88教案网

你的位置: 教案 > 高中教案 > 导航 > 高中数学必修四2.2.3向量数乘运算及其几何意义导学案

小学数学说课教案

发表时间:2020-10-31

高中数学必修四2.2.3向量数乘运算及其几何意义导学案。

俗话说,凡事预则立,不预则废。高中教师要准备好教案,这是高中教师需要精心准备的。教案可以让学生们能够在上课时充分理解所教内容,帮助高中教师营造一个良好的教学氛围。写好一份优质的高中教案要怎么做呢?下面是小编为大家整理的“高中数学必修四2.2.3向量数乘运算及其几何意义导学案”,欢迎大家阅读,希望对大家有所帮助。

2.2.3向量数乘运算及其几何意义
编审:周彦魏国庆
【学习目标】
1.掌握向量数乘的运算,并理解其几何意义;
2.理解两个向量共线的含义,并能证明简单的平行及共线问题;3.了解向量的线性运算性质及其几何意义;
【新知自学】
知识回顾:
已知非零向量,求作和.

新知梳理:
1.实数与向量的积的定义:
一般地,实数与向量的积是一个向量,记作,它的长度与方向规定如下:
(1);
(2)当时,的方向与的方向;
当时,的方向与的方向;
当时,.
2.实数与向量的积的运算律:
(1)(结合律);
(2)(第一分配律);
(3)(第二分配律).
对点练习
1、下面给出四个命题:
①对于实数和向量,,恒有
(—)=—;
②对于实数,和向量,恒有
(—)=m—n;
③若=(∈R),则有
=;
④若=(,∈R,≠0→),则有=.
其中正确命题的个数是()
A.1B.2C.3D.4
2、将化简成最简形式为()
A.B.
C.D.
3.向量共线定理:
定理:如果有一个实数,使(),那么向量与是共线向量;反之,如果向量与()是共线向量,那么有且只有一个实数,使得.
对点练习3、
与非零向量同向的单位向量是;
与非零向量反向的单位向量是;
与非零向量共线的单位向量是.
【合作探究】
典型精析
例1计算:(1)

变式练习:1
化简:

例2.已知向量和向量,求作向量和

例3.判断并证明:向量,是否共线?

变式练习:2

例4.已知两个非零向量和不共线,,,
.
求证:三点共线.

变式练习:3设两个非零向量与不共线,若,,
.求证:、、三点共线.

【课堂小结】

【当堂达标】
1.若3—2(—)=0→,则=()
A.2a→B.-2a→
C.25a→D.-25a→

2.设,是两个不共线的向量,下列情况下,向量,共线的有()
①,;
②,;
③,
④,
A.①②③B.②③④
C.①③④D.①②③④
3.已知向量,,且AB→=+2,BC→=—5+6,CD→=7—2,则一定共线的三点是()
A.A、B、DB.A、B、C
C.B、C、DD.A、C、D

4.已知向量与反向,且,,,则的值等于().
A.B.C.D.

【课时作业】
1.设,下面叙述不正确的是()
A.
B.
C.
D.与的方向相同()
2.已知向量与不共线,且,则点三点共线应满足()
A.
B.
C.
D.

*3.已知O是ΔABC所在平面内一点,D为BC边的中点,且2OA→+OB→+OC→=0→,那么()
A.AO→=OD→B.AO→=2OD→
C.AO→=3OD→D.2AO→=OD→

4.在ΔABC中,,,,三边BC,CA,AB的中点依次是D,E,F,则AD→+BE→+CF→=.

5.若a→=m→+2n→,b→=3m→—4n→,且m→,n→共线,则a→与b→的关系是.

6.若,为平面上任意一点,则=(用OA→,OB→表示).

7.已知x,y是实数,向量,不共线,若,则____,_______.

*8.设,是两个不共线的向量,已知,,
.若三点A,B,D共线,求的值.

*9.在四边形ABCD中,,,,且,不共线,试判断四边形ABCD的形状.
【延伸探究】
在ΔABC中,D为BC的一个三等分点,求证:AD→=23AB→+13AC→

相关推荐

高中数学必修四2.2.2向量减法运算及其几何意义导学案


2.2.2向量减法运算及其几何意义
【学习目标】
1.了解相反向量的概念;
1.2.理解向量减法的几何意义,掌握向量的减法运算;会作两个向量的差向量,并能和向量的加法综合运用.
【新知自学】
知识回顾:
1.如何用向量加法的三角形法则和平行四边形法则作两向量的和?2.向量加法的运算律:新知梳理:
1、“相反向量”的定义:与向量长度相同、方向相反的向量.记作
2、规定:
(1)零向量的相反向量仍是零向量.
(2)()=.
(3)任一向量与它的相反向量的和是零向量.
即+()=
(4)如果、互为相反向量,则=,=,+=
3、向量减法的定义:向量加上的相反向量,叫做,即:
=
求两个向量差的运算叫做向量的减法.
向量减法的几何意义是
4、若+x=,则x叫做与的差,记作
求作差向量:已知向量,,求作向量
作法:

思考感悟:
(1)向量的起点与向量的起点相同时,如果从向量的终点指向向量的终点作向量,那么所得向量是
(2)若∥,如何作出?

对点练习:
1.化简OP→-QP→+PS→+SP→的结果是()
A.QP→B.OQ→
C.SP→D.SQ→
2.下列四式中不能化简为AD→的是()
A.AB→+CD→+BC→
B.AD→+MB→+BC→+CM→
C.OC→-OA→+CD→
D.MB→+AD→-BM→
3.如图四边形ABCD中,设,,,则()
A.
B.
C.
D.
4.如图,D、E、F分别是的边AB、BC、CA的中点,则()
A.
B.
C.
D.

【合作探究】
典例精析:
例1、已知向量、、、,求作向量、.

变式练习:1课本练习1.

例2、平行四边形中,,,用、表示向量、.

变式练习:2已知,,且,则=
【课堂小结】
【当堂达标】
1、在△ABC中,=,=,则等于()?
A.+?B.-+(-)?
C.-?D.-?
2.可以写成:①;②;③;④,其中正确的是()
A.①②B.②③
C.③④D.①④
3.如图所示,在梯形ABCD中,ADBC,AC与BD交于O点,则_______

4、化简
【课时作业】
1、在△ABC中,向量可表示为①②;③;④;中的是()
A.①②③B.①③④
C.②③④D.①②④
2.在ABCD中,|AB→+AD→|=|AB→-AD→|,则必有()
A.AD→=0→B.AB→=0→或AD→=0→
C.ABCD是矩形D.ABCD是正方形

*3.设分别为的三边的中点,则()
A.B.
C.D.

4.若非零向量和互为相反向量,则错误的是()
A、B、
C、D、

5.已知中,,,则下列等式成立的是______________。
(1)
(2)
(3)
(4)

6.若,下列结论正确的是______________________。
(1)
(2)
(3)
(4)

*7.中,是的中点,设,则
;.

*8.如图,已知OA→=a→,OB→=b→,OC→=c→,OD→=d→,OE→=e→,OF→=f→,试用a→,b→,c→,d→,e→,f→表示下列向量.
(1)AD→-AB→;
(2)AB→+CF→;
(3)BF→-BD→.

9.如图,在ABCD中,设AB→=a→,AD→=b→,则
(1)当a→,b→满足什么条件时,a→+b→与a→-b→垂直?
(2)当a→,b→满足什么条件时,|a→+b→|=|a→-b→|?
(3)a→+b→与a→-b→可能是相等向量吗?
(4)当a→,b→满足什么条件时,a→+b→平分a→与b→所夹的角?

【延伸探究】
已知|AB→|=8,|AC→|=5,,则|BC→|的取值范围是.

第二章2.22.2.3向量数乘运算及其几何意义


一名优秀负责的教师就要对每一位学生尽职尽责,作为教师就要好好准备好一份教案课件。教案可以让讲的知识能够轻松被学生吸收,帮助教师有计划有步骤有质量的完成教学任务。那么一篇好的教案要怎么才能写好呢?以下是小编为大家精心整理的“第二章2.22.2.3向量数乘运算及其几何意义”,仅供参考,希望能为您提供参考!

2.2.3向量数乘运算及其几何意义
预习课本P87~90,思考并完成以下问题
(1)向量数乘的定义及其几何意义是什么?
(2)向量数乘运算满足哪三条运算律?
(3)向量共线定理是怎样表述的?
(4)向量的线性运算是指的哪三种运算?

[新知初探]
1.向量的数乘运算
(1)定义:规定实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作:λa,它的长度和方向规定如下:
①|λa|=|λ||a|;
②当λ>0时,λa的方向与a的方向相同;
当λ<0时,λa的方向与a的方向相反.
(2)运算律:设λ,μ为任意实数,则有:
①λ(μa)=(λμ)a;
②(λ+μ)a=λa+μa;
③λ(a+b)=λa+λb;
特别地,有(-λ)a=-(λa)=λ(-a);
λ(a-b)=λa-λb.
[点睛](1)实数与向量可以进行数乘运算,但不能进行加减运算,如λ+a,λ-a均无法运算.
(2)λa的结果为向量,所以当λ=0时,得到的结果为0而不是0.
2.向量共线的条件
向量a(a≠0)与b共线,当且仅当有唯一一个实数λ,使b=λa.
[点睛](1)定理中a是非零向量,其原因是:若a=0,b≠0时,虽有a与b共线,但不存在实数λ使b=λa成立;若a=b=0,a与b显然共线,但实数λ不唯一,任一实数λ都能使b=λa成立.
(2)a是非零向量,b可以是0,这时0=λa,所以有λ=0,如果b不是0,那么λ是不为零的实数.
3.向量的线性运算
向量的加、减、数乘运算统称为向量的线性运算.对于任意向量a,b及任意实数λ,μ1,μ2,恒有λ(μ1a±μ2b)=λμ1a±λμ2b.
[小试身手]
1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)
(1)λa的方向与a的方向一致.()
(2)共线向量定理中,条件a≠0可以去掉.()
(3)对于任意实数m和向量a,b,若ma=mb,则a=b.()
答案:(1)×(2)×(3)×
2.若|a|=1,|b|=2,且a与b方向相同,则下列关系式正确的是()
A.b=2aB.b=-2a
C.a=2bD.a=-2b
答案:A
3.在四边形ABCD中,若=-12,则此四边形是()
A.平行四边形B.菱形
C.梯形D.矩形
答案:C
4.化简:2(3a+4b)-7a=______.
答案:-a+8b

向量的线性运算

[例1]化简下列各式:
(1)3(6a+b)-9a+13b;
(2)123a+2b-a+12b-212a+38b;
(3)2(5a-4b+c)-3(a-3b+c)-7a.
[解](1)原式=18a+3b-9a-3b=9a.
(2)原式=122a+32b-a-34b=a+34b-a-34b=0.
(3)原式=10a-8b+2c-3a+9b-3c-7a=b-c.
向量线性运算的方法
向量的线性运算类似于代数多项式的运算,共线向量可以合并,即“合并同类项”“提取公因式”,这里的“同类项”“公因式”指的是向量.

[活学活用]
化简下列各式:
(1)2(3a-2b)+3(a+5b)-5(4b-a);
(2)1622a+8b-44a-2b.
解:(1)原式=6a-4b+3a+15b-20b+5a=14a-9b.
(2)原式=16(4a+16b-16a+8b)=16(-12a+24b)=-2a+4b.
用已知向量表示未知向量
[典例]如图所示,D,E分别是△ABC的边AB,AC的中点,M,N分别是DE,BC的中点,已知=a,=b,试用a,b分别表示,,.
[解]由三角形中位线定理,知DE綊12BC,故=12,即=12a.
=++=-a+b+12a=-12a+b.
=++=12++12
=-14a-b+12a=14a-b.
用已知向量表示未知向量的方法
用图形中的已知向量表示所求向量,应结合已知和所求,联想相关的法则和几何图形的有关定理,将所求向量反复分解,直到全部可以用已知向量表示即可,其实质是向量的线性运算的反复应用.

[活学活用]
如图,四边形OADB是以向量=a,=b为边的平行四边形.又=13,=13,试用a,b表示,,.
解:∵=13=16=16(-)=16(a-b),
∴=+
=b+16a-16b=16a+56b.
∵=13=16,
∴=+=12+16
=23=23(+)=23(a+b).
∴=-
=23(a+b)-16a-56b=12a-16b.

共线向量定理的应用
题点一:判断或证明点共线
1.已知两个非零向量a与b不共线,=a+b,=2a+8b,=3(a-b),求证:A,B,D三点共线.
证明:∵=a+b,=2a+8b,=3(a-b),
∴=+=2a+8b+3(a-b)=2a+8b+3a-3b=5(a+b)=5.
∴,共线,
又∵它们有公共点B,
∴A,B,D三点共线.
题点二:利用向量的共线确定参数
2.已知a,b是不共线的两个非零向量,当8a+kb与ka+2b共线时,求实数k的值.
解:∵8a+kb与ka+2b共线,
∴存在实数λ,使得8a+kb=λ(ka+2b),
即(8-λk)a+(k-2λ)b=0.
∵a与b不共线,∴8-λk=0,k-2λ=0,
解得λ=±2,
∴k=2λ=±4.
题点三:几何图形形状的判定
3.如图所示,正三角形ABC的边长为15,=13+25,=15+25AC.
求证:四边形APQB为梯形.
证明:因为=++=-13-25++15+25=1315,所以∥.
又||=15,所以||=13,故||≠||,于是四边形APQB为梯形.
用向量共线的条件证明两条直线平行或重合的思路
(1)若b=λa(a≠0),且b与a所在的直线无公共点,则这两条直线平行;
(2)若b=λa(a≠0),且b与a所在的直线有公共点,则这两条直线重合.例如,若向量=λ,则,共线,又与有公共点A,从而A,B,C三点共线,这是证明三点共线的重要方法.

层级一学业水平达标
1.若|a|=5,b与a的方向相反,且|b|=7,则a=()
A.57bB.-57b
C.75bD.-75b
解析:选Bb与a反向,故a=λb(λ<0),|a|=-λ|b|,则5=-λ×7,所以λ=-57,∴a=57b.
2.已知a=5e,b=-3e,c=4e,则2a-3b+c=()
A.5eB.-5e
C.23eD.-23e
解析:选C2a-3b+c=2×5e-3×(-3e)+4e=23e.

3.已知=a+5b,=-2a+8b,=3(a-b),则()
A.A,B,C三点共线B.A,B,D三点共线
C.A,C,D三点共线D.B,C,D三点共线
解析:选B=+=-2a+8b+3(a-b)=a+5b=,
又∵与有公共点B,∴A,B,D三点共线.
4.在△ABC中,点P是AB上一点,且=23+13,又=t,则t的值为()
A.13B.23
C.12D.53
解析:选A由题意可得=-=23+13-=13(-)=13,又=t,∴t=13.
5.在平行四边形ABCD中,AC与BD相交于点O,E是线段OD的中点,AE的延长线交DC于点F,若=a,=b,则=()
A.13a+bB.12a+b
C.a+13bD.a+12b
解析:选A由已知条件可知BE=3DE,∴DF=13AB,∴=+=+13=13a+b.
6.若3(x+a)+2(x-2a)-4(x-a+b)=0,则x=______.
解析:由已知得3x+3a+2x-4a-4x+4a-4b=0,
∴x+3a-4b=0,∴x=4b-3a.
答案:4b-3a
7.下列向量中a,b共线的有________(填序号).
①a=2e,b=-2e;
②a=e1-e2,b=-2e1+2e2;
③a=4e1-25e2,b=e1-110e2;
④a=e1+e2,b=2e1-2e2.
解析:①中,a=-b;②中,b=-2e1+2e2=-2(e1-e2)=-2a;③中,a=4e1-25e2=4e1-110e2=4b;④中,当e1,e2不共线时,a≠λb.故填①②③.
答案:①②③
8.已知向量a,b是两个不共线的向量,且向量ma-3b与a+(2-m)b共线,则实数m的值为________.
解析:因为向量ma-3b与a+(2-m)b共线且向量a,b是两个不共线的向量,所以存在实数λ,使得ma-3b=λ[a+(2-m)b],即(m-λ)a+(mλ-2λ-3)b=0,因为a与b不共线,所以m=λ,mλ-2λ-3=0,解得m=-1或m=3.
答案:-1或3
9.计算:
(1)25(a-b)-13(2a+4b)+215(2a+13b);
(2)(2m-n)a-mb-(m-n)(a-b)(m,n为实数).
解:(1)原式=25-23+415a+-25-43+2615b=0.
(2)原式=2ma-na-mb-m(a-b)+n(a-b)
=2ma-na-mb-ma+mb+na-nb
=ma-nb.
10.已知e1,e2是两个非零不共线的向量,a=2e1-e2,b=ke1+e2,若a与b是共线向量,求实数k的值.
解:∵a与b是共线向量,∴a=λb,
∴2e1-e2=λ(ke1+e2)=λke1+λe2,
∴λk=2,λ=-1,
∴k=-2,λ=-1,
∴k=-2.
层级二应试能力达标
1.设a是非零向量,λ是非零实数,则下列结论中正确的是()
A.a与λa的方向相同
B.a与-λa的方向相反
C.a与λ2a的方向相同
D.|λa|=λ|a|
解析:选C只有当λ0时,a与λa的方向相同,a与-λa的方向相反,且|λa|=λ|a|.因为λ20,所以a与λ2a的方向相同.
2.已知O是△ABC所在平面内一点,D为边BC的中点,且2++=0,则()
A.=B.=2
C.=3D.2=
解析:选A∵在△ABC中,D为边BC的中点,∴+=2,∴2(+)=0,即+=0,从而=.
3.已知向量a,b不共线,若=λ1a+b,=a+λ2b,且A,B,C三点共线,则关于实数λ1,λ2一定成立的关系式为()
A.λ1=λ2=1B.λ1=λ2=-1
C.λ1λ2=1D.λ1+λ2=1
解析:选C∵A,B,C三点共线,
∴=k(k≠0).
∴λ1a+b=k(a+λ2b)=ka+kλ2b.
又∵a,b不共线,
∴λ1=k,1=kλ2,∴λ1λ2=1.
4.已知平面内有一点P及一个△ABC,若++=,则()
A.点P在△ABC外部B.点P在线段AB上
C.点P在线段BC上D.点P在线段AC上
解析:选D∵++=,
∴++-=0,
∴+++=0,即++=0,
∴2=,∴点P在线段AC上.
5.设e1,e2是两个不共线的向量,若向量ke1+2e2与8e1+ke2方向相反,则k=______.
解析:∵ke1+2e2与8e1+ke2共线,
∴ke1+2e2=λ(8e1+ke2)=8λe1+λke2.
∴k=8λ,2=λk,解得λ=12,k=4或λ=-12,k=-4.
∵ke1+2e2与8e1+ke2反向,
∴λ=-12,k=-4.
答案:-4
6.如图所示,在ABCD中,=a,=b,AN=3NC,M为BC的中点,则=________(用a,b)表示.
解析:=+=-=12-14
=12b-14(a+b)=14b-14a=14(b-a).
答案:14(b-a)
7.已知:在四边形ABCD中,=a+2b,=-4a-b,=-5a-3b,求证:四边形ABCD为梯形.
证明:如图所示.
∵=++=(a+2b)+(-4a-b)+(-5a-3b)
=-8a-2b=2(-4a-b),
∴=2.
∴与共线,且||=2||.
又∵这两个向量所在的直线不重合,
∴AD∥BC,且AD=2BC.
∴四边形ABCD是以AD,BC为两条底边的梯形.
8.如图,已知△OCB中,点A是BC的中点,D是将OB分成2∶1的一个内分点,DC和OA交于点E,设=a,=b.
(1)用a,b表示向量,;
(2)若=λ,求λ的值.
解:(1)由A是BC的中点,则有=12(+),
从而=2-=2a-b.
由D是将OB分成2∶1的一个内分点,得=23,
从而=-=(2a-b)-23b=2a-53b.
(2)由于C,E,D三点共线,则=μ,
又=-=(2a-b)-λa=(2-λ)a-b,
=2a-53b,
从而(2-λ)a-b=μ2a-53b,
又a,b不共线,则2-λ=2μ,1=53μ,解得λ=45.

向量的减法运算及其几何意义


向量的减法运算及其几何意义
教学目标:
1.了解相反向量的概念;
2.掌握向量的减法,会作两个向量的减向量,并理解其几何意义;
3.通过阐述向量的减法运算可以转化成向量的加法运算,使学生理解事物之间可以相互转化的辩证思想.
教学重点:向量减法的概念和向量减法的作图法.
教学难点:减法运算时方向的确定.
学法:减法运算是加法运算的逆运算,学生在理解相反向量的基础上结合向量的加法运算掌握向量的减法运算;并利用三角形做出减向量.
教具:多媒体或实物投影仪,尺规
授课类型:新授课
教学思路:
一、复习:向量加法的法则:三角形法则与平行四边形法则
向量加法的运算定律:
例:在四边形中,.
解:
二、提出课题:向量的减法
1.用“相反向量”定义向量的减法
(1)“相反向量”的定义:与a长度相同、方向相反的向量.记作a
(2)规定:零向量的相反向量仍是零向量.(a)=a.
任一向量与它的相反向量的和是零向量.a+(a)=0
如果a、b互为相反向量,则a=b,b=a,a+b=0
(3)向量减法的定义:向量a加上的b相反向量,叫做a与b的差.
即:ab=a+(b)求两个向量差的运算叫做向量的减法.

2用加法的逆运算定义向量的减法:
向量的减法是向量加法的逆运算:
若b+x=a,则x叫做a与b的差,记作ab
3求作差向量:已知向量a、b,求作向量
∵(ab)+b=a+(b)+b=a+0=a
作法:在平面内取一点O,
作=a,=b
则=ab
即ab可以表示为从向量b的终点指向向量a的终点的向量.
注意:1表示ab.强调:差向量“箭头”指向被减数
2用“相反向量”定义法作差向量,ab=a+(b)
显然,此法作图较繁,但最后作图可统一.

2.探究:
1)如果从向量a的终点指向向量b的终点作向量,那么所得向量是ba.

2)若a∥b,如何作出ab?
三、例题:
例一、(P97例三)已知向量a、b、c、d,求作向量ab、cd.
解:在平面上取一点O,作=a,=b,=c,=d,
作,,则=ab,=cd

例二、平行四边形中,a,b,
用a、b表示向量、.
解:由平行四边形法则得:
=a+b,==ab
变式一:当a,b满足什么条件时,a+b与ab垂直?(|a|=|b|)
变式二:当a,b满足什么条件时,|a+b|=|ab|?(a,b互相垂直)
变式三:a+b与ab可能是相当向量吗?(不可能,∵对角线方向不同)
练习:P98
四、小结:向量减法的定义、作图法|
五、作业:P103第4、5题
六、板书设计(略)
七、备用习题:
1.在△ABC中,=a,=b,则等于()?
A.a+b?B.-a+(-b)?C.a-b?D.b-a?
2.O为平行四边形ABCD平面上的点,设=a,=b,=c,=d,则
A.a+b+c+d=0B.a-b+c-d=0?C.a+b-c-d=0D.a-b-c+d=0
3.如图,在四边形ABCD中,根据图示填空:?
a+b=,b+c=,c-d=,a+b+c-d=.?
4、如图所示,O是四边形ABCD内任一点,试根据图中给出的向量,确定a、b、c、d的方向(用箭头表示),使a+b=,c-d=,并画出b-c和a+d.

向量的加法运算及其几何意义


教案课件是老师不可缺少的课件,大家在认真写教案课件了。只有写好教案课件计划,这对我们接下来发展有着重要的意义!有多少经典范文是适合教案课件呢?为满足您的需求,小编特地编辑了“向量的加法运算及其几何意义”,供您参考,希望能够帮助到大家。

向量的加法运算及其几何意义
教学目标:
1、掌握向量的加法运算,并理解其几何意义;
2、会用向量加法的三角形法则和平行四边形法则作两个向量的和向量,培养数形结合解决问题的能力;
3、通过将向量运算与熟悉的数的运算进行类比,使学生掌握向量加法运算的交换律和结合律,并会用它们进行向量计算,渗透类比的数学方法;
教学重点:会用向量加法的三角形法则和平行四边形法则作两个向量的和向量.
教学难点:理解向量加法的定义.
学法:
数能进行运算,向量是否也能进行运算呢?数的加法启发我们,从运算的角度看,位移的合成、力的合成可看作向量的加法.借助于物理中位移的合成、力的合成来理解向量的加法,让学生顺理成章接受向量的加法定义.结合图形掌握向量加法的三角形法则和平行四边形法则.联系数的运算律理解和掌握向量加法运算的交换律和结合律.
教具:多媒体或实物投影仪,尺规
授课类型:新授课
教学思路:
一、设置情景:
1、复习:向量的定义以及有关概念
强调:向量是既有大小又有方向的量.长度相等、方向相同的向量相等.因此,我们研究的向量是与起点无关的自由向量,即任何向量可以在不改变它的方向和大小的前提下,移到任何位置
2、情景设置:
(1)某人从A到B,再从B按原方向到C,
则两次的位移和:
(2)若上题改为从A到B,再从B按反方向到C,
则两次的位移和:
(3)某车从A到B,再从B改变方向到C,
则两次的位移和:
(4)船速为,水速为,则两速度和:
二、探索研究:
1、向量的加法:求两个向量和的运算,叫做向量的加法.
2、三角形法则(“首尾相接,首尾连”)
如图,已知向量a、b.在平面内任取一点,作=a,=b,则向量叫做a与b的和,记作a+b,即a+b,规定:a+0-=0+a

探究:(1)两相向量的和仍是一个向量;
(2)当向量与不共线时,+的方向不同向,且|+|||+||;
(3)当与同向时,则+、、同向,且|+|=||+||,当与反向时,若||||,则+的方向与相同,且|+|=||-||;若||||,则+的方向与相同,且|+b|=||-||.
(4)“向量平移”(自由向量):使前一个向量的终点为后一个向量的起点,可以推广到n个向量连加
3.例一、已知向量、,求作向量+
作法:在平面内取一点,作,则.

4.加法的交换律和平行四边形法则
问题:上题中+的结果与+是否相同?验证结果相同
从而得到:1)向量加法的平行四边形法则(对于两个向量共线不适应)
2)向量加法的交换律:+=+
5.向量加法的结合律:(+)+=+(+)
证:如图:使,,
则(+)+=,+(+)=
∴(+)+=+(+)
从而,多个向量的加法运算可以按照任意的次序、任意的组合来进行.
三、应用举例:
例二(P94—95)略
练习:P95
四、小结
1、向量加法的几何意义;
2、交换律和结合律;
3、注意:|+|≤||+||,当且仅当方向相同时取等号.
五、课后作业:
P103第2、3题
六、板书设计(略)
七、备用习题
1、一艘船从A点出发以的速度向垂直于对岸的方向行驶,船的实际航行的速度的大小为,求水流的速度.
2、一艘船距对岸,以的速度向垂直于对岸的方向行驶,到达对岸时,船的实际航程为8km,求河水的流速.
3、一艘船从A点出发以的速度向垂直于对岸的方向行驶,同时河水的流速为,船的实际航行的速度的大小为,方向与水流间的夹角是,求和.
4、一艘船以5km/h的速度在行驶,同时河水的流速为2km/h,则船的实际航行速度大小最大是km/h,最小是km/h
5、已知两个力F1,F2的夹角是直角,且已知它们的合力F与F1的夹角是60,|F|=10N求F1和F2的大小.
6、用向量加法证明:两条对角线互相平分的四边形是平行四边形