∞)上是增函数.
问题:要证明函数f(x)在区间(a,b)上是增函数,除了用定义来证,如果可以证得对任意的x1,x2∈(a,b),且x1≠x2有f(x2)-f(x1)x2-x1>0可以吗?
引导学生分析这种叙述与定义的等价性,让学生尝试用这种等价形式证明函数f(x)=x在[0,+∞)上是增函数.
【设计意图】初步掌握根据定义证明函数单调性的方法和步骤.等价形式进一步发展可以得到导数法,为用导数方法研究函数单调性埋下伏笔.
归纳小结,提高认识
学生交流在本节课学习中的体会、收获,交流学习过程中的体验和感受,师生合作共同完成小结.
1.小结
(1)概念探究过程:直观到抽象、特殊到一般、感性到理性.
(2)证明方法和步骤:设元、作差、变形、断号、定论.
(3)数学思想方法和思维方法:数形结合,等价转化,类比等.
2.作业
书面作业:课本习题1.3A组第1,2,3题.
课后探究:
(1)证明:函数f(x)在区间(a,b)上是增函数当且仅当对任意的x,x+h∈(a,b),且h≠0有f(x+h)-f(x)h>0.
(2)研究函数y=x+1x(x>0)的单调性,并结合描点法画出函数的草图.
设计说明
1.教学内容的分析
函数的单调性是学生在了解函数概念后学习的函数的第一个性质,是函数学习中第一个用数学符号语言刻画的概念,为进一步学习函数其他性质提供了方法依据.
对于函数单调性,学生的认知困难主要在两个方面:(1)要求用准确的数学符号语言去刻画图象的上升与下降,这种由形到数的翻译,从直观到抽象的转变对高一的学生是比较困难的;(2)单调性的证明是学生在函数内容中首次接触到的代数论证内容,而学生在代数方面的推理论证能力是比较薄弱的.根据以上的分析和教学大纲的要求,确定了本节课的重点和难点.
2.教学目标的确定
根据本课教材的特点、教学大纲对本节课的教学要求以及学生的认知水平,从三个不同的方面确定了教学目标,重视单调性概念的形成过程和对概念本质的认识;强调判断、证明函数单调性的方法的落实以及数形结合思想的渗透;突出语言表达能力、推理论证能力的培养和良好思维习惯的养成.
3.教学方法和教学手段的选择
本节课是函数单调性的起始课,采用教师启发讲授,学生探究学习的教学方法,通过创设情境,引导探究,师生交流,最终形成概念,获得方法.本节课使用了多媒体投影和计算机来辅助教学,目的是充分发挥其快捷、生动、形象的特点,为学生提供直观感性的材料,有助于学生对问题的理解和认识.
4.教学过程的设计
为达到本节课的教学目标,突出重点,突破难点,教学上采取了以下的措施:
(1)在探索概念阶段,让学生经历从直观到抽象、从特殊到一般、从感性到理性的认知过程,完成对单调性定义的三次认识,使得学生对概念的认识不断深入.
(2)在应用概念阶段,通过对证明过程的分析,帮助学生掌握用定义证明函数单调性的方法和步骤.
(3)可对判断方法进行适当的延展,加深对定义的理解,同时也为用导数研究单调性埋下伏笔.
第2课时
作者:方诚心
整体设计
教学目标
1.知识与技能
(1)使学生理解函数的最值是在整个定义域上来研究的,它是函数单调性的应用.
(2)启发学生学会分析问题、认识问题和创造性地解决问题.
2.过程与方法
(1)通过渗透数形结合的数学思想,对学生进行辩证唯物主义的教育.
(2)探究与活动,明白考虑问题要细致,说理要明确.
3.情感、态度与价值观
理性描述生活中的最大(小)、最多(少)等现象.
重点难点
教学重点:函数最大(小)值的定义和求法.
教学难点:如何求一个具体函数的最值.
教学过程
导入新课
思路1.某工厂为了扩大生产规模,计划重新建造一个面积为10000m2的矩形新厂址,新厂址的长为xm,则宽为10000xm,所建围墙ym,假如你是这个工厂的厂长,你会选择一个长和宽各为多少米的矩形土地,使得新厂址的围墙y最短?
学生先思考或讨论,教师指出此题意在求函数y=2x+10000x,x>0的最小值.引出本节课题:在生产和生活中,我们非常关心花费最少、用料最省、用时最省等最值问题,这些最值对我们的生产和生活是很有帮助的.那么什么是函数的最值呢?这就是我们今天学习的课题.用函数知识解决实际问题,将实际问题转化为求函数的最值,这就是函数的思想,用函数解决问题.
思路2.画出下列函数的图象,指出图象的最高点或最低点,并说明它能体现函数的什么特征?
①f(x)=-x+3;②f(x)=-x+3,x∈[-1,2];
③f(x)=x2+2x+1;④f(x)=x2+2x+1,x∈[-2,2].
学生回答后,教师引出课题:函数的最值.
推进新课
新知探究
提出问题
(1)如图4所示是函数y=-x2-2x、y=-2x+1,x∈[-1,+∞)、y=f(x)的图象.观察这三个图象的共同特征.
图4
(2)函数图象上任意点P(x,y)的坐标与函数有什么关系?
(3)你是怎样理解函数图象最高点的?
(4)问题(1)中,在函数y=f(x)的图象上任取一点A(x,y),如图5所示,设点C的坐标为(x0,y0),谁能用数学符号解释:函数y=f(x)的图象有最高点C?
图5
(5)在数学中,形如问题(1)中函数y=f(x)的图象上最高点C的纵坐标就称为函数y=f(x)的最大值.谁能给出函数最大值的定义?
(6)函数最大值的定义中f(x)≤M即f(x)≤f(x0),这个不等式反映了函数y=f(x)的函数值具有什么特点?其图象又具有什么特征?
(7)函数最大值的几何意义是什么?
(8)函数y=-2x+1,x∈(-1,+∞)有最大值吗?为什么?
(9)点(-1,3)是不是函数y=-2x+1,x∈(-1,+∞)的最高点?
(10)由问题(9)你发现了什么值得注意的地方?
讨论结果:(1)函数y=-x2-2x的图象有最高点A,函数y=-2x+1,x∈[-1,+∞)的图象有最高点B,函数y=f(x)的图象有最高点C.也就是说,这三个函数的图象的共同特征是都有最高点.
(2)函数图象上任意点P的坐标(x,y)的意义:横坐标x是自变量的取值,纵坐标y是自变量为x时对应的函数值的大小.
(3)图象上最高点的纵坐标是所有函数值中的最大值,即函数的最大值.
(4)由于点C是函数y=f(x)图象上的最高点,则点A在点C的下方,即对定义域内任意x,都有y≤y0,即f(x)≤f(x0),也就是对函数y=f(x)的定义域内任意x,均有f(x)≤f(x0)成立.
(5)一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:
①对于任意的x∈I,都有f(x)≤M;
②存在x0∈I,使得f(x0)=M.
那么,称M是函数y=f(x)的最大值.
(6)f(x)≤M反映了函数y=f(x)的所有函数值不大于实数M;这个函数的特征是图象有最高点,并且最高点的纵坐标是M.
(7)函数图象上最高点的纵坐标.
(8)函数y=-2x+1,x∈(-1,+∞)没有最大值,因为函数y=-2x+1,x∈(-1,+∞)的图象没有最高点.
(9)不是,因为该函数的定义域中没有-1.
(10)讨论函数的最大值,要坚持定义域优先的原则;函数图象上有最高点时,这个函数才存在最大值,最高点必须是函数图象上的点.
提出问题
(1)类比函数的最大值,请你给出函数的最小值的定义及其几何意义.
(2)类比上面问题(9),你认为讨论函数最小值应注意什么?
活动:让学生思考函数最大值的定义,利用定义来类比定义.最高点类比最低点,不等号“≤”类比不等号“≥”.函数的最大值和最小值统称为函数的最值.
讨论结果:(1)函数最小值的定义是:
一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:
①对于任意的x∈I,都有f(x)≥M;
②存在x0∈I,使得f(x0)=M.
那么,称M是函数y=f(x)的最小值.
函数最小值的几何意义:函数图象上最低点的纵坐标.
(2)讨论函数的最小值,也要坚持定义域优先的原则;函数图象上有最低点时,这个函数才存在最小值,最低点必须是函数图象上的点.
应用示例
例1求函数y=2x-1在区间[2,6]上的最大值和最小值.
活动:先思考或讨论,再到黑板上书写.当学生没有解题思路时,才提示:图象最高点的纵坐标就是函数的最大值,图象最低点的纵坐标就是函数的最小值.根据函数的图象观察其单调性,再利用函数单调性的定义证明,最后利用函数的单调性求得最大值和最小值.利用变换法画出函数y=2x-1的图象,只取在区间[2,6]上的部分.观察可得函数的图象是上升的.
解:设2≤x1<x2≤6,则有
f(x1)-f(x2)=2x1-1-2x2-1=2[(x2-1)-(x1-1)](x1-1)(x2-1)=2(x2-x1)(x1-1)(x2-1).
∵2≤x1<x2≤6,
∴x2-x1>0,(x1-1)(x2-1)>0.
∴f(x1)>f(x2),即函数y=2x-1在区间[2,6]上是减函数.
∴当x=2时,函数y=2x-1在区间[2,6]上取得最大值f(2)=2;
当x=6时,函数y=2x-1在区间[2,6]上取得最小值f(6)=25.
变式训练
1.求函数y=x2-2x(x∈[-3,2])的最大值和最小值.
解:最大值是f(-3)=15,最小值是f(1)=-1.
2.函数f(x)=x4+2x2-1的最小值是__________.
解析:(换元法)转化为求二次函数的最小值.
设x2=t,y=t2+2t-1(t≥0),
又当t≥0时,函数y=t2+2t-1是增函数,
则当t=0时,函数y=t2+2t-1(t≥0)取最小值-1.
所以函数f(x)=x4+2x2-1的最小值是-1.
答案:-1
3.画出函数y=-x2+2|x|+3的图象,指出函数的单调区间和最大值.
分析:函数的图象关于y轴对称,先画出y轴右侧的图象,再对称到y轴左侧合起来得函数的图象;借助图象,根据单调性的几何意义写出单调区间.
解:函数图象如图6所示.
图6
由图象得,函数的图象在区间(-∞,-1)和[0,1]上是上升的,在[-1,0]和(1,+∞)上是下降的,最高点是(±1,4),
故函数在(-∞,-1),[0,1]上是增函数;函数在[-1,0],(1,+∞)上是减函数,最大值是4.
点评:本题主要考查函数的单调性和最值,以及最值的求法.求函数的最值时,先画函数的图象,确定函数的单调区间,再用定义法证明,最后借助单调性写出最值,这种方法适用于做解答题.
单调法求函数最值:先判断函数的单调性,再利用其单调性求最值;常用到下面的结论:①如果函数y=f(x)在区间(a,b]上单调递增,在区间[b,c)上单调递减,则函数y=f(x)在x=b处有最大值f(b);②如果函数y=f(x)在区间(a,b]上单调递减,在区间[b,c)上单调递增,则函数y=f(x)在x=b处有最小值f(b).
例2“菊花”烟花是最壮观的烟花之一.制造时一般是期望在它达到最高点时爆裂.如果烟花距地面的高度hm与时间ts之间的关系为h(t)=-4.9t2+14.7t+18,那么烟花冲出后什么时候是它爆裂的最佳时刻?这时距地面的高度是多少?(精确到1m)
活动:可以指定一位学生到黑板上书写,教师在下面巡视,并及时帮助做错的学生改错.并对学生的板书及时评价.将实际问题最终转化为求函数的最值,画出函数的图象,利用函数的图象求出最大值.“烟花冲出后什么时候是它爆裂的最佳时刻”就是当t取什么值时函数h(t)=-4.9t2+14.7t+18取得最大值;“这时距地面的高度是多少(精确到1m)”就是函数h(t)=-4.9t2+14.7t+18的最大值;转化为求函数h(t)=-4.9t2+14.7t+18的最大值及此时自变量t的值.
解:作出函数h(t)=-4.9t2+14.7t+18的图象,如图7所示,
图7
显然,函数图象的顶点就是烟花上升的最高点,顶点的横坐标就是烟花爆裂的最佳时刻,纵坐标就是这时距地面的高度.
由二次函数的知识,对于函数h(t)=-4.9t2+14.7t+18,我们有:
当t=-14.72×(-4.9)=1.5时,函数有最大值h=4×(-4.9)×18-14.724×(-4.9)≈29.
即烟花冲出后1.5s是它爆裂的最佳时刻,这时距地面的高度约是29m.
点评:本题主要考查二次函数的最值问题,以及应用二次函数解决实际问题的能力.解应用题的步骤是:①审清题意读懂题;②将实际问题转化为数学问题来解决;③归纳结论.
注意:要坚持定义域优先的原则;求二次函数的最值要借助于图象即数形结合.
变式训练
1.把长为12厘米的细铁丝截成两段,各自围成一个正三角形,那么这两个正三角形面积之和的最小值是()
A.323cm2B.4cm2C.32cm2D.23cm2
解析:设一个三角形的边长为xcm,则另一个三角形的边长为(4-x)cm,两个三角形的面积和为S,则S=34x2+34(4-x)2=32(x-2)2+23≥23.当x=2时,S取最小值23cm2.故选D.
答案:D
2.某超市为了获取最大利润做了一番试验,若将进货单价为8元的商品按10元一件的价格出售时,每天可销售60件,现在采用提高销售价格减少进货量的办法增加利润,已知这种商品每涨1元,其销售量就要减少10件,问该商品售价定为多少时才能赚取最大利润,并求出最大利润.
分析:设未知数,引进数学符号,建立函数关系式,再研究函数关系式的定义域,并结合问题的实际意义作出回答.利润=(售价-进价)×销售量.
解:设商品售价定为x元时,利润为y元,则y=(x-8)[60-(x-10)10]
=-10[(x-12)2-16]=-10(x-12)2+160(10<x<16),
当且仅当x=12时,y有最大值160元,
即售价定为12元时可获最大利润160元.
知能训练
课本本节练习5.
【补充练习】
某厂2013年拟举行促销活动,经调查测算,该厂产品的年销售量(即该厂的年产量)x万件与去年促销费m(万元)(m≥0)满足x=3-2m+1.已知2013年生产的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).
(1)将2013年该产品的利润y万元表示为年促销费m(万元)的函数;
(2)求2013年该产品利润的最大值,此时促销费为多少万元?
分析:(1)年利润=销售价格×年销售量-固定投入-促销费-再投入,销售价格=1.5×每件产品平均成本;(2)利用单调法求函数的最大值.
解:(1)每件产品的成本为8+16xx元,故2013年的利润为
y=1.5×8+16xx×x-(8+16x+m)=4+8x-m=4+83-2m+1-m=28-16m+1-m(万元)(m≥0).
(2)可以证明当0≤m≤3时,函数y=28-16m+1-m是增函数,当m>3时,函数y=28-16m+1-m是减函数,所以当m=3时,函数y=28-16m+1-m取最大值21万元.
拓展提升
问题:求函数y=1x2+x+1的最大值.
解:(方法一)利用计算机软件画出函数的图象,如图8所示,
故图象最高点是-12,43.
图8
则函数y=1x2+x+1的最大值是43.
(方法二)函数的定义域是R,
可以证明当x<-12时,函数y=1x2+x+1是增函数;
当x≥-12时,函数y=1x2+x+1是减函数.
则当x=-12时,函数y=1x2+x+1取最大值43,
即函数y=1x2+x+1的最大值是43.
(方法三)函数的定义域是R,
由y=1x2+x+1,得yx2+yx+y-1=0.
∵x∈R,∴关于x的方程yx2+yx+y-1=0必有实数根.
当y=0时,关于x的方程yx2+yx+y-1=0无实数根,即y=0不属于函数的值域.
当y≠0时,则关于x的方程yx2+yx+y-1=0是一元二次方程,
则有Δ=(-y)2-4×y(y-1)≥0.∴0<y≤43.
∴函数y=1x2+x+1的最大值是43.
点评:方法三称为判别式法,形如函数y=ax2+bx+cdx2+ex+f(d≠0),当函数的定义域是R(此时e2-4df<0)时,常用判别式法求最值,其步骤是:①把y看成常数,将函数解析式整理为关于x的方程的形式mx2+nx+k=0;②分类讨论m=0是否符合题意;③当m≠0时,关于x的方程mx2+nx+k=0中有x∈R,则此一元二次方程必有实数根,得n2-4mk≥0,得关于y的不等式,解不等式组n2-4mk≥0,m≠0.此不等式组的解集与②中y的值取并集得函数的值域,从而得函数的最大值和最小值.
课堂小结
本节课学习了:(1)函数的最值;(2)求函数最值的方法:①图象法,②单调法,③判别式法;(3)求函数最值时,要注意函数的定义域.
作业
课本习题1.3A组5,6.
设计感想
为达到本节课的教学目标,突出重点,突破难点,教学上采取了以下措施:
1.在探索概念阶段,让学生经历从直观到抽象、从特殊到一般、从感性到理性的认知过程,完成对函数最值定义的三次认识,使得学生对概念的认识不断深入.
2.在应用概念阶段,通过对证明过程的分析,帮助学生掌握用图象和单调法求函数最值的方法和步骤.
备课资料
基本初等函数的最值
1.正比例函数:y=kx(k≠0)在定义域R上不存在最值.在闭区间[a,b]上存在最值,当k>0时,函数y=kx的最大值为f(b)=kb,最小值为f(a)=ka;当k<0时,函数y=kx的最大值为f(a)=ka,最小值为f(b)=kb.
2.反比例函数:y=kx(k≠0)在定义域(-∞,0)∪(0,+∞)上不存在最值.在闭区间[a,b](ab>0)上存在最值,当k>0时,函数y=kx的最大值为f(a)=ka,最小值为f(b)=kb;当k<0时,函数y=kx的最大值为f(b)=kb,最小值为f(a)=ka.
3.一次函数:y=kx+b(k≠0)在定义域R上不存在最值.在闭区间[m,n]上存在最值,当k>0时,函数y=kx+b的最大值为f(n)=kn+b,最小值为f(m)=km+b;当k<0时,函数y=kx+b的最大值为f(m)=km+b,最小值为f(n)=kn+b.
4.二次函数:y=ax2+bx+c(a≠0):
当a>0时,函数y=ax2+bx+c在定义域R上有最小值f-b2a=-b2+4ac4a,无最大值;
当a<0时,函数y=ax2+bx+c在定义域R上有最大值f-b2a=-b2+4ac4a,无最小值.
二次函数在闭区间上的最值问题是高考考查的重点和热点内容之一.二次函数f(x)=ax2+bx+c(a>0)在闭区间[p,q]上的最值可能出现以下三种情况:
(1)若-b2a<p,则f(x)在区间[p,q]上是增函数,则f(x)min=f(p),f(x)max=f(q).
(2)若p≤-b2a≤q,则f(x)min=f-b2a,此时f(x)的最大值视对称轴与区间端点的远近而定:
①当p≤-b2a<p+q2时,则f(x)max=f(q);
②当p+q2=-b2a时,则f(x)max=f(p)=f(q);
③当p+q2<-b2a<q时,则f(x)max=f(p).
(3)若-b2a≥q,则f(x)在区间[p,q]上是减函数,则f(x)min=f(q),f(x)max=f(p).
由此可见,当-b2a∈[p,q]时,二次函数f(x)=ax2+bx+c(a>0)在闭区间[p,q]上的最大值是f(p)和f(q)中的最大值,最小值是f-b2a;当-b2a[p,q]时,二次函数f(x)=ax2+bx+c(a>0)在闭区间[p,q]上的最大值是f(p)和f(q)中的最大值,最小值是f(p)和f(q)中的最小值.

精选阅读

导数与函数的单调性


3.1.1导数与函数的单调性
教学过程:
一.创设情景
函数是客观描述世界变化规律的重要数学模型,研究函数时,了解函数的赠与减、增减的快与慢以及函数的最大值或最小值等性质是非常重要的.通过研究函数的这些性质,我们可以对数量的变化规律有一个基本的了解.下面,我们运用导数研究函数的性质,从中体会导数在研究函数中的作用。
二.新课讲授
1.问题:图3.3-1(1),它表示跳水运动中高度随时间变化的函数的图像,图3.3-1(2)表示高台跳水运动员的速度随时间变化的函数的图像.
运动员从起跳到最高点,以及从最高点到入水这两段时间的运动状态有什么区别?
通过观察图像,我们可以发现:
(1)运动员从起点到最高点,离水面的高度随时间的增加而增加,即是增函数.相应地,.
(2)从最高点到入水,运动员离水面的高度随时间的增加而减少,即是减函数.相应地,.
2.函数的单调性与导数的关系
观察下面函数的图像,探讨函数的单调性与其导数正负的关系.

如图3.3-3,导数表示函数在点处的切线的斜率.

(图3.3-3)

在处,,切线是“左下右上”式的,这时,函数在附近单调递增;
在处,,切线是“左上右下”式的,这时,函数在附近单调递减.
结论:函数的单调性与导数的关系
在某个区间内,如果,那么函数在这个区间内单调递增;如果,那么函数在这个区间内单调递减.
说明:(1)特别的,如果,那么函数在这个区间内是常函数.
3.求解函数单调区间的步骤:
(1)确定函数的定义域;
(2)求导数;
(3)解不等式,解集在定义域内的部分为增区间;
(4)解不等式,解集在定义域内的部分为减区间.
三.典例分析
例1.已知导函数的下列信息:
当时,;
当,或时,;
当,或时,
试画出函数图像的大致形状.
解:当时,,可知在此区间内单调递增;
当,或时,;可知在此区间内单调递减;
当,或时,,这两点比较特殊,我们把它称为“临界点”.
综上,函数图像的大致形状如图3.3-4所示.
例2.判断下列函数的单调性,并求出单调区间.
(1);(2)
(3);(4)
解:(1)因为,所以,
因此,在R上单调递增,如图3.3-5(1)所示.

(2)因为,所以,
当,即时,函数单调递增;
当,即时,函数单调递减;
函数的图像如图3.3-5(2)所示.
(3)因为,所以,
因此,函数在单调递减,如图3.3-5(3)所示.
(4)因为,所以.
当,即时,函数;
当,即时,函数;
函数的图像如图3.3-5(4)所示.
注:(3)、(4)生练

例3.如图3.3-6,水以常速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器中,请分别找出与各容器对应的水的高度与时间的函数关系图像.

分析:以容器(2)为例,由于容器上细下粗,所以水以常速注入时,开始阶段高度增加得慢,以后高度增加得越来越快.反映在图像上,(A)符合上述变化情况.同理可知其它三种容器的情况.
解:
思考:例3表明,通过函数图像,不仅可以看出函数的增减,还可以看出其变化的快慢.结合图像,你能从导数的角度解释变化快慢的情况吗?
一般的,如果一个函数在某一范围内导数的绝对值较大,那么函数在这个范围内变化的快,这时,函数的图像就比较“陡峭”;反之,函数的图像就“平缓”一些.
如图3.3-7所示,函数在或内的图像“陡峭”,
在或内的图像“平缓”.
例4.求证:函数在区间内是减函数.
证明:因为
当即时,,所以函数在区间内是减函数.
说明:证明可导函数在内的单调性步骤:
(1)求导函数;
(2)判断在内的符号;
(3)做出结论:为增函数,为减函数.
例5.已知函数在区间上是增函数,求实数的取值范围.
解:,因为在区间上是增函数,所以对恒成立,即对恒成立,解之得:
所以实数的取值范围为.
说明:已知函数的单调性求参数的取值范围是一种常见的题型,常利用导数与函数单调性关系:即“若函数单调递增,则;若函数单调递减,则”来求解,注意此时公式中的等号不能省略,否则漏解.
例6.已知函数y=x+,试讨论出此函数的单调区间.
解:y′=(x+)′
=1-1x-2=
令>0.
解得x>1或x<-1.
∴y=x+的单调增区间是(-∞,-1)和(1,+∞).
令<0,解得-1<x<0或0<x<1.
∴y=x+的单调减区间是(-1,0)和(0,1)
四.课堂练习
1.求下列函数的单调区间
1.f(x)=2x3-6x2+72.f(x)=+2x3.f(x)=sinx,x4.y=xlnx
2.课本练习
五.回顾总结
(1)函数的单调性与导数的关系
(2)求解函数单调区间
(3)证明可导函数在内的单调性

函数单调性


年级高一

学科数学

课题

函数的单调性(2)

授课时间

撰写人

刘报

学习重点

函数单调性证明

学习难点

函数单调性应用及证明

学习目标

1.理解函数的最大(小)值及其几何意义;2.学会运用函数图象理解和研究函数的性质.3.函数单调性证明

教学过程

一自主学习

1.指出函数的单调区间及单调性,并进行证明.2.函数的最小值为,的最大值为.

3:先完成下表,

函数

最高点

最低点

,

,

4设函数y=f(x)的定义域为I,如果存在实数M满足:对于任意的x∈I,都有f(x)≤M;存在x0∈I,使得f(x0)=M.那么,称M是函数y=f(x)的。

仿照最大值定义,给出最小值(MinimumValue)的定义.

二师生互动

例1一枚炮弹发射,炮弹距地面高度h(米)与时间t(秒)的变化规律是,那么什么时刻距离地面的高度达到最大?最大是多少?

变式:经过多少秒后炮弹落地?

试试:一段竹篱笆长20米,围成一面靠墙的矩形菜地,如何设计使菜地面积最大?

例2求在区间[3,6]上的最大值和最小值.

变式:求的最大值和最小值.

练一练函数的最小值为,最大值为.如果是呢?

三巩固练习

1.函数的最大值是().A.-1B.0C.1D.22.函数的最小值是().A.0B.-1C.2D.33.函数的最小值是().A.0B.2C.4D.4.已知函数的图象关于y轴对称,且在区间上,当时,有最小值

3,则在区间上,当时,有最值为.5.函数的最大值为,最小值为.6.用多种方法求函数最小值.

四课后反思

五课后巩固练习

1.作出函数的简图,研究当自变量x在下列范围内取值时的最大值与最小值.(1);(2);(3).2.已知函数在区间是增函数,则实数a的取值范围

函数单调性与奇偶性


函数单调性与奇偶性

教学目标
1.了解函数的单调性和奇偶性的概念,掌握有关证明和判断的基本方法.
(1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念.
(2)能从数和形两个角度认识单调性和奇偶性.
(3)能借助图象判断一些函数的单调性,能利用定义证明某些函数的单调性;能用定义判断某些函数的奇偶性,并能利用奇偶性简化一些函数图象的绘制过程.
2.通过函数单调性的证明,提高学生在代数方面的推理论证能力;通过函数奇偶性概念的形成过程,培养学生的观察,归纳,抽象的能力,同时渗透数形结合,从特殊到一般的数学思想.
3.通过对函数单调性和奇偶性的理论研究,增学生对数学美的体验,培养乐于求索的精神,形成科学,严谨的研究态度.

教学建议

一、知识结构

(1)函数单调性的概念。包括增函数、减函数的定义,单调区间的概念函数的单调性的判定方法,函数单调性与函数图像的关系.

(2)函数奇偶性的概念。包括奇函数、偶函数的定义,函数奇偶性的判定方法,奇函数、偶函数的图像.

二、重点难点分析

(1)本节教学的重点是函数的单调性,奇偶性概念的形成与认识.教学的难点是领悟函数单调性,奇偶性的本质,掌握单调性的证明.

(2)函数的单调性这一性质学生在初中所学函数中曾经了解过,但只是从图象上直观观察图象的上升与下降,而现在要求把它上升到理论的高度,用准确的数学语言去刻画它.这种由形到数的翻译,从直观到抽象的转变对高一的学生来说是比较困难的,因此要在概念的形成上重点下功夫.单调性的证明是学生在函数内容中首次接触到的代数论证内容,学生在代数论证推理方面的能力是比较弱的,许多学生甚至还搞不清什么是代数证明,也没有意识到它的重要性,所以单调性的证明自然就是教学中的难点.

三、教法建议

(1)函数单调性概念引入时,可以先从学生熟悉的一次函数,,二次函数.反比例函数图象出发,回忆图象的增减性,从这点感性认识出发,通过问题逐步向抽象的定义靠拢.如可以设计这样的问题:图象怎么就升上去了?可以从点的坐标的角度,也可以从自变量与函数值的关系的角度来解释,引导学生发现自变量与函数值的的变化规律,再把这种规律用数学语言表示出来.在这个过程中对一些关键的词语(某个区间,任意,都有)的理解与必要性的认识就可以融入其中,将概念的形成与认识结合起来.

(2)函数单调性证明的步骤是严格规定的,要让学生按照步骤去做,就必须让他们明确每一步的必要性,每一步的目的,特别是在第三步变形时,让学生明确变换的目标,到什么程度就可以断号,在例题的选择上应有不同的变换目标为选题的标准,以便帮助学生总结规律.
函数的奇偶性概念引入时,可设计一个课件,以的图象为例,让自变量互为相反数,观察对应的函数值的变化规律,先从具体数值开始,逐渐让在数轴上动起来,观察任意性,再让学生把看到的用数学表达式写出来.经历了这样的过程,再得到等式时,就比较容易体会它代表的是无数多个等式,是个恒等式.关于定义域关于原点对称的问题,也可借助课件将函数图象进行多次改动,帮助学生发现定义域的对称性,同时还可以借助图象(如)说明定义域关于原点对称只是函数具备奇偶性的必要条件而不是充分条件.

函数的奇偶性教学设计方案

教学目标

1.使学生了解奇偶性的概念,回会利用定义判断简单函数的奇偶性.

2.在奇偶性概念形成过程中,培养学生的观察,归纳能力,同时渗透数形结合和特殊到一般的思想方法.

3.在学生感受数学美的同时,激发学习的兴趣,培养学生乐于求索的精神.

教学重点,难点

重点是奇偶性概念的形成与函数奇偶性的判断

难点是对概念的认识

教学用具

投影仪,计算机

教学方法

引导发现法

教学过程

一.引入新课

前面我们已经研究了函数的单调性,它是反映函数在某一个区间上函数值随自变量变化而变化的性质,今天我们继续研究函数的另一个性质.从什么角度呢?将从对称的角度来研究函数的性质.

对称我们大家都很熟悉,在生活中有很多对称,在数学中也能发现很多对称的问题,大家回忆一下在我们所学的内容中,特别是函数中有没有对称问题呢?

(学生可能会举出一些数值上的对称问题,等,也可能会举出一些图象的对称问题,此时教师可以引导学生把函数具体化,如和等.)

结合图象提出这些对称是我们在初中研究的关于轴对称和关于原点对称问题,而我们还曾研究过关于轴对称的问题,你们举的例子中还没有这样的,能举出一个函数图象关于轴对称的吗?

学生经过思考,能找出原因,由于函数是映射,一个只能对一个,而不能有两个不同的,故函数的图象不可能关于轴对称.最终提出我们今天将重点研究图象关于轴对称和关于原点对称的问题,从形的特征中找出它们在数值上的规律.

二.讲解新课

2.函数的奇偶性(板书)

教师从刚才的图象中选出,用计算机打出,指出这是关于轴对称的图象,然后问学生初中是怎样判断图象关于轴对称呢?(由学生回答,是利用图象的翻折后重合来判定)此时教师明确提出研究方向:今天我们将从数值角度研究图象的这种特征体现在自变量与函数值之间有何规律?

学生开始可能只会用语言去描述:自变量互为相反数,函数值相等.教师可引导学生先把它们具体化,再用数学符号表示.(借助课件演示令比较得出等式,再令,得到,详见课件的使用)进而再提出会不会在定义域内存在,使与不等呢?(可用课件帮助演示让动起来观察,发现结论,这样的是不存在的)

从这个结论中就可以发现对定义域内任意一个,都有成立.最后让学生用完整的语言给出定义,不准确的地方教师予以提示或调整.

(1)偶函数的定义:如果对于函数的定义域内任意一个,都有,那么就叫做偶函数.(板书)

(给出定义后可让学生举几个例子,如等以检验一下对概念的初步认识)

提出新问题:函数图象关于原点对称,它的自变量与函数值之间的数值规律是什么呢?(同时打出或的图象让学生观察研究)

学生可类比刚才的方法,很快得出结论,再让学生给出奇函数的定义.

(2)奇函数的定义:如果对于函数的定义域内任意一个,都有,那么就叫做奇函数.(板书)

(由于在定义形成时已经有了一定的认识,故可以先作判断,在判断中再加深认识)

例1.判断下列函数的奇偶性(板书)

(1);(2);

(3);;

(5);(6).

(要求学生口答,选出1-2个题说过程)

解:(1)是奇函数.(2)是偶函数.

(3),是偶函数.

前三个题做完,教师做一次小结,判断奇偶性,只需验证与之间的关系,但对你们的回答我不满意,因为题目要求是判断奇偶性而你们只回答了一半,另一半没有作答,以第(1)为例,说明怎样解决它不是偶函数的问题呢?

学生经过思考可以解决问题,指出只要举出一个反例说明与不等.如即可说明它不是偶函数.(从这个问题的解决中让学生再次认识到定义中任意性的重要)

从(4)题开始,学生的答案会有不同,可以让学生先讨论,教师再做评述.即第(4)题中表面成立的=不能经受任意性的考验,当时,由于,故不存在,更谈不上与相等了,由于任意性被破坏,所以它不能是奇偶性.

教师由此引导学生,通过刚才这个题目,你发现在判断中需要注意些什么?(若学生发现不了定义域的特征,教师可再从定义启发,在定义域中有1,就必有-1,有-2,就必有2,有,就必有,有就必有,从而发现定义域应关于原点对称,再提出定义域关于原点对称是函数具有奇偶性的什么条件?

可以用(6)辅助说明充分性不成立,用(5)说明必要性成立,得出结论.

(3)定义域关于原点对称是函数具有奇偶性的必要但不充分条件.(板书)

由学生小结判断奇偶性的步骤之后,教师再提出新的问题:在刚才的几个函数中有是奇函数不是偶函数,有是偶函数不是奇函数,也有既不是奇函数也不是偶函数,那么有没有这样的函数,它既是奇函数也是偶函数呢?若有,举例说明.

经学生思考,可找到函数.然后继续提问:是不是具备这样性质的函数的解析式都只能写成这样呢?能证明吗?

例2.已知函数既是奇函数也是偶函数,求证:.(板书)(试由学生来完成)

证明:既是奇函数也是偶函数,

=,且,

=.

,即.

证后,教师请学生记住结论的同时,追问这样的函数应有多少个呢?学生开始可能认为只有一个,经教师提示可发现,只是解析式的特征,若改变函数的定义域,如,,,,它们显然是不同的函数,但它们都是既是奇函数也是偶函数.由上可知函数按其是否具有奇偶性可分为四类

(4)函数按其是否具有奇偶性可分为四类:(板书)

例3.判断下列函数的奇偶性(板书)

(1);(2);(3).

由学生回答,不完整之处教师补充.

解:(1)当时,为奇函数,当时,既不是奇函数也不是偶函数.

(2)当时,既是奇函数也是偶函数,当时,是偶函数.

(3)当时,于是,

当时,,于是=,

综上是奇函数.

教师小结(1)(2)注意分类讨论的使用,(3)是分段函数,当检验,并不能说明具备奇偶性,因为奇偶性是对函数整个定义域内性质的刻画,因此必须均有成立,二者缺一不可.

三.小结

1.奇偶性的概念

2.判断中注意的问题

四.作业略

五.板书设计

2.函数的奇偶性例1.例3.

(1)偶函数定义

(2)奇函数定义

(3)定义域关于原点对称是函数例2.小结

具备奇偶性的必要条件

(4)函数按奇偶性分类分四类

探究活动

(1)定义域为的任意函数都可以表示成一个奇函数和一个偶函数的和,你能试证明之吗?

(2)判断函数在上的单调性,并加以证明.

在此基础上试利用这个函数的单调性解决下面的问题:

设为三角形的三条边,求证:.

函数的单调性


一名合格的教师要充分考虑学习的趣味性,作为高中教师就需要提前准备好适合自己的教案。教案可以让学生能够在课堂积极的参与互动,帮助高中教师有计划有步骤有质量的完成教学任务。你知道如何去写好一份优秀的高中教案呢?为了让您在使用时更加简单方便,下面是小编整理的“函数的单调性”,仅供您在工作和学习中参考。

数学必修1:函数的单调性
教学目标:理解函数的单调性
教学重点:函数单调性的概念和判定
教学过程:
1、过对函数、、及的观察提出有关函数单调性的问题.
2、阅读教材明确单调递增、单调递减和单调区间的概念
3、
例1、如图是定义在闭区间[-5,5]上的函数的图象,根据图象说出的单调区间,及在每一单调区间上,是增函数还是减函数。
解:函数的单调区间有,
其中在区间,
上是减函数,在区间上是
增函数。
注意:1单调区间的书写
2各单调区间之间的关系
以上是通过观察图象的方法来说明函数在某一区间的单调性,是一种比较粗略的方法,那么,对于任给函数,我们怎样根据增减函数的定义来证明它的单调性呢?
例2、证明函数在R上是增函数。
证明:设是R上的任意两个实数,且,则

所以,在R上是增函数。
例3、证明函数在上是减函数。
证明:设是上的任意两个实数,且,则
由,得,且
于是
所以,在上是减函数。
利用定义证明函数单调性的步骤:
(1)取值
(2)计算、
(3)对比符号
(4)结论

课堂练习:教材第50页练习A、B
小结:本节课学习了单调递增、单调递减和单调区间的概念及判定方法
课后作业:第57页习题2-1A第5题