88教案网

你的位置: 教案 > 初中教案 > 导航 > 频率与概率导学案

高中概率与统计教案

发表时间:2020-12-08

频率与概率导学案。

每个老师在上课前需要规划好教案课件,大家在细心筹备教案课件中。只有写好教案课件计划,才能促进我们的工作进一步发展!你们到底知道多少优秀的教案课件呢?以下是小编为大家收集的“频率与概率导学案”但愿对您的学习工作带来帮助。

课题8.3频率与概率自主空间
学习目标知识与技能:体会随机事件在每一次实验中是否发生是不可预言的,但在数多次的反复实验后,随机事件发生的频率(成功率)会逐渐稳定在某一数值上.
过程与方法:通过试验,初步了解概率与频率的联系,会用频率估计概率.
情感、态度与价值观:通过工农业生产的例子,体会概率的现实意义,提高用数学的意识和能力.

学习重点知道随机事件随实验次数的增加而逐渐趋稳的事实.
学习难点对实验结果的分析.
教学流程



航1.某啤酒厂搞捉销活动,一箱啤酒(每箱24瓶)中有4瓶的盖内印有“奖”字,小明的爸爸买了一箱这种品牌的啤酒,但是连续打开4瓶均未中奖,这时小明在剩下的啤酒中任意拿出一瓶,那么他拿出的这瓶啤酒中奖的机会是()
A.B.C.D.无法确定
2.一只小狗在如图的方砖上走来走去,若最终停在阴影方砖上,则甲胜,否则乙胜,那么甲的成功率是()
A、B、C、D、





一情景创设
飞机失事会给旅客造成意外伤害。一家保险公司要为购买机票的旅客进行保险,应该向旅客收取多少保费呢?为此保险公司必须精确计算出飞机失事的可能性有多大。类似这样的问题在我们的日常生活中也经常遇到。例如:
抛掷1枚均匀硬币,正面朝上.
在装有彩球的袋子中,任意摸出的1个球恰好是红球.
明天将会下雨。抛掷1枚均匀骰子,6点朝上.
……
二、新知探究:
随机事件发生的可能性有大有小.一个事件发生可能性大小的数值,称为这个事件的概率().若用表示一个事件,则我们就用表示事件发生的概率.
通常规定,必然事件发生的概率是1,记作;不可能事件发生的概率为0,记作;随机事件发生的概率是0和1之间的一个数,即0<<1.
任一随机事件,它发生的概率是由它自身决定的,且是客观存在的,概率是随机事件自身的属性。它反映这个随机事件发生的可能性大小.。
三、例题分析:
抛掷硬币试验:
1.分别汇总5人,10人,15人,…,50人的试验结果,并将试验数据汇总填入下表:
2.根据上表,完成下面的折线统计图:
3.观察上面的折线统计图,你发现了什么规律?请与同学交流.
四、展示交流:下表是小明抛硬币试验获得的数据(折线图在课本P45:)
[中学范文网 wWW.F215.COm]

观察课本P45折线统计图,当抛掷硬币次数很大时,正面朝上的频率是否比较稳定?观察此表,你发现了什么?
从上表可以看出:“正面朝上”的频率总在附近波动,而且近似等于.
人们在抛掷硬币、骰子之类的游戏中发现:在充分多次试验中,一个随机事件的频率一般会在一个定值附近摆动,而且试验次数越多,摆动幅度越小。这个性质称为频率的稳定性.
观察下面的表1和表2,你能发现什么?
从表1可以看到,当抽查的足球数很多时,抽到优等品的频率接近于某一个常数,并在它附近摆动.从表2可以看到,当实验的绿豆的粒数很多时,绿豆发芽的频率接近于某一个常数,并在它附近摆动.一般地,在一定条件下大量重复进行同一试验时,事件A发生的频率会稳定地在某一个常数附近摆动,这个常数就是事件A发生的概率.事实上,事件A发生的概率的精确值,即这个常数还是未知的,但是在实际工作中,人们常把试验次数很大时事件发生的频率作为概率的近似值.
五、提炼总结:必然事件发生的概率是1,记作;不可能事件发生的概率为0,记作;随机事件发生的概率是0和1之间的一个数,即0<<1.



标1.小亮家的书架上放着《飘》上、下两册书,它们从封面上看完全一样,小亮随意抽出一本,他拿出的是《飘》下册的机会是()
A.0B.C.1D.无法判断
2.小华和小晶用扑克牌做游戏,小华手中有一张是王,小晶从小华手中抽得王的机会为,则小华手中有()
A.不能确定;B.10张牌C.5张牌D.6张牌
3.现有两个普通的正方形骰子,抛掷这两个骰子。请你写出一个确定事件:___________.一个不确定事件:______________________
学习反思

相关推荐

概率与统计导学案


大墩中学九年级(下)数学学科导学案
主备人:赖剑杰复备人:备课组审核人:彭晓妹班级:小组:学号:姓名:编号:29

课题:概率与统计
学习目标:1.会从三种统计图中对数据的识别2.会区别三种统计图的优缺点3、根据统计图解决实际问题

一、自主探究
1、图中给出了两种品牌的酒近年的价格变化情况,哪一种酒的价格增长较快?这与图象给你的感觉一致吗?为什么图象给人这样的感觉?

2、下图中反映了我国1998年和1999年图书、杂志和报纸的出版印张数之间的比例状况。根据该图小明认为,我国1998年的图书出版印张数比1999年多,你同意他的看法吗?为什么?
4、小波学习小组于2006年10月调查了某城市部分居民的家庭人口数,并绘出了下面的扇形统计图。求部分居民家庭人口数的众数和平均数。

5、学校快餐店有2元、3元、4元三种价格的饭菜供师生选择(每人限购一份),下图是某月的销售情况统计图,该校师生购买饭菜费用的平均费用的平均数和众数分别是什么?

6、某厂生产A、B、C三种型号的电视机,2002年这三种型号电视机的销售额依次为10亿元、2亿元、3亿元,为了应对激烈的市场竞争,2003年该厂决定降低电视机的销售价格,A、B、C三种型号的电视机分别降价10%,30%,20%,因此,该厂宣称其产品平均降价20%,你认为该厂的说法正确吗?如果不正确,你认为怎样表述才比较准确?
3、下图反映了我国1999年全国图书、杂志和报纸的出版印张数条形统计图后,观察并思考以下几个问题:
(1)直观地看这个条形统计图,1999年哪种出版物总印张数最多?哪种出版物总印张数最少?最多的是最少的几倍?
(2)实际上,最多的大约是最少的几倍?图中所表示出来的直观情况与此相符吗?
(3)这个图为什么会给人造成这样的感觉?
(4)为了更直观、清楚地反映实际情况,上图应怎样的改动?

7.某商场为了吸引顾客,设立了一个可以自由转动的转盘(如图4-10),并规定:顾客每购买100元后的商品,就能获得一次转盘的机会。如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得100元,50元,20元的购物卷,凭卷可以在该商场继续购物。如果顾客不愿意转转盘,那么可以直接获得购物卷10元.转转盘和直接获得购物卷,你认为哪种方式对顾客更划算?

8.(1)将上题的图改成图4—11的转盘,如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客分别获得100元,50元,20元的购物卷。与图4-11的转盘相比,哪个转盘对顾客更合算?如果改用图4-12的转盘呢?
(2)不用实验的方法,你能求出每转动一次转盘所获购物卷金额的平均数吗?

利用频率估计概率


作为老师的任务写教案课件是少不了的,大家应该在准备教案课件了。只有规划好新的教案课件工作,这对我们接下来发展有着重要的意义!有没有出色的范文是关于教案课件的?下面是小编为大家整理的“利用频率估计概率”,大家不妨来参考。希望您能喜欢!

25.3利用频率估计概率

疑难分析:

1.当试验的可能结果不是有限个,或各种结果发生的可能性不相等时,一般用统计频率的方法来估计概率.

2.利用频率估计概率的数学依据是大数定律:当试验次数很大时,随机事件A出现的频率,稳定地在某个数值P附近摆动.这个稳定值P,叫做随机事件A的概率,并记为P(A)=P.

3.利用频率估计出的概率是近似值.

例题选讲

例1某篮球运动员在最近的几场大赛中罚球投篮的结果如下:

投篮次数n8101291610

进球次数m6897127

进球频率

(1)计算表中各次比赛进球的频率;

(2)这位运动员投篮一次,进球的概率约为多少?

解答:(1)0.75,0.8,0.75,0.78,0.75,0.7;

(2)0.75.

评注:本题中将同一运动员在不同比赛中的投篮视为同等条件下的重复试验,所求出的概率只是近似值.

例2某商场设立了一个可以自由转动的转盘(如图),并规定:顾客购物10元以上能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品,下表是活动进行中的一组统计数据:

(1)计算并完成表格:

转动转盘的次数n1001502005008001000

落在“铅笔”的次数m68111136345546701

落在“铅笔”的频率

(2)请估计,当很大时,频率将会接近多少?

(3)转动该转盘一次,获得铅笔的概率约是多少?

(4)在该转盘中,标有“铅笔”区域的扇形的圆心角大约是多少?(精确到1°)

解答:(1)0.68、0.74、0.68、0.69、0.6825、0.701;

(2)0.69;

(3)0.69;

(4)0.69×360°≈248°.

评注:(1)试验的次数越多,所得的频率越能反映概率的大小;(2)频数分布表、扇形图、条形图、直方图都能较好地反映频数、频率的分布情况,我们可以利用它们所提供的信息估计概率.

基础训练

一、选一选(请将唯一正确答案的代号填入题后的括号内)

1.盒子中有白色乒乓球8个和黄色乒乓球若干个,为求得盒中黄色乒乓球的个数,某同学进行了如下实验:每次摸出一个乒乓球记下它的颜色,如此重复360次,摸出白色乒乓球90次,则黄色乒乓球的个数估计为()

A.90个B.24个C.70个D.32个

2.从生产的一批螺钉中抽取1000个进行质量检查,结果发现有5个是次品,那么从中任取1个是次品概率约为().

A.B.C.D.

3.下列说法正确的是().

A.抛一枚硬币正面朝上的机会与抛一枚图钉钉尖着地的机会一样大;

B.为了解汉口火车站某一天中通过的列车车辆数,可采用全面调查的方式进行;

C.彩票中奖的机会是1%,买100张一定会中奖;

D.中学生小亮,对他所在的那栋住宅楼的家庭进行调查,发现拥有空调的家庭占100%,于是他得出全市拥有空调家庭的百分比为100%的结论.

4.小亮把全班50名同学的期中数学测试成绩,绘成如图所示的条形图,其中从左起第一、二、三、四个小长方形高的比是1∶3∶5∶1.从中同时抽一份最低分数段和一份最高分数段的成绩的概率分别是().

A.、B.、

C.、D.、

5.某人把50粒黄豆染色后与一袋黄豆充分混匀,接着抓出100黄豆,数出其中有10粒黄豆被染色,则这袋黄豆原来有().

A.10粒B.160粒C.450粒D.500粒

6.某校男生中,若随机抽取若干名同学做“是否喜欢足球”的问卷调查,抽到喜欢足球的同学的概率是,这个的含义是().

A.只发出5份调查卷,其中三份是喜欢足球的答卷;

B.在答卷中,喜欢足球的答卷与总问卷的比为3∶8;

C.在答卷中,喜欢足球的答卷占总答卷的;

D.在答卷中,每抽出100份问卷,恰有60份答卷是不喜欢足球.

7.要在一只口袋中装入若干个形状与大小都完全相同的球,使得从袋中摸到红球的概率为,四位同学分别采用了下列装法,你认为他们中装错的是().

A.口袋中装入10个小球,其中只有两个红球;

B.装入1个红球,1个白球,1个黄球,1个蓝球,1个黑球;

C.装入红球5个,白球13个,黑球2个;

D.装入红球7个,白球13个,黑球2个,黄球13个.

8.某学生调查了同班同学身上的零用钱数,将每位同学的零用钱数记录了下来(单位:元):2,5,0,5,2,5,6,5,0,5,5,5,2,5,8,0,5,5,2,5,5,8,6,5,2,5,5,2,5,6,5,5,0,6,5,6,5,2,5,0.

假如老师随机问一个同学的零用钱,老师最有可能得到的回答是().

A.2元B.5元C.6元D.0元

二、填一填

9.同时抛掷两枚硬币,按照正面出现的次数,可以分为“2个正面”、“1个正面”和“没有正面”这3种可能的结果,小红与小明两人共做了6组实验,每组实验都为同时抛掷两枚硬币10次,下表为实验记录的统计表:

结果第一组第二组第三组第四组第五组第六组

两个正面335142

一个正面655557

没有正面120411

由上表结果,计算得出现“2个正面”、“1个正面”和“没有正面”这3种结果的频率分别是___________________.当试验组数增加到很大时,请你对这三种结果的可能性的大小作出预测:______________.

10.红星养猪场400头猪的质量(质量均为整数千克)频率分布如下,其中数据不在分点上

组别频数频率

46~5040

51~5580

56~60160

61~6580

66~7030

71~7510

从中任选一头猪,质量在65kg以上的概率是_____________.

11.为配和新课程的实施,某市举行了“应用与创新”知识竞赛,共有1万名学生参加了这次竞赛(满分100分,得分全为整数)。为了解本次竞赛成绩情况,从中随机抽取了部分学生的竞赛成绩,进行统计,整理见下表:

组别分组频数频率

149.5~59.5600.12

259.5~69.51200.24

369.5~79.51800.36

479.5~89.5130c

589.5~99.5b0.02

合计a1.00

表中a=________,b=________,c=_______;若成绩在90分以上(含90分)的学生获一等奖,估计全市获一等奖的人数为___________.

三、做一做

12.小颖有20张大小相同的卡片,上面写有1~20这20个数字,她把卡片放在一个盒子中搅匀,每次从盒中抽出一张卡片,记录结果如下:

实验次数20406080100120140160180200

3的倍数的频数5131726323639495561

3的倍数的频率

(1)完成上表;

(2)频率随着实验次数的增加,稳定于什么值左右?

(3)从试验数据看,从盒中摸出一张卡片是3的倍数的概率估计是多少?

(4)根据推理计算可知,从盒中摸出一张卡片是3的倍数的概率应该是多少?

13.甲、乙两同学开展“投球进筐”比赛,双方约定:①比赛分6局进行,每局在指定区域内将球投向筐中,只要投进一次后该局便结束;②若一次未进可再投第二次,以此类推,但每局最多只能投8次,若8次投球都未进,该局也结束;③计分规则如下:a.得分为正数或0;b.若8次都未投进,该局得分为0;c.投球次数越多,得分越低;d.6局比赛的总得分高者获胜.

(1)设某局比赛第n(n=1,2,3,4,5,6,7,8)次将球投进,请你按上述约定,用公式、表格或语言叙述等方式,为甲、乙两位同学制定一个把n换算为得分M的计分方案;

(2)若两人6局比赛的投球情况如下(其中的数字表示该局比赛进球时的投球次数,“×”表示该局比赛8次投球都未进):

第一局第二局第三局第四局第五局第六局

甲5×4813

乙82426×

根据上述计分规则和你制定的计分方案,确定两人谁在这次比赛中获胜.

四、试一试

16.理论上讲,两个随机正整数互质的概率为P=.请你和你班上的同学合作,每人随机写出若干对正整数(或自己利用计算器产生),共得到n对正整数,找出其中互质的对数m,计算两个随机正整数互质的概率,利用上面的等式估算的近似值.

解答

一、

1.D2.B3.B4.A5.C6.C7.C8.B

二、

9.;10.0.1,0.2,0.4,0.2,0.075,0.025;0.1

11.50,10,0.26;200

三、

12.(1)0.25,0.33,0.28,0.33,0.32,0.30,0.33,0.31,0.31,0.31;

(2)0.31;

(3)0.31;

(4)0.3

13.解:(1)计分方案如下表:

n(次)12345678

M(分)87654321

(用公式或语言表述正确,同样给分.)

(2)根据以上方案计算得6局比赛,甲共得24分,乙共得分23分,所以甲在这次比赛中获胜.

四、

14.略

概率导学案


九年级(上)数学学科导学案

班级:小组:学号:姓名:编号:41

课题:概率(列表法、树状图法)

学习目标:1、用列表法解决概率问题

2、用树状图解决概率问题

一.课前回顾

1.如图,小明周末到外婆家,走到十字路口处,记不清前面哪条路通往外婆家,那么他能一次选对路的概率是()

A、B、C、D、0

二.新知探究

2.掷一枚均匀的硬币两次,求两次正面都朝上的概率

解:树状图法:列表法:

3.如图,图中的两个转盘分别被均匀地分成5个和4个扇形,每个扇形上都标有数字,同时自由转动两个转盘,转盘停止后,求指针都落在奇数上的概率?(选一种自己喜欢的方法完成)

4.在四张相同的卡片上标有1、2、3、4四个数字,从中任意抽出一张,放回后再抽出一张:求:两张牌面之和为偶数的概率;

5.小亮和小明用下面两个转盘做“配紫色”游戏。分别转动两个转盘,若两个转盘颜色可以配成紫色(红色和蓝色配成紫色),则小明得1分,否则小亮得1分,这个游戏对双方公平吗?如果你认为公平,请说明理由;否则,如何修改得分规则才能使游戏对双方公平?

大墩中学九年级(上)数学学科导学案

班级:小组:学号:姓名:编号:41

课题:概率(3)

学习目标:掌握哪些事件只能用树状图来分析其概率

一:新课

1、四张大小、质地均相同的卡片上分别标有数字1、2、3、4,现将标有数字的一面朝下扣在桌子上,从中随机抽取一张,记下标有什么数字后,

(1)放回桌子搞混,再从桌子上随机抽取一张,列出前后两次抽得的卡片上所标数字的所有可能情况。

(2)不放回,再从桌子上剩下的3张卡片中随机抽取一张,列出前后两次抽得的卡片上所标数字的所有可能情况。

2、在四张相同的卡片上标有1、2、3、4四个数字,从中任意抽出两张:

求:出现一奇一偶的概率

3、小明回家的路上有三个十字路口,每个十字路口都有红绿灯,红灯停,绿灯过。请用树状图或者列表法分析小明回家路上一盏红灯都没有遇到的概率和至少遇到两次红灯的概率分别是多少。

4.在电视台举行的“快乐女生”比赛中,甲,乙,丙三位评委对选手小王的综合表现分别给出“待定”或“通过”的结论。

(1)写出三位评委对小王给出的所有可能的结论;

(2)对于选手小王,只有甲,乙两位评委给出相同结论的概率是多少?

5、将这4张纸牌背面朝上洗匀后摸出一张,不放回,再摸出一张.

⑴用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A,B,C,D表示);

⑵求摸出两张牌面图形都是中心对称图形的纸牌的概率.