88教案网

你的位置: 教案 > 高中教案 > 导航 > 高三数学教案:《概率统计复习》教学设计

高中概率与统计教案

发表时间:2021-12-03

高三数学教案:《概率统计复习》教学设计。

俗话说,磨刀不误砍柴工。准备好一份优秀的教案往往是必不可少的。教案可以让学生能够听懂教师所讲的内容,帮助高中教师更好的完成实现教学目标。那么如何写好我们的高中教案呢?以下是小编为大家收集的“高三数学教案:《概率统计复习》教学设计”希望对您的工作和生活有所帮助。

本文题目:高三数学复习教案:概率统计复习

一、 知识梳理

1.三种抽样方法的联系与区别:

类别 共同点 不同点 相互联系 适用范围

简单随机抽样 都是等概率抽样 从总体中逐个抽取 总体中个体比较少

系统抽样 将总体均匀分成若干部分;按事先确定的规则在各部分抽取 在起始部分采用简单随机抽样 总体中个体比较多

分层抽样 将总体分成若干层,按个体个数的比例抽取 在各层抽样时采用简单随机抽样或系统抽样 总体中个体有明显差异

(1)从含有N个个体的总体中抽取n个个体的样本,每个个体被抽到的概率为

(2)系统抽样的步骤: ①将总体中的个体随机编号;②将编号分段;③在第1段中用简单随机抽样确定起始的个体编号;④按照事先研究的规则抽取样本.

(3)分层抽样的步骤:①分层;②按比例确定每层抽取个体的个数;③各层抽样;④汇合成样本.

(4) 要懂得从图表中提取有用信息

如:在频率分布直方图中①小矩形的面积=组距 =频率②众数是最高矩形的中点的横坐标③中位数的左边与右边的直方图的面积相等,可以由此估计中位数的值

2.方差和标准差都是刻画数据波动大小的数字特征,一般地,设一组样本数据 , ,…, ,其平均数为 则方差 ,标准差

3.古典概型的概率公式:如果一次试验中可能出现的结果有 个,而且所有结果都是等可能的,如果事件 包含 个结果,那么事件 的概率P=

特别提醒:古典概型的两个共同特点:

○1 ,即试中有可能出现的基本事件只有有限个,即样本空间Ω中的元素个数是有限的;

○2 ,即每个基本事件出现的可能性相等。

4. 几何概型的概率公式: P(A)=

特别提醒:几何概型的特点:试验的结果是无限不可数的;○2每个结果出现的可能性相等。

二、夯实基础

(1)某单位有职工160名,其中业务人员120名,管理人员16名,后勤人员24名.为了解职工的某种情况,要从中抽取一个容量为20的样本.若用分层抽样的方法,抽取的业务人员、管理人员、后勤人员的人数应分别为____________.

(2)某赛季,甲、乙两名篮球运动员都参加了

11场比赛,他们所有比赛得分的情况用如图2所示的茎叶图表示,

则甲、乙两名运动员得分的中位数分别为( )

A.19、13 B.13、19 C.20、18 D.18、20

(3)统计某校1000名学生的数学会考成绩,

得到样本频率分布直方图如右图示,规定不低于60分为

及格,不低于80分为优秀,则及格人数是 ;

优秀率为 。

(4)在一次歌手大奖赛上,七位评委为歌手打出的分数如下:

9.4 8.4 9.4 9.9 9.6 9.4 9.7

去掉一个最高分和一个最低分后,所剩数据的平均值

和方差分别为( )

A.9.4, 0.484 B.9.4, 0.016 C.9.5, 0.04 D.9.5, 0.016

(5)将一颗骰子先后抛掷2次,观察向上的点数,则以第一次向上点数为横坐标x,第二次向上的点数为纵坐标y的点(x,y)在圆x2+y2=27的内部的概率________.

(6)在长为12cm的线段AB上任取一点M,并且以线段AM为边的正方形,则这正方形的面积介于36cm2与81cm2之间的概率为( )

三、高考链接

07、某班50名学生在一次百米测试中,成绩全部介于13秒与19秒之间,将测试结果按如下方式分成六组:第一组,成绩大于等于13秒且小于14秒;第二组,成绩大于等于14秒且小于15秒

; 第六组,成绩大于等于18秒且小于等于19秒.右图

是按上述分组方法得到的频率分布直方图.设成绩小于17秒

的学生人数占全班总人数的百分比为 ,成绩大于等于15秒

且小于17秒的学生人数为 ,则从频率分布直方图中可分析

出 和 分别为( )

08、从某项综合能力测试中抽取100人的成绩,统计如表,则这100人成绩的标准差为( )

分数 5 4 3 2 1

人数 20 10 30 30 10

09、在区间 上随机取一个数x, 的值介于0到 之间的概率为( ).

08、现有8名奥运会志愿者,其中志愿者 通晓日语, 通晓俄语, 通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.

(Ⅰ)求 被选中的概率;(Ⅱ)求 和 不全被选中的概率.

延伸阅读

高三数学教案:《排列、组合与概率》教学设计


第六部分排列、组合与概率

47、解排列组合应用题是首先要明确需要完成的事件是什么,其次要分清完成该事件是分类还是分步,另外要有逐一列举思想、先选后排思想、正难则反(即淘汰法)思想.简单地说:解排列、组合问题要搞清“做什么?怎么做!”分步做时要考虑到每一步的可行性与“步”与“步”之间的连续性.尤其是排列问题,更要注意“特殊元素、特殊位置”之间的关系,一般地讲,从正面入手解决时,“特殊元素特殊照顾,特殊位置特殊考虑.”相邻问题则用“捆绑”,不邻问题则用“插空”.特别提醒:解排列、组合问题时防止记数重复与遗漏.

[举例]对于问题:从3位男同学,5位女同学这8位同学中选出3人参加学校一项活动,求至少有2位女同学的选法种数.一位同学是这样解的:先从5位女同学中选出2名有种选法,再在剩下的6位同学中任选一位有种选法,所以共有种不同的选法.请分析这位同学的错误原因,并给出正确的解法.

分析:这位同学的解法中犯了计数重复的错误.不妨设女同学的编号为A、B、C、D、E,如先选的为A、B,再选的为C,和先选的为A、C,再选的为B是同一种选法.本解法中作为两种不同的结果计数,所以重复.

正确解法有两种:方法一:(分类讨论)选出的3人中至少有2名女同学,则为2女1男有种不同选法,3位都为女同学有种不同选法.两种结果都能完成这件事,所以有种不同的选法.方法二:(去杂法)8位同学中选出3人不满足条件和选法为3男与2男1女.所有选法为,则满足题义的选法为:.

48、简单地说:事件A的概率是含有事件A的“个体数”与满足条件的事件的“总体数”的比值.现行高考中的概率问题实际上是排列、组合问题的简单应用.

[举例]定义非空集合A的真子集的真子集为A的“孙集”,集合的真子集可以作为A的“孙集”的概率是______.

分析:本例是“即时性”学习问题.要正确理解“孙集”的定义——“真子集的真子集”.元素为个的集合的真子集有个,其真子集的元素最多有个.有个元素的集合的真子集最多有个元素.所以有个元素的集合的“孙集”实际上是原集合中的小于等于

高三数学教案:《随机事件的概率教案》教学设计


一名优秀的教师在教学方面无论做什么事都有计划和准备,作为高中教师就要根据教学内容制定合适的教案。教案可以让学生们充分体会到学习的快乐,让高中教师能够快速的解决各种教学问题。所以你在写高中教案时要注意些什么呢?为满足您的需求,小编特地编辑了“高三数学教案:《随机事件的概率教案》教学设计”,欢迎您阅读和收藏,并分享给身边的朋友!

本文题目:高三数学复习教案:随机事件的概率教案

●考点目标定位

1.了解等可能性事件的概率的意义,会用排列组合公式计算一些等可能性事件的概率.

2.了解互斥事件的意义,会用互斥事件的概率加法公式计算一些事件的概率.

3.了解相互独立事件的意义,会用相互独立事件的概率乘法公式计算一些事件的概率,会计算事件在n次独立重复试验中恰好发生k次的概率.

●复习方略指南

概率是新课程中新增加部分的主要内容之一.这一内容是在学习排列、组合等计数知识之后学习的,主要内容为等可能性事件的概率、互斥事件有一个发生的概率及相互独立事件同时发生的概率.这一内容从2000年被列入新课程高考的考试说明.

在2000,2001,2002,2003,2004这五年高考中,新课程试卷每年都有一道概率解答题,并且这五年的命题趋势是:从分值上看,从10分提高到17分,从题目的位置看,2000年为第(17)题,2001年为第(18)题,2002年为第(19)题,2003年为第(20)题即题目的位置后移,2004年两题分值增加到17分.从概率在试卷中的分数比与课时比看,在试卷中的分数比(12∶150=1∶12.5)是在数学中课时比(约为11∶330=1∶30)的2.4倍.概率试题体现了考试中心提出的“突出应用能力考查”以及“突出新增加内容的教学价值和应用功能”的指导思想,在命题时,提高了分值,提高了难度,并设置了灵活的题目情境,如普法考试、串联并联系统、计算机上网、产品合格率等,所以在概率复习中要注意全面复习,加强基础,注重应用.

11.1 随机事件的概率

●知识梳理

1.随机事件:在一定条件下可能发生也可能不发生的事件.

2.必然事件:在一定条件下必然要发生的事件.

3.不可能事件:在一定条件下不可能发生的事件.

4.事件A的概率:在大量重复进行同一试验时,事件A发生的频率 总接近于某个常数,在它附近摆动,这时就把这个常数叫做事件A的概率,记作P(A).由定义可知0≤P(A)≤1,显然必然事件的概率是1,不可能事件的概率是0.

5.等可能性事件的概率:一次试验连同其中可能出现的每一个结果称为一个基本事件,通常此试验中的某一事件A由几个基本事件组成.如果一次试验中可能出现的结果有n个,即此试验由n个基本事件组成,而且所有结果出现的可能性都相等,那么每一基本事件的概率都是 .如果某个事件A包含的结果有m个,那么事件A的概率P(A)= .

6.使用公式P(A)= 计算时,确定m、n的数值是关键所在,其计算方法灵活多变,没有固定的模式,可充分利用排列组合知识中的分类计数原理和分步计数原理,必须做到不重复不遗漏.

●点击双基

1.从1,2,…,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是

A. B. C. D.

解析:基本事件总数为C ,设抽取3个数,和为偶数为事件A,则A事件数包括两类:抽取3个数全为偶数,或抽取3数中2个奇数1个偶数,前者C ,后者C C .

∴A中基本事件数为C +C C .

∴符合要求的概率为 = .

答案:C

2.某校高三年级举行的一次演讲比赛共有10位同学参加,其中一班有3位,二班有2位,其他班有5位.若采取抽签的方式确定他们的演讲顺序,则一班的3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为

A. B. C. D.

解析:10位同学总参赛次序A .一班3位同学恰好排在一起,而二班的2位同学没有排在一起的方法数为先将一班3人捆在一起A ,与另外5人全排列A ,二班2位同学不排在一起,采用插空法A ,即A A A .

∴所求概率为 = .

答案:B

3.将一颗质地均匀的骰子(它是一种各面上分别标有点数1、2、3、4、5、6的正方体玩具)先后抛掷3次,至少出现一次6点向上的概率是

A. B. C. D.

解析:质地均匀的骰子先后抛掷3次,共有6×6×6种结果.3次均不出现6点向上的掷法有5×5×5种结果.由于抛掷的每一种结果都是等可能出现的,所以不出现6点向上的概率为 = ,由对立事件概率公式,知3次至少出现一次6点向上的概率是1- = .

答案:D

4.一盒中装有20个大小相同的弹子球,其中红球10个,白球6个,黄球4个,一小孩随手拿出4个,求至少有3个红球的概率为________.

解析:恰有3个红球的概率P1= = .

有4个红球的概率P2= = .

至少有3个红球的概率P=P1+P2= .

答案:

5.在两个袋中各装有分别写着0,1,2,3,4,5的6张卡片.今从每个袋中任取一张卡片,则取出的两张卡片上数字之和恰为7的概率为________.

解析:P= = .

答案:

●典例剖析

【例1】用数字1,2,3,4,5组成五位数,求其中恰有4个相同数字的概率.

解:五位数共有55个等可能的结果.现在求五位数中恰有4个相同数字的结果数:4个相同数字的取法有C 种,另一个不同数字的取法有C 种.而这取出的五个数字共可排出C 个不同的五位数,故恰有4个相同数字的五位数的结果有C C C 个,所求概率

P= = .

答:其中恰恰有4个相同数字的概率是 .

【例2】 从男女生共36人的班中,选出2名代表,每人当选的机会均等.如果选得同性代表的概率是 ,求该班中男女生相差几名?

解:设男生有x名,则女生有(36-x)人,选出的2名代表是同性的概率为P= = ,

即 + = ,

解得x=15或21.

所以男女生相差6人.

【例3】把4个不同的球任意投入4个不同的盒子内(每盒装球数不限),计算:

(1)无空盒的概率;

(2)恰有一个空盒的概率.

解:4个球任意投入4个不同的盒子内有44种等可能的结果.

(1)其中无空盒的结果有A 种,所求概率

P= = .

答:无空盒的概率是 .

(2)先求恰有一空盒的结果数:选定一个空盒有C 种,选两个球放入一盒有C A 种,其余两球放入两盒有A 种.故恰有一个空盒的结果数为C C A A ,所求概率P(A)= = .

答:恰有一个空盒的概率是 .

深化拓展

把n+1个不同的球投入n个不同的盒子(n∈N*).求:

(1)无空盒的概率;(2)恰有一空盒的概率.

解:(1) .

(2) .

【例4】某人有5把钥匙,一把是房门钥匙,但忘记了开房门的是哪一把.于是,他逐把不重复地试开,问:

(1)恰好第三次打开房门锁的概率是多少?

(2)三次内打开的概率是多少?

(3)如果5把内有2把房门钥匙,那么三次内打开的概率是多少?

解:5把钥匙,逐把试开有A 种等可能的结果.

(1)第三次打开房门的结果有A 种,因此第三次打开房门的概率P(A)= = .

(2)三次内打开房门的结果有3A 种,因此,所求概率P(A)= = .

(3)方法一:因5把内有2把房门钥匙,故三次内打不开的结果有A A 种,从而三次内打开的结果有A -A A 种,所求概率P(A)= = .

方法二:三次内打开的结果包括:三次内恰有一次打开的结果有C A A A 种;三次内恰有2次打开的结果有A A 种.因此,三次内打开的结果有C A A A +A A 种,所求概率

P(A)= = .

特别提示

1.在上例(1)中,读者如何解释下列两种解法的意义.P(A)= = 或P(A)= ? ? = .

2.仿照1中,你能解例题中的(2)吗?

●闯关训练

夯实基础

1.从分别写有A、B、C、D、E的5张卡片中,任取2张,这2张上的字母恰好按字母顺序相邻的概率为

A. B. C. D.

解析:P= = .

答案:B

2.甲、乙二人参加法律知识竞赛,共有12个不同的题目,其中选择题8个,判断题4个.甲、乙二人各依次抽一题,则甲抽到判断题,乙抽到选择题的概率是

A. B. C. D.

解析:甲、乙二人依次抽一题有C ?C 种方法,

而甲抽到判断题,乙抽到选择题的方法有C C 种.

∴P= = .

答案:C

3.从数字1、2、3、4、5中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为

A. B. C. D.

解析:从数字1、2、3、4、5中,允许重复地随机抽取3个数字,这三个数字和为9的情况为5、2、2;5、3、1;4、3、2;4、4、1;3、3、3.

∴概率为 = .

答案:D

4.一次二期课改经验交流会打算交流试点学校的论文5篇和非试点学校的论文3篇.若任意排列交流次序,则最先和最后交流的论文都为试点学校的概率是________.(结果用分数表示)

解析:总的排法有A 种.

最先和最后排试点学校的排法有A A 种.

概率为 = .

答案:

5.甲、乙二人参加普法知识竞答,共有10个不同的题目,其中选择题6个,判断题4个,甲、乙二人依次各抽一题.

(1)甲抽到选择题,乙抽到判断题的概率是多少?

(2)甲、乙二人中至少有一人抽到选择题的概率是多少?

分析:(1)是等可能性事件,求基本事件总数和A包含的基本事件数即可.(2)分类或间接法,先求出对立事件的概率.

解:(1)基本事件总数甲、乙依次抽一题有C C 种,事件A包含的基本事件数为C C ,故甲抽到选择题,乙抽到判断题的概率为 = .

(2)A包含的基本事件总数分三类:

甲抽到选择题,乙抽到判断题有C C ;

甲抽到选择题,乙也抽到选择题有C C ;

甲抽到判断题,乙抽到选择题有C C .

共C C +C C +C C .

基本事件总数C C ,

∴甲、乙二人中至少有一人抽到选择题的概率为 = 或P( )= = ,P(A)=1-P( )= .

6.把编号为1到6的六个小球,平均分到三个不同的盒子内,求:

(1)每盒各有一个奇数号球的概率;

(2)有一盒全是偶数号球的概率.

解:6个球平均分入三盒有C C C 种等可能的结果.

(1)每盒各有一个奇数号球的结果有A A 种,所求概率P(A)= = .

(2)有一盒全是偶数号球的结果有(C C )?C C ,

所求概率P(A)= = .

培养能力

7.已知8支球队中有3支弱队,以抽签方式将这8支球队分为A、B两组,每组4支.求:

(1)A、B两组中有一组恰有两支弱队的概率;

(2)A组中至少有两支弱队的概率.

(1)解法一:三支弱队在同一组的概率为

+ = ,

故有一组恰有两支弱队的概率为1- = .

解法二:有一组恰有两支弱队的概率为

+ = .

(2)解法一:A组中至少有两支弱队的概率为 + = .

解法二:A、B两组有一组至少有两支弱队的概率为1,由于对A组和B组来说,至少有两支弱队的概率是相同的,所以A组中至少有两支弱队的概率为 .

8.从1,2,…,10这10个数字中有放回地抽取3次,每次抽取一个数字,试求3次抽取中最小数为3的概率.

解:有放回地抽取3次共有103个结果,因最小数为3又可分为:恰有一个3,恰有两个3,恰有三个3.故最小数为3的结果有C ?72+C ?7+C ,

所求概率P(A)= =0.169.

答:最小数为3的概率为0.169.

探究创新

9.有点难度哟!

将甲、乙两颗骰子先后各抛一次,a、b分别表示抛掷甲、乙两颗骰子所出现的点数.

(1)若点P(a,b)落在不等式组 表示的平面区域的事件记为A,求事件A的概率;

(2)若点P(a,b)落在直线x+y=m(m为常数)上,且使此事件的概率最大,求m的值.

解:(1)基本事件总数为6×6=36.

当a=1时,b=1,2,3;

当a=2时,b=1,2;

当a=3时,b=1.

共有(1,1),(1,2),(1,3),(2,1),(2,2),(3,1)6个点落在条件区域内,

∴P(A)= = .

(2)当m=7时,(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)共有6种,此时P= = 最大.

●思悟小结

求解等可能性事件A的概率一般遵循如下步骤:

(1)先确定一次试验是什么,此时一次试验的可能性结果有多少,即求出A.

(2)再确定所研究的事件A是什么,事件A包括结果有多少,即求出m.

(3)应用等可能性事件概率公式P= 计算.

●教师下载中心

教学点睛

1.一个随机事件的发生既有随机性(对单次试验),又存在着统计规律(对大量重复试验),这是偶然性和必然性的对立统一.

2.随机事件A的概率P(A)满足0≤P(A)≤1.

(3)P(A)= 既是等可能性事件的概率的定义,又是计算这种概率的基本方法.

拓展题例

【例1】 某油漆公司发出10桶油漆,其中白漆5桶,黑漆3桶,红漆2桶.在搬运中所有标签脱落,交货人随意将这些标签重新贴上,问一个定货3桶白漆、2桶黑漆和1桶红漆的顾客,按所定的颜色如数得到定货的概率是多少?

解:P(A)= = .

答:顾客按所定的颜色得到定货的概率是 .

【例2】 一个口袋里共有2个红球和8个黄球,从中随机地接连取3个球,每次取一个.设{恰有一个红球}=A,{第三个球是红球}=B.求在下列条件下事件A、B的概率.

(1)不返回抽样;

(2)返回抽样.

解:(1)不返回抽样,

P(A)= = ,P(B)= = .

(2)返回抽样,

P(A)=C ( )2= ,P(B)= = .

高三数学教案:《双曲线复习》教学设计


经验告诉我们,成功是留给有准备的人。准备好一份优秀的教案往往是必不可少的。教案可以让学生更容易听懂所讲的内容,帮助高中教师更好的完成实现教学目标。关于好的高中教案要怎么样去写呢?急您所急,小编为朋友们了收集和编辑了“高三数学教案:《双曲线复习》教学设计”,仅供您在工作和学习中参考。

本文题目:高三数学教案:双曲线复习教案

【考纲要求】

了解双曲线的定义,几何图形和标准方程,知道它的简单性质。

【自学质疑】

1.双曲线 的 轴在 轴上, 轴在 轴上,实轴长等于 ,虚轴长等于 ,焦距等于 ,顶点坐标是 ,焦点坐标是 ,

渐近线方程是 ,离心率 ,若点 是双曲线上的点,则 , 。

2.又曲线 的左支上一点到左焦点的距离是7,则这点到双曲线的右焦点的距离是

3.经过两点 的双曲线的标准方程是 。

4.双曲线的渐近线方程是 ,则该双曲线的离心率等于 。

5.与双曲线 有公共的渐近线,且经过点 的双曲线的方程为

【例题精讲】

1.双曲线的离心率等于 ,且与椭圆 有公共焦点,求该双曲线的方程。

2.已知椭圆具有性质:若 是椭圆 上关于原点对称的两个点,点 是椭圆上任意一点,当直线 的斜率都存在,并记为 时,那么 之积是与点 位置无关的定值,试对双曲线 写出具有类似特性的性质,并加以证明。

3.设双曲线 的半焦距为 ,直线 过 两点,已知原点到直线 的距离为 ,求双曲线的离心率。

【矫正巩固】

1.双曲线 上一点 到一个焦点的距离为 ,则它到另一个焦点的距离为 。

2.与双曲线 有共同的渐近线,且经过点 的双曲线的一个焦点到一条渐近线的距离是 。

3.若双曲线 上一点 到它的右焦点的距离是 ,则点 到 轴的距离是

4.过双曲线 的左焦点 的直线交双曲线于 两点,若 。则这样的直线一共有 条。

【迁移应用】

1. 已知双曲线 的焦点到渐近线的距离是其顶点到渐近线距离的2倍,则该双曲线的离心率

2. 已知双曲线 的焦点为 ,点 在双曲线上,且 ,则点 到 轴的距离为 。

3. 双曲线 的焦距为

4. 已知双曲线 的一个顶点到它的一条渐近线的距离为 ,则

5. 设 是等腰三角形, ,则以 为焦点且过点 的双曲线的离心率为 .

6. 已知圆 。以圆 与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件的双曲线的标准方程为

高三数学教案:《古典概型复习》教学设计


本文题目:高三数学复习教案:古典概型复习教案

【高考要求】古典概型(B); 互斥事件及其发生的概率(A)

【学习目标】:1、了解概率的频率定义,知道随机事件的发生是随机性与规律性的统一;

2、 理解古典概型的特点,会解较简单的古典概型问题;

3、 了解互斥事件与对立事件的概率公式,并能运用于简单的概率计算.

【知识复习与自学质疑】

1、古典概型是一种理想化的概率模型,假设试验的结果数具有 性和 性.解古典概型问题关键是判断和计数,要掌握简单的记数方法(主要是列举法).借助于互斥、对立关系将事件分解或转化是很重要的方法.

2、(A)在10件同类产品中,其中8件为正品,2件为次品。从中任意抽出3件,则下列4个事件:①3件都是正品;②至少有一件是正品;③3件都是次品;④至少有一件是次品.是必然事件的是 .

3、(A)从5个红球,1个黄球中随机取出2个,所取出的两个球颜色不同的概率是 。

4、(A)同时抛两个各面上分别标有1、2、3、4、5、6均匀的正方体玩具一次,“向上的两个数字之和为3”的概率是 .

5、(A)某人射击5枪,命中3枪,三枪中恰好有2枪连中的概率是 .

6、(B)若实数 ,则曲线 表示焦点在y轴上的双曲线的概率是 .

【例题精讲】

1、(A)甲、乙两人参加知识竞答,共有10道不同的题目,其中选择题6道,判断题4道,甲、乙两人依次各抽一题.(1)甲抽到选择题、乙抽到判断题的概率是多少?

(2)甲、乙两人中至少有一人抽到选择题的概率是多少?

2、(B)黄种人群中各种血型的人所占的比例如下表所示:

血型 A B AB O

该血型的人所占的比(%) 28 29 8 35

已知同种血型的人可以输血,O型血可以输给任一种血型的人,任何人的血都可以输给AB型血的人,其他不同血型的人不能互相输血.小明是B型血,若小明因病需要输血,问:

(1) 任找一个人,其血可以输给小明的概率是多少?

(2) 任找一个人,其血不能输给小明的概率是多少?

3、(B)将两粒骰子投掷两次,求:(1)向上的点数之和是8的概率;(2)向上的点数之和不小于8 的概率;(3)向上的点数之和不超过10的概率.

4、(B)将一个各面上均涂有颜色的正方体锯成 (n个同样大小的正方体,从这些小正方体中任取一个,求下列事件的概率:(1)三面涂有颜色;(2)恰有两面涂有颜色;

(3)恰有一面涂有颜色;(4)至少有一面涂有颜色.

【矫正反馈】

1、(A)一个三位数的密码锁,每位上的数字都可在0到10这十个数字中任选,某人忘记了密码最后一个号码,开锁时在对好前两位号码后,随意拨动最后一个数字恰好能开锁的概率是 .

2、(A)第1、2、5、7路公共汽车都要停靠的一个车站,有一位乘客等候着1路或5路汽车,假定各路汽车首先到站的可能性相等,那么首先到站的正好是这位乘客所要乘的的车的概率是 .

3、(A)某射击运动员在打靶中,连续射击3次,事件“至少有两次中靶”的对立事件是 .

4、(B)某产品分甲、乙、丙三级,其中乙、丙两级均属次品,在正常生产情况下出现乙级品和丙级品的概率分别为3%和1%,求抽验一只是正品(甲级)的概率 .

5、(B)袋中装有4只白球和2只黑球,从中先后摸出2只求(不放回).求:(1)第一次摸出黑球的概率;(2)第二次摸出黑球的概率;(3)第一次及第二次都摸出黑球的概率.

【迁移应用】

1、(A)将一粒骰子连续抛掷三次,它落地时向上的点数依次成等差数列的概率是 .

2、(A)从鱼塘中打一网鱼,共M条,做上标记后放回池塘中,过了几天,又打上来一网鱼,共N条,其中K条有标记,估计池塘中鱼的条数为 .

3、(A)从分别写有A,B,C,D,E的5张卡片中,任取2张,这两张上的字母恰好按字母顺序相邻的概率是 .

4、(B)电子钟一天显示的时间是从00:00到23:59的每一时刻都由四个数字组成,则一天中任一时刻的四个数字之和为23的概率是 .

5、(B)将甲、乙两粒骰子先后各抛一次,a,b分别表示抛掷甲、乙两粒骰子所出现的点数.

(1)若点P(a,b)落在不等式组 表示的平面区域记为A,求事件A的概率;

(2)求P(a,b)落在直线x+y=m(m为常数)上,且使此事件的概率最大,求m的值.