88教案网

你的位置: 教案 > 高中教案 > 导航 > 从速度的倍数到数乘向量

高中向量的教案

发表时间:2020-10-13

从速度的倍数到数乘向量。

一名优秀的教师就要对每一课堂负责,高中教师要准备好教案,这是教师工作中的一部分。教案可以让学生们有一个良好的课堂环境,使高中教师有一个简单易懂的教学思路。关于好的高中教案要怎么样去写呢?下面的内容是小编为大家整理的从速度的倍数到数乘向量,希望能为您提供更多的参考。

从速度的倍数到数乘向量
【学习目标】
1.掌握数与向量积的定义以及运算律,理解其几何意义;
2.了解向量的线性运算及其几何意义;了解两个向量共线的判定定理及性质定理;
3.了解平面向量的基本定理及其意义
【学习重点】理解实数与向量积的定义、运算律,向量共线的判定、性质以及基本定理;
【学习难点】理解向量共线的判定定理和性质定理以及平面向量基本定理
【知识衔接】
1.实数与向量的积;实数λ与向量的积,记作:λ
定义:实数λ与向量的积是一个向量,记作:λ
①▁▁▁▁▁▁▁▁▁▁▁
②▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁。
2.实数与向量的积满足运算定律:
结合律:
第一分配律:
第二分配律:
3.向量与非零向量共线的充要条件是:▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁.
【学习过程】
1.思考:
①.是不是每一个向量都可以分解成两个不共线向量?且分解是唯一?
②.对于平面上两个不共线向量,是不是平面上的所有向量都可以用它们来表示?
2.设,是不共线向量,是平面内任一向量

==λ1==+=λ1+λ2
==λ2
得平面向量基本定理:如果,是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1,λ2使=λ1+λ2.
[注意几个问题]:
①、必须不共线,且它是这一平面内所有向量的一组基底.
②这个定理也叫共面向量定理.
③λ1,λ2是被,,唯一确定的数量.
④同一平面内任一向量都可以表示为两个不共线向量的线性组合.
例题讲评
例4.如图ABCD的两条对角线交于点M,且=,=,
用,表示,,和
解:

相关阅读

§3.1.2空间向量的数乘运算


§3.1.2空间向量的数乘运算
【学情分析】:
本节,空间向量的数乘运算共有4个知识点:空间向量的数乘、共线向量或平行向量、方向向量与共面向量、空间向量的分解定理这一节是全章的重点,有了第一节空间向量加减法的基础,我们就很容易把平面向量及其运算推广到空间向量由于本教材学习空间向量的主要目的是,解决一些立体几何问题,所以例习题的编排也主要是立体几何问题当我们把平面向量推广到空间向量后,很自然地要认识空间向量的两个最基本的子空间:共线向量和共面向量把平行向量基本定理和平面向量基本定理推广到空间然后由这两个定理推出空间直线和平面的向量表达式有了这两个表达式,我们就可以很方便地使用向量工具解决空间的共线和共面问题
【教学目标】:
(1)知识与技能:掌握空间向量的数乘运算
(2)过程与方法:进行类比学习,会用空间向量的运算意义和运算律解决立几问题
(3)情感态度与价值观:会用平面的向量表达式解决共面问题
【教学重点】:
空间向量的数乘运算及运算律
【教学难点】:
用向量解决立几问题
【教学过程设计】:
教学环节教学活动设计意图
一.温故知新1、空间向量的数乘运算,其模长是的倍
(1)当时,与同向
(2)当时,与反向
2、空间向量的数乘分配律和结合律
(1)分配律:
(2)结合律:
3、共线向量或平形向量
类似于平面向量共线,对空间任意两个向量,的充要条件是存在实数,使
以数乘向量及其运算律为突破口,与平面向量进行比较学习,为下面引出共面向量作铺垫。
二.新课讲授1、方向向量
如果为经过已知点A且平行于已知非零向量的直线,对于任意一点O,点P在直线上的充要条件是存在实数t满足等式.其中向量叫做直线的方向向量.
在上取,则上式可化为
证明:对于空间内任意一点O,三点共线
由此可见,可以利用向量之间的关系判断空间任意三点共线,这与利用平面向量判断平面内三点共线是一样的。
回顾平面向量的基本定理:
共面向量定理如果两个向量不共线,那么向量与向量共面的充要条件是存在有序实数组,使得,这就是说,向量可以由不共线的两个向量线性表示。
由此可以得到空间向量共面的证明方法
2、空间平面ABC的向量表示式
空间一点P位于平面ABC内的充要条件是存在有序实数对x,y使得:,或对空间任意一点O有:。

方向向量的引入是为了更好的说明三点共线的向量充要条件,作为特色班,可以根据实际情况补充证明过程。

回顾平面向量的基本定理可以发现,平面中的基底理论成了空间向量关系的一种特殊情况——共面的证明方法,这正是由特殊到一般,由简单到复杂的一种推广,对今后理解空间向量的基底理论也是有一定辐射作用的。

推论:已知空间任意一点O和不共线的三点A,B,C,则点P与点A,B,C共面的充要条件是
证明:略本探究可以在老师的启发下,给学生自己证明,不同层次可以酌情考虑是否证明。
三.典例讲练例1.一直平行四边形ABCD,过平面AC外一点O做射线OA,OB,OC,OD,在四条射线上分别取点E,F,G,H,且使,
求证:E,F,G,H四点共面
分析:欲证E,F,G,H四点共面,只需证明,,共面。下面我们利用,,共面来证明。
证明:因为,所以
,,,,由于四边形ABCD是平行四边形,所以,因此,
由向量共面的充要条件知E,F,G,H四点共面
进一步:请学生思考如何证明:面AC//面EG
四.练习巩固1、如图,已知空间四边形ABCD,连结AC,BD,E,F分别是BC,CD的中点,化简下列各表达式,并标出化简结果的向量。
(1)
(2)
(3)
巩固知识,注意向量运算律的使用.3、略解:(1)
(2)

2、课本P89练习2-3
3、已知E、F、G、H分别是空间四边形ABCD的边AB、BC、CD、DA的中点,用向量方法证明(1)E、F、G、H四点共面(2)AC∥平面EFGH
得EF∥AC,AC平面EFGH,则AC∥平面EFGH
五.小结1.空间向量的数乘运算
2.空间向量的运算意义和运算律解决立几问题
3.平面的向量表达式解决共面问题归纳知识反思方法,特点。
六.作业课本P97习题3.1,A组第1题(3)、(4),第2题
练习与测试:
(基础题)
1.已知空间四边形,连结,设分别是的中点,化简下列各表达式,并标出化简结果向量:
(1);AD
(2);AG
(3).MG
(中等题)
2、在平行六面体ABCD-A1B1C1D1中,向量、、是()
A.有相同起点的向量B.等长向量C.共面向量D.不共面向量
3.直三棱柱ABC—A1B1C1中,若()
A.B.C.D.

第4课时2.2向量的数乘教案


俗话说,磨刀不误砍柴工。作为教师就需要提前准备好适合自己的教案。教案可以让学生们有一个良好的课堂环境,帮助教师有计划有步骤有质量的完成教学任务。教案的内容具体要怎样写呢?为此,小编从网络上为大家精心整理了《第4课时2.2向量的数乘教案》,仅供参考,大家一起来看看吧。

第4课时§2.2向量的数乘
【教学目标】
一、知识与技能
(1)向量数乘定义。
(2)向量数乘的运算律。
二、过程与方法
在对有关数乘问题的解决中理解数乘概念和实际意义.
三、情感、态度与价值观
联系生活实际学习向量的数乘让学生感受数学美
【教学重点难点】向量的数乘的定义和运算律
一、复习:
已知非零向量,求作和.
如图:,
二、讲解新课:
1.实数与向量的积的定义:
一般地,实数与向量的积是一个向量,记作,它的长度与方向规定如下:
(1);
(2)当时,的方向与的方向相同;
当时,的方向与的方向相反;
当时,.
2.实数与向量的积的运算律:
(1)(结合律);
(2)(第一分配律);
(3)(第二分配律).
3.向量共线定理:
内容:
三、例题分析:
例1、计算:(1);
(2);
(3)
例2、如图,已知,.试判断与是否共线.

例3、判断下列各题中的向量是否共线:
(1),;
(2),,且,共线.
(3)当,中至少有一个为零向量时,显然与共线.

例4、设是两个不共线的向量,已知,,,
若,,三点共线,求的值.

五、课时小结:
1.掌握实数与向量的积的定义;
2.掌握实数与向量的积的运算律,并进行有关的计算;
3.理解向量共线定理,并会判断两个向量是否共线

第二章2.22.2.3向量数乘运算及其几何意义


一名优秀负责的教师就要对每一位学生尽职尽责,作为教师就要好好准备好一份教案课件。教案可以让讲的知识能够轻松被学生吸收,帮助教师有计划有步骤有质量的完成教学任务。那么一篇好的教案要怎么才能写好呢?以下是小编为大家精心整理的“第二章2.22.2.3向量数乘运算及其几何意义”,仅供参考,希望能为您提供参考!

2.2.3向量数乘运算及其几何意义
预习课本P87~90,思考并完成以下问题
(1)向量数乘的定义及其几何意义是什么?
(2)向量数乘运算满足哪三条运算律?
(3)向量共线定理是怎样表述的?
(4)向量的线性运算是指的哪三种运算?

[新知初探]
1.向量的数乘运算
(1)定义:规定实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作:λa,它的长度和方向规定如下:
①|λa|=|λ||a|;
②当λ>0时,λa的方向与a的方向相同;
当λ<0时,λa的方向与a的方向相反.
(2)运算律:设λ,μ为任意实数,则有:
①λ(μa)=(λμ)a;
②(λ+μ)a=λa+μa;
③λ(a+b)=λa+λb;
特别地,有(-λ)a=-(λa)=λ(-a);
λ(a-b)=λa-λb.
[点睛](1)实数与向量可以进行数乘运算,但不能进行加减运算,如λ+a,λ-a均无法运算.
(2)λa的结果为向量,所以当λ=0时,得到的结果为0而不是0.
2.向量共线的条件
向量a(a≠0)与b共线,当且仅当有唯一一个实数λ,使b=λa.
[点睛](1)定理中a是非零向量,其原因是:若a=0,b≠0时,虽有a与b共线,但不存在实数λ使b=λa成立;若a=b=0,a与b显然共线,但实数λ不唯一,任一实数λ都能使b=λa成立.
(2)a是非零向量,b可以是0,这时0=λa,所以有λ=0,如果b不是0,那么λ是不为零的实数.
3.向量的线性运算
向量的加、减、数乘运算统称为向量的线性运算.对于任意向量a,b及任意实数λ,μ1,μ2,恒有λ(μ1a±μ2b)=λμ1a±λμ2b.
[小试身手]
1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)
(1)λa的方向与a的方向一致.()
(2)共线向量定理中,条件a≠0可以去掉.()
(3)对于任意实数m和向量a,b,若ma=mb,则a=b.()
答案:(1)×(2)×(3)×
2.若|a|=1,|b|=2,且a与b方向相同,则下列关系式正确的是()
A.b=2aB.b=-2a
C.a=2bD.a=-2b
答案:A
3.在四边形ABCD中,若=-12,则此四边形是()
A.平行四边形B.菱形
C.梯形D.矩形
答案:C
4.化简:2(3a+4b)-7a=______.
答案:-a+8b

向量的线性运算

[例1]化简下列各式:
(1)3(6a+b)-9a+13b;
(2)123a+2b-a+12b-212a+38b;
(3)2(5a-4b+c)-3(a-3b+c)-7a.
[解](1)原式=18a+3b-9a-3b=9a.
(2)原式=122a+32b-a-34b=a+34b-a-34b=0.
(3)原式=10a-8b+2c-3a+9b-3c-7a=b-c.
向量线性运算的方法
向量的线性运算类似于代数多项式的运算,共线向量可以合并,即“合并同类项”“提取公因式”,这里的“同类项”“公因式”指的是向量.

[活学活用]
化简下列各式:
(1)2(3a-2b)+3(a+5b)-5(4b-a);
(2)1622a+8b-44a-2b.
解:(1)原式=6a-4b+3a+15b-20b+5a=14a-9b.
(2)原式=16(4a+16b-16a+8b)=16(-12a+24b)=-2a+4b.
用已知向量表示未知向量
[典例]如图所示,D,E分别是△ABC的边AB,AC的中点,M,N分别是DE,BC的中点,已知=a,=b,试用a,b分别表示,,.
[解]由三角形中位线定理,知DE綊12BC,故=12,即=12a.
=++=-a+b+12a=-12a+b.
=++=12++12
=-14a-b+12a=14a-b.
用已知向量表示未知向量的方法
用图形中的已知向量表示所求向量,应结合已知和所求,联想相关的法则和几何图形的有关定理,将所求向量反复分解,直到全部可以用已知向量表示即可,其实质是向量的线性运算的反复应用.

[活学活用]
如图,四边形OADB是以向量=a,=b为边的平行四边形.又=13,=13,试用a,b表示,,.
解:∵=13=16=16(-)=16(a-b),
∴=+
=b+16a-16b=16a+56b.
∵=13=16,
∴=+=12+16
=23=23(+)=23(a+b).
∴=-
=23(a+b)-16a-56b=12a-16b.

共线向量定理的应用
题点一:判断或证明点共线
1.已知两个非零向量a与b不共线,=a+b,=2a+8b,=3(a-b),求证:A,B,D三点共线.
证明:∵=a+b,=2a+8b,=3(a-b),
∴=+=2a+8b+3(a-b)=2a+8b+3a-3b=5(a+b)=5.
∴,共线,
又∵它们有公共点B,
∴A,B,D三点共线.
题点二:利用向量的共线确定参数
2.已知a,b是不共线的两个非零向量,当8a+kb与ka+2b共线时,求实数k的值.
解:∵8a+kb与ka+2b共线,
∴存在实数λ,使得8a+kb=λ(ka+2b),
即(8-λk)a+(k-2λ)b=0.
∵a与b不共线,∴8-λk=0,k-2λ=0,
解得λ=±2,
∴k=2λ=±4.
题点三:几何图形形状的判定
3.如图所示,正三角形ABC的边长为15,=13+25,=15+25AC.
求证:四边形APQB为梯形.
证明:因为=++=-13-25++15+25=1315,所以∥.
又||=15,所以||=13,故||≠||,于是四边形APQB为梯形.
用向量共线的条件证明两条直线平行或重合的思路
(1)若b=λa(a≠0),且b与a所在的直线无公共点,则这两条直线平行;
(2)若b=λa(a≠0),且b与a所在的直线有公共点,则这两条直线重合.例如,若向量=λ,则,共线,又与有公共点A,从而A,B,C三点共线,这是证明三点共线的重要方法.

层级一学业水平达标
1.若|a|=5,b与a的方向相反,且|b|=7,则a=()
A.57bB.-57b
C.75bD.-75b
解析:选Bb与a反向,故a=λb(λ<0),|a|=-λ|b|,则5=-λ×7,所以λ=-57,∴a=57b.
2.已知a=5e,b=-3e,c=4e,则2a-3b+c=()
A.5eB.-5e
C.23eD.-23e
解析:选C2a-3b+c=2×5e-3×(-3e)+4e=23e.

3.已知=a+5b,=-2a+8b,=3(a-b),则()
A.A,B,C三点共线B.A,B,D三点共线
C.A,C,D三点共线D.B,C,D三点共线
解析:选B=+=-2a+8b+3(a-b)=a+5b=,
又∵与有公共点B,∴A,B,D三点共线.
4.在△ABC中,点P是AB上一点,且=23+13,又=t,则t的值为()
A.13B.23
C.12D.53
解析:选A由题意可得=-=23+13-=13(-)=13,又=t,∴t=13.
5.在平行四边形ABCD中,AC与BD相交于点O,E是线段OD的中点,AE的延长线交DC于点F,若=a,=b,则=()
A.13a+bB.12a+b
C.a+13bD.a+12b
解析:选A由已知条件可知BE=3DE,∴DF=13AB,∴=+=+13=13a+b.
6.若3(x+a)+2(x-2a)-4(x-a+b)=0,则x=______.
解析:由已知得3x+3a+2x-4a-4x+4a-4b=0,
∴x+3a-4b=0,∴x=4b-3a.
答案:4b-3a
7.下列向量中a,b共线的有________(填序号).
①a=2e,b=-2e;
②a=e1-e2,b=-2e1+2e2;
③a=4e1-25e2,b=e1-110e2;
④a=e1+e2,b=2e1-2e2.
解析:①中,a=-b;②中,b=-2e1+2e2=-2(e1-e2)=-2a;③中,a=4e1-25e2=4e1-110e2=4b;④中,当e1,e2不共线时,a≠λb.故填①②③.
答案:①②③
8.已知向量a,b是两个不共线的向量,且向量ma-3b与a+(2-m)b共线,则实数m的值为________.
解析:因为向量ma-3b与a+(2-m)b共线且向量a,b是两个不共线的向量,所以存在实数λ,使得ma-3b=λ[a+(2-m)b],即(m-λ)a+(mλ-2λ-3)b=0,因为a与b不共线,所以m=λ,mλ-2λ-3=0,解得m=-1或m=3.
答案:-1或3
9.计算:
(1)25(a-b)-13(2a+4b)+215(2a+13b);
(2)(2m-n)a-mb-(m-n)(a-b)(m,n为实数).
解:(1)原式=25-23+415a+-25-43+2615b=0.
(2)原式=2ma-na-mb-m(a-b)+n(a-b)
=2ma-na-mb-ma+mb+na-nb
=ma-nb.
10.已知e1,e2是两个非零不共线的向量,a=2e1-e2,b=ke1+e2,若a与b是共线向量,求实数k的值.
解:∵a与b是共线向量,∴a=λb,
∴2e1-e2=λ(ke1+e2)=λke1+λe2,
∴λk=2,λ=-1,
∴k=-2,λ=-1,
∴k=-2.
层级二应试能力达标
1.设a是非零向量,λ是非零实数,则下列结论中正确的是()
A.a与λa的方向相同
B.a与-λa的方向相反
C.a与λ2a的方向相同
D.|λa|=λ|a|
解析:选C只有当λ0时,a与λa的方向相同,a与-λa的方向相反,且|λa|=λ|a|.因为λ20,所以a与λ2a的方向相同.
2.已知O是△ABC所在平面内一点,D为边BC的中点,且2++=0,则()
A.=B.=2
C.=3D.2=
解析:选A∵在△ABC中,D为边BC的中点,∴+=2,∴2(+)=0,即+=0,从而=.
3.已知向量a,b不共线,若=λ1a+b,=a+λ2b,且A,B,C三点共线,则关于实数λ1,λ2一定成立的关系式为()
A.λ1=λ2=1B.λ1=λ2=-1
C.λ1λ2=1D.λ1+λ2=1
解析:选C∵A,B,C三点共线,
∴=k(k≠0).
∴λ1a+b=k(a+λ2b)=ka+kλ2b.
又∵a,b不共线,
∴λ1=k,1=kλ2,∴λ1λ2=1.
4.已知平面内有一点P及一个△ABC,若++=,则()
A.点P在△ABC外部B.点P在线段AB上
C.点P在线段BC上D.点P在线段AC上
解析:选D∵++=,
∴++-=0,
∴+++=0,即++=0,
∴2=,∴点P在线段AC上.
5.设e1,e2是两个不共线的向量,若向量ke1+2e2与8e1+ke2方向相反,则k=______.
解析:∵ke1+2e2与8e1+ke2共线,
∴ke1+2e2=λ(8e1+ke2)=8λe1+λke2.
∴k=8λ,2=λk,解得λ=12,k=4或λ=-12,k=-4.
∵ke1+2e2与8e1+ke2反向,
∴λ=-12,k=-4.
答案:-4
6.如图所示,在ABCD中,=a,=b,AN=3NC,M为BC的中点,则=________(用a,b)表示.
解析:=+=-=12-14
=12b-14(a+b)=14b-14a=14(b-a).
答案:14(b-a)
7.已知:在四边形ABCD中,=a+2b,=-4a-b,=-5a-3b,求证:四边形ABCD为梯形.
证明:如图所示.
∵=++=(a+2b)+(-4a-b)+(-5a-3b)
=-8a-2b=2(-4a-b),
∴=2.
∴与共线,且||=2||.
又∵这两个向量所在的直线不重合,
∴AD∥BC,且AD=2BC.
∴四边形ABCD是以AD,BC为两条底边的梯形.
8.如图,已知△OCB中,点A是BC的中点,D是将OB分成2∶1的一个内分点,DC和OA交于点E,设=a,=b.
(1)用a,b表示向量,;
(2)若=λ,求λ的值.
解:(1)由A是BC的中点,则有=12(+),
从而=2-=2a-b.
由D是将OB分成2∶1的一个内分点,得=23,
从而=-=(2a-b)-23b=2a-53b.
(2)由于C,E,D三点共线,则=μ,
又=-=(2a-b)-λa=(2-λ)a-b,
=2a-53b,
从而(2-λ)a-b=μ2a-53b,
又a,b不共线,则2-λ=2μ,1=53μ,解得λ=45.

从位移、速度、力到向量


教案课件是老师上课中很重要的一个课件,大家应该在准备教案课件了。对教案课件的工作进行一个详细的计划,新的工作才会更顺利!有多少经典范文是适合教案课件呢?急您所急,小编为朋友们了收集和编辑了“从位移、速度、力到向量”,供您参考,希望能够帮助到大家。

从位移、速度、力到向量
一、教学目标:
1.知识与技能
(1)理解向量与数量、向量与力、速度、位移之间的区别;
(2)理解向量的实际背景与基本概念,理解向量的几何表示,并体会学科之间的联系.
(3)通过教师指导发现知识结论,培养学生抽象概括能力和逻辑思维能力
2.过程与方法
通过力与力的分析等实例,引导学生了解向量的实际背景,帮助学生理解平面向量与向量相等的含义以及向量的几何表示;最后通过讲解例题,指导学生能够发现问题和提出问题,善于独立思考,学会分析问题和创造地解决问题.
3.情感态度价值观
通过本节的学习,使同学们对向量的实际背景、几何表示有了一个基本的认识;激发学生学习数学的兴趣和积极性,陶冶学生的情操,培养学生坚忍不拔的意志,实事求是的科学学习态度和勇于创新的精神.
二.教学重、难点
重点:向量及向量的有关概念、表示方法.
难点:向量及向量的有关概念、表示方法.
三.学法与教学用具
学法:(1)自主性学习+探究式学习法:
(2)反馈练习法:以练习来检验知识的应用情况,找出未掌握的内容及其存在的差距.
教学用具:电脑、投影机.
四.教学设想
【创设情境】
实例:老鼠由A向西北逃窜,猫在B处向东追去,
问:猫能否追到老鼠?(画图)
结论:猫的速度再快也没用,因为方向错了.
【探究新知】
1.学生阅读教材思考如下问题
[展示投影](学生先讲,教师提示或适当补充)
1.举例说明什么是向量?向量与数量有何区别?
既有大小又有方向的量叫向量。例:力、速度、加速度、冲量等
注意:①数量与向量的区别:
数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向,大小,双重性,不能比较大小。
②从19世纪末到20世纪初,向量就成为一套优良通性的数学体系,用以研究空间性质。
2.向量的表示方法有哪些?
①几何表示法:有向线段
有向线段:具有方向的线段叫做有向线段。记作:
注意:起点一定写在终点的前面。
有向线段的长度:线段AB的长度也叫做有向线段的长度
有向线段的三要素:起点、方向、长度
②字母表示法:也可用字母a、b、c(黑体字)来表示,即可表示为(印刷时用黑体字)
3.向量的模的概念是如何定义的?
向量的大小——长度称为向量的模。
记作:||模是可以比较大小的
4.两个特殊的向量:
①零向量——长度(模)为0的向量,记作。的方向是任意的.
注意与0的区别
②单位向量——长度(模)为1个单位长度的向量叫做单位向量。
思考:①温度有零上零下之分,“温度”是否向量?
答:不是。因为零上零下也只是大小之分。
②与是否同一向量?
答:不是同一向量。
③有几个单位向量?单位向量的大小是否相等?单位向量是否都相等?
答:有无数个单位向量,单位向量大小相等,单位向量不一定相等。
5.向量间的关系:
1.平行向量:方向相同或相反的非零向量叫做平行向量。
记作:∥∥
规定:与任一向量平行
2.相等向量:长度相等且方向相同的向量叫做相等向量。
记作:=
规定:=
任两相等的非零向量都可用一有向线段表示,与起点无关。
3.共线向量:任一组平行向量都可移到同一条直线上,
所以平行向量也叫共线向量。

===
例题讲评(学生先做,学生讲,教师提示或适当补充)
例题:如图,设O是正六边形ABCDEF的中心,①分别写出图中与向量、、相等的向量;②分别写出图中与向量、、共线的向量.

[学习小结](学生总结,其它学生补充)
①向量及其表示方法.
②向量的模.
③零向量与单位向量(零向量的方向任意;单位向量不一定相等)
④相等向量与平行向量.
五.作业:
六.课后反思