88教案网

你的位置: 教案 > 高中教案 > 导航 > 简单的三角恒等变换

小学三角形教案

发表时间:2020-11-12

简单的三角恒等变换。

老师会对课本中的主要教学内容整理到教案课件中,大家静下心来写教案课件了。只有规划好了教案课件新的工作计划,才能在以后有序的工作!有没有好的范文是适合教案课件?下面是由小编为大家整理的“简单的三角恒等变换”,欢迎大家阅读,希望对大家有所帮助。

3.2简单的三角恒等变换(三)
教学目标
(一)知识与技能目标
熟练掌握三角公式及其变形公式.
(二)过程与能力目标
抓住角、函数式得特点,灵活运用三角公式解决一些实际问题.
(三)情感与态度目标
培养学生观察、分析、解决问题的能力.
教学重点
和、差、倍角公式的灵活应用.
教学难点
如何灵活应用和、差、倍角公式的进行三角式化简、求值、证明.
教学过程
例1:教材P141面例4
例1.如图,已知OPQ是半径为1,圆心角为的扇形,C是扇形弧上的动点,ABCD是扇形的内接矩形.记∠COP=a,求当角a取何值时,矩形ABCD的面积最大?并求出这个最大面积.

例2:把一段半径为R的圆木锯成横截面为矩形的木料,怎样锯法能使横截面的面积最大?(分别设边与角为自变量)
解:(1)如图,设矩形长为l,则面积,
所以当且仅当
即时,取得最大值,此时S取得最大值,矩形的宽为
即长、宽相等,矩形为圆内接正方形.
(2)设角为自变量,设对角线与一条边的夹角为,矩形长与宽分别为
、,所以面积.
而,所以,当且仅当时,S取最大值,所以当且仅当即时,S取最大值,此时矩形为内接正方形.
变式:已知半径为1的半圆,PQRS是半圆的内接矩形如图,问P点在什么位置时,矩形的面积最大,并求最大面积时的值.
解:设则
故S四边形PQRS
故为时,

课堂小结
建立函数模型利用三角恒等变换解决实际问题.

课后作业
1.阅读教材P.139到P.142;2.《习案》作业三十五.

精选阅读

高二数学下册《三角恒等变换》复习学案


高二数学下册《三角恒等变换》复习学案

三角恒等变换知识点:

知识结构:

1.两角和与差的正弦、余弦和正切公式

重点:通过探索和讨论交流,导出两角差与和的三角函数的十一个公式,并了解它们的内在联系。

难点:两角差的余弦公式的探索和证明。

2.简单的三角恒等变换

重点:掌握三角变换的内容、思路和方法,体会三角变换的特点.

难点:公式的灵活应用.

三角函数几点说明:

1.对弧长公式只要求了解,会进行简单应用,不必在应用方面加深.

2.用同角三角函数基本关系证明三角恒等式和求值计算,熟练配角和sin和cos的计算.

3.已知三角函数值求角问题,达到课本要求即可,不必拓展.

4.熟练掌握函数y=Asin(wx+j)图象、单调区间、对称轴、对称点、特殊点和最值.

5.积化和差、和差化积、半角公式只作为练习,不要求记忆.

6.两角和与差的正弦、余弦和正切公式

练习题:

1.已知sin2α=-2425,α∈-π4,0,则sinα+cosα=()

A.-15

B.15

C.-75

D.75

解析∵α∈-π4,0,∴cosα0sinα且cosα|sinα|,则sinα+cosα=1+sin2α=1-2425=15.

答案B

2.若sinπ4+α=13,则cosπ2-2α等于()

A.429

B.-429

C.79

D.-79

解析据已知可得cosπ2-2α=sin2α

=-cos2π4+α=-1-2sin2π4+α=-79.

答案D

2015届高考数学教材知识点复习简单的三角恒等变换导学案


【学习目标】
1.掌握二倍角的正弦、余弦、正切公式.
2.能运用两角和与差的正弦、余弦、正切公式以及二倍角的正弦、余弦和正切公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).
预习案
1.二倍角的正弦、余弦、正切公式
(1)sin2α=;(2)cos2α==-1=1-;
(3)tan2α=2tanα1-tan2α(α≠kπ2+π4且α≠kπ+π2).
2.半角公式:(1)sinα2=;(2)cosα2=;
(3)tanα2==sinα1+cosα=1-cosαsinα.
3.二倍角公式不仅限于2α是α的二倍的形式,其他如4α=;α2=;3α=都适用.
4.由cos2α=2cos2α-1=1-2sin2α可得降幂公式:cos2α=;sin2α=;升幂公式cos2α==.
【预习自测】
1.若sin76°=m,用含m的式子表示cos7°为()
A.1+m2B.1-m2C.±1+m2D.1+m2

2.设sin2α=-sinα,α∈(π2,π),则tan2α的值是________.

3.函数f(x)=sin2(2x-π4)的最小正周期是________.

4.已知θ是第三象限的角,且sin4θ+cos4θ=59,那么sin2θ的值为________.

5.已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y=2x上,则cos2θ=()
A.-45B.-35C.35D.45
探究案
题型一:求值
例1.求值:
(1)sin18°cos36°;(2)2cos10°-sin20°cos20°

(3)sin10°sin50°sin70°.(4)1+cos20°2sin20°-2sin10°tan80°

例2.(1)已知cos(π4-α)=1213,α∈(0,π4),则cos2αsinπ4+α=________.
(2)已知cos(π4-α)=35,-3π2α-π2.则cos(2α-π4)=

(3)若cos(π4+x)=35,1712π<x<74π,求sin2x+2sin2x1-tanx的值.

题型二化简
例3.(1)已知函数f(x)=1-x1+x.若α∈(π2,π),则f(cosα)+f(-cosα)可化简为________.

(2)化简sin2αsin2β+cos2αcos2β-12cos2αcos2β.

(3)已知f(x)=1+cosx-sinx1-sinx-cosx+1-cosx-sinx1-sinx+cosx且x≠2kπ+π2,k∈Z,且x≠kπ+π,k∈Z.
①化简f(x);

②是否存在x,使得tanx2f(x)与1+tan2x2sinx相等?若存在,求x的值;若不存在,请说明理由.

题型三:证明
例4.已知sin(2α+β)=2sinβ,求证:tan(α+β)=3tanα.

拓展:(1)求证:tan2x+1tan2x=23+cos4x1-cos4x
(2)若tan2α=2tan2β+1,求证:sin2β=2sin2α-1.

我的学习总结:
(1)我对知识的总结.
(2)我对数学思想及方法的总结

高二数学下册《三角恒等变换》知识点


高二数学下册《三角恒等变换》知识点

知识结构:

1.两角和与差的正弦、余弦和正切公式

重点:通过探索和讨论交流,导出两角差与和的三角函数的十一个公式,并了解它们的内在联系。

难点:两角差的余弦公式的探索和证明。

2.简单的三角恒等变换

重点:掌握三角变换的内容、思路和方法,体会三角变换的特点

难点:公式的灵活应用

三角函数几点说明:

1.对弧长公式只要求了解,会进行简单应用,不必在应用方面加深.

2.用同角三角函数基本关系证明三角恒等式和求值计算,熟练配角和sin和cos的计算.

3.已知三角函数值求角问题,达到课本要求即可,不必拓展.

4.熟练掌握函数y=Asin(wx+j)图象、单调区间、对称轴、对称点、特殊点和最值.

5.积化和差、和差化积、半角公式只作为练习,不要求记忆.

6.两角和与差的正弦、余弦和正切公式

练习题:

1.已知sin2α=-2425,α∈-π4,0,则sinα+cosα=()

A.-15

B.15

C.-75

D.75

解析∵α∈-π4,0,∴cosα0sinα且cosα|sinα|,则sinα+cosα=1+sin2α=1-2425=15.

答案B

2.若sinπ4+α=13,则cosπ2-2α等于()

A.429

B.-429

C.79

D.-79

解析据已知可得cosπ2-2α=sin2α

=-cos2π4+α=-1-2sin2π4+α=-79.

答案D

高考数学理科一轮复习简单的三角恒等变换学案(附答案)


学案22简单的三角恒等变换
导学目标:1.能推出二倍角的正弦、余弦、正切公式,并熟练应用.2.能运用两角和与差的三角公式进行简单的恒等变换.
自主梳理
1.二倍角的正弦、余弦、正切公式
(1)sin2α=________________;
(2)cos2α=______________=________________-1=1-________________;
(3)tan2α=________________________(α≠kπ2+π4且α≠kπ+π2).
2.公式的逆向变换及有关变形
(1)sinαcosα=____________________cosα=sin2α2sinα;
(2)降幂公式:sin2α=________________,cos2α=________________;
升幂公式:1+cosα=________________,1-cosα=_____________;
变形:1±sin2α=sin2α+cos2α±2sinαcosα=________________________.
自我检测
1.(2010陕西)函数f(x)=2sinxcosx是()
A.最小正周期为2π的奇函数
B.最小正周期为2π的偶函数
C.最小正周期为π的奇函数
D.最小正周期为π的偶函数
2.函数f(x)=cos2x-2sinx的最小值和最大值分别为()
A.-3,1B.-2,2
C.-3,32D.-2,32
3.函数f(x)=sinxcosx的最小值是()
A.-1B.-12C.12D.1
4.(2011清远月考)已知A、B为直角三角形的两个锐角,则sinAsinB()
A.有最大值12,最小值0
B.有最小值12,无最大值
C.既无最大值也无最小值
D.有最大值12,无最小值
探究点一三角函数式的化简
例1求函数y=7-4sinxcosx+4cos2x-4cos4x的最大值和最小值.

变式迁移1(2011泰安模拟)已知函数f(x)=4cos4x-2cos2x-1sinπ4+xsinπ4-x.
(1)求f-11π12的值;
(2)当x∈0,π4时,求g(x)=12f(x)+sin2x的最大值和最小值.

探究点二三角函数式的求值
例2已知sin(π4+2α)sin(π4-2α)=14,α∈(π4,π2),求2sin2α+tanα-1tanα-1的值.

变式迁移2(1)已知α是第一象限角,且cosα=513,求sinα+π4cos2α+4π的值.
(2)已知cos(α+π4)=35,π2≤α3π2,求cos(2α+π4)的值.

探究点三三角恒等式的证明
例3(2011苏北四市模拟)已知sin(2α+β)=3sinβ,设tanα=x,tanβ=y,记y=f(x).
(1)求证:tan(α+β)=2tanα;
(2)求f(x)的解析表达式;
(3)若角α是一个三角形的最小内角,试求函数f(x)的值域.

变式迁移3求证:sin2xsinx+cosx-1sinx-cosx+1
=1+cosxsinx.

转化与化归思想的应用
例(12分)(2010江西)已知函数f(x)=
1+1tanxsin2x+msinx+π4sinx-π4.
(1)当m=0时,求f(x)在区间π8,3π4上的取值范围;
(2)当tanα=2时,f(α)=35,求m的值.
【答题模板】
解(1)当m=0时,f(x)=1+cosxsinxsin2x
=sin2x+sinxcosx=1-cos2x+sin2x2
=122sin2x-π4+1,[3分]
由已知x∈π8,3π4,得2x-π4∈0,5π4,[4分]
所以sin2x-π4∈-22,1,[5分]
从而得f(x)的值域为0,1+22.[6分]
(2)f(x)=sin2x+sinxcosx-m2cos2x
=1-cos2x2+12sin2x-m2cos2x
=12[sin2x-(1+m)cos2x]+12,[8分]
由tanα=2,得sin2α=2sinαcosαsin2α+cos2α=2tanα1+tan2α=45,
cos2α=cos2α-sin2αcos2α+sin2α=1-tan2α1+tan2α=-35.[10分]
所以35=1245+351+m+12,[11分]
解得m=-2.[12分]
【突破思维障碍】
三角函数式的化简是指利用诱导公式、同角基本关系式、和与差的三角函数公式、二倍角公式等,将较复杂的三角函数式化得更简洁、更清楚地显示出式子的结果.化简三角函数式的基本要求是:(1)能求出数值的要求出数值;(2)使三角函数式的项数最少、次数最低、角与函数的种类最少;(3)分式中的分母尽量不含根式等.
1.求值中主要有三类求值问题:
(1)“给角求值”:一般所给出的角都是非特殊角,从表面来看是很难的,但仔细观察非特殊角与特殊角总有一定关系,解题时,要利用观察得到的关系,结合公式转化为特殊角并且消除非特殊角的三角函数而得解.
(2)“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.
(3)“给值求角”:实质是转化为“给值求值”,关键也是变角,把所求角用含已知角的式子表示,由所得的函数值结合该函数的单调区间求得角.
2.三角恒等变换的常用方法、技巧和原则:
(1)在化简求值和证明时常用如下方法:切割化弦法,升幂降幂法,和积互化法,辅助元素法,“1”的代换法等.
(2)常用的拆角、拼角技巧如:2α=(α+β)+(α-β),α=(α+β)-β,α=(α-β)+β,α+β2=α-β2+β-α2,α2是α4的二倍角等.
(3)化繁为简:变复角为单角,变不同角为同角,化非同名函数为同名函数,化高次为低次,化多项式为单项式,化无理式为有理式.
消除差异:消除已知与未知、条件与结论、左端与右端以及各项的次数、角、函数名称、结构等方面的差异.
(满分:75分)
一、选择题(每小题5分,共25分)
1.(2011平顶山月考)已知0απ,3sin2α=sinα,则cos(α-π)等于()
A.13B.-13C.16D.-16
2.已知tan(α+β)=25,tanβ-π4=14,那么tanα+π4等于()
A.1318B.1322C.322D.16
3.(2011石家庄模拟)已知cos2α=12(其中α∈-π4,0),则sinα的值为()
A.12B.-12C.32D.-32
4.若f(x)=2tanx-2sin2x2-1sinx2cosx2,则fπ12的值为()
A.-433B.8
C.43D.-43
5.(2010福建厦门外国语学校高三第二次月考)在△ABC中,若cos2B+3cos(A+C)+2=0,则sinB的值是()
A.12B.22C.32D.1
题号12345
答案
二、填空题(每小题4分,共12分)
6.(2010全国Ⅰ)已知α为第二象限的角,且sinα=35,则tan2α=________.
7.函数y=2cos2x+sin2x的最小值是________.
8.若cos2αsinα-π4=-22,则cosα+sinα的值为________.
三、解答题(共38分)
9.(12分)化简:(1)cos20°cos40°cos60°cos80°;
(2)3-4cos2α+cos4α3+4cos2α+cos4α.

10.(12分)(2011南京模拟)设函数f(x)=3sinxcosx-cosxsinπ2+x-12.
(1)求f(x)的最小正周期;
(2)当∈0,π2时,求函数f(x)的最大值和最小值.

11.(14分)(2010北京)已知函数f(x)=2cos2x+sin2x-4cosx.
(1)求f(π3)的值;
(2)求f(x)的最大值和最小值.

答案自主梳理
1.(1)2sinαcosα(2)cos2α-sin2α2cos2α2sin2α
(3)2tanα1-tan2α2.(1)12sin2α(2)1-cos2α21+cos2α22cos2α22sin2α2(sinα±cosα)2
自我检测
1.C2.C3.B4.D
课堂活动区
例1解题导引化简的原则是形式简单,三角函数名称尽量少,次数尽量低,最好不含分母,能求值的尽量求值.本题要充分利用倍角公式进行降幂,利用配方变为复合函数,重视复合函数中间变量的范围是关键.
解y=7-4sinxcosx+4cos2x-4cos4x
=7-2sin2x+4cos2x(1-cos2x)
=7-2sin2x+4cos2xsin2x
=7-2sin2x+sin22x=(1-sin2x)2+6,
由于函数z=(u-1)2+6在[-1,1]中的最大值为zmax=(-1-1)2+6=10,最小值为zmin=(1-1)2+6=6,
故当sin2x=-1时,y取得最大值10,
当sin2x=1时,y取得最小值6.
变式迁移1解(1)f(x)
=1+cos2x2-2cos2x-1sinπ4+xsinπ4-x
=cos22xsinπ4+xcosπ4+x
=2cos22xsinπ2+2x=2cos22xcos2x=2cos2x,
∴f-11π12=2cos-11π6=2cosπ6=3.
(2)g(x)=cos2x+sin2x
=2sin2x+π4.
∵x∈0,π4,∴2x+π4∈π4,3π4,
∴当x=π8时,g(x)max=2,
当x=0时,g(x)min=1.
例2解题导引(1)这类问题一般是先化简再求值;化简后目标更明确;
(2)如果能从已知条件中求出特殊值,应转化为特殊角,可简化运算,对切函数通常化为弦函数.
解由sin(π4+2α)sin(π4-2α)
=sin(π4+2α)cos(π4+2α)
=12sin(π2+4α)=12cos4α=14,
∴cos4α=12,又α∈(π4,π2),故α=5π12,
∴2sin2α+tanα-1tanα-1
=-cos2α+sin2α-cos2αsinαcosα
=-cos2α+-2cos2αsin2α
=-cos5π6-2cos5π6sin5π6=532.
变式迁移2解(1)∵α是第一象限角,cosα=513,
∴sinα=1213.
∴sinα+π4cos2α+4π=22sinα+cosαcos2α
=22sinα+cosαcos2α-sin2α
=22cosα-sinα=22513-1213=-13214.
(2)cos(2α+π4)=cos2αcosπ4-sin2αsinπ4
=22(cos2α-sin2α),
∵π2≤α32π,
∴3π4≤α+π474π.
又cos(α+π4)=350,
故可知32πα+π474π,
∴sin(α+π4)=-45,
从而cos2α=sin(2α+π2)
=2sin(α+π4)cos(α+π4)
=2×(-45)×35=-2425.
sin2α=-cos(2α+π2)
=1-2cos2(α+π4)
=1-2×(35)2=725.
∴cos(2α+π4)=22(cos2α-sin2α)=22×(-2425-725)
=-31250.
例3解题导引本题的关键是第(1)小题的恒等式证明,对于三角恒等式的证明,我们要注意观察、分析条件恒等式与目标恒等式的异同,特别是分析已知和要求的角之间的关系,再分析函数名之间的关系,则容易找到思路.证明三角恒等式的实质就是消除等式两边的差异,有目的地化繁为简,左右归一或变更论证.对于第(2)小题同样要从角的关系入手,利用两角和的正切公式可得关系.第(3)小题则利用基本不等式求解即可.
(1)证明由sin(2α+β)=3sinβ,得sin[(α+β)+α]
=3sin[(α+β)-α],
即sin(α+β)cosα+cos(α+β)sinα=3sin(α+β)cosα-3cos(α+β)sinα,
∴sin(α+β)cosα=2cos(α+β)sinα,
∴tan(α+β)=2tanα.
(2)解由(1)得tanα+tanβ1-tanαtanβ=2tanα,即x+y1-xy=2x,
∴y=x1+2x2,即f(x)=x1+2x2.
(3)解∵角α是一个三角形的最小内角,
∴0α≤π3,0x≤3,
设g(x)=2x+1x,则g(x)=2x+1x≥22(当且仅当x=22时取“=”).
故函数f(x)的值域为(0,24].
变式迁移3证明因为左边=
2sinxcosx[sinx+cosx-1][sinx-cosx-1]
=2sinxcosxsin2x-cosx-12
=2sinxcosxsin2x-cos2x+2cosx-1
=2sinxcosx-2cos2x+2cosx=sinx1-cosx
=sinx1+cosx1-cosx1+cosx
=sinx1+cosxsin2x=1+cosxsinx=右边.
所以原等式成立.
课后练习区
1.D[∵0απ,3sin2α=sinα,
∴6sinαcosα=sinα,又∵sinα≠0,∴cosα=16,
cos(α-π)=cos(π-α)=-cosα=-16.]
2.C[因为α+π4+β-π4=α+β,
所以α+π4=(α+β)-β-π4.
所以tanα+π4=tanα+β-β-π4
=tanα+β-tanβ-π41+tanα+βtanβ-π4=322.]
3.B[∵12=cos2α=1-2sin2α,
∴sin2α=14.又∵α∈-π4,0,
∴sinα=-12.]
4.B[f(x)=2tanx+1-2sin2x212sinx=2tanx+2cosxsinx
=2sinxcosx=4sin2x
∴fπ12=4sinπ6=8.]
5.C[由cos2B+3cos(A+C)+2=0化简变形,得2cos2B-3cosB+1=0,
∴cosB=12或cosB=1(舍).
∴sinB=32.]
6.-247
解析因为α为第二象限的角,又sinα=35,
所以cosα=-45,tanα=sinαcosα=-34,
所以tan2α=2tanα1-tan2α=-247.
7.1-2
解析∵y=2cos2x+sin2x=sin2x+1+cos2x
=sin2x+cos2x+1=2sin2x+π4+1,
∴当sin(2x+π4)=-1时,函数取得最小值1-2.
8.12
解析∵cos2αsinα-π4=cos2α-sin2α22sinα-cosα
=-2(sinα+cosα)=-22,
∴cosα+sinα=12.
9.解(1)∵sin2α=2sinαcosα,
∴cosα=sin2α2sinα,…………………………………………………………………………(2分)
∴原式=sin40°2sin20°sin80°2sin40°12sin160°2sin80°
=sin180°-20°16sin20°=116.……………………………………………………………………(6分)
(2)原式=3-4cos2α+2cos22α-13+4cos2α+2cos22α-1………………………………………………………(9分)
=1-cos2α21+cos2α2=2sin2α22cos2α2=tan4α.………………………………………………………(12分)
10.解f(x)=3sinxcosx-cosxsinπ2+x-12
=32sin2x-12cos2x-1
=sin2x-π6-1.…………………………………………………………………………(4分)
(1)T=2π2=π,故f(x)的最小正周期为π.…………………………………………………(6分)
(2)因为0≤x≤π2,所以-π6≤2x-π6≤5π6.
所以当2x-π6=π2,即x=π3时,f(x)有最大值0,
……………………………………………………………………………………………(10分)
当2x-π6=-π6,即x=0时,f(x)有最小值-32.
……………………………………………………………………………………………(12分)
11.解(1)f(π3)=2cos2π3+sin2π3-4cosπ3
=-1+34-2=-94.………………………………………………………………………(4分)
(2)f(x)=2(2cos2x-1)+(1-cos2x)-4cosx
=3cos2x-4cosx-1
=3(cosx-23)2-73,x∈R.………………………………………………………………(10分)
因为cosx∈[-1,1],
所以,当cosx=-1时,f(x)取得最大值6;
当cosx=23时,f(x)取得最小值-73.…………………………………………………(14分)