88教案网

你的位置: 教案 > 高中教案 > 导航 > 2012届高考数学备考复习:数列求和及综合应用

小学数学复习教案

发表时间:2020-11-24

2012届高考数学备考复习:数列求和及综合应用。

一名爱岗敬业的教师要充分考虑学生的理解性,教师要准备好教案,这是教师的任务之一。教案可以让学生更好地进入课堂环境中来,让教师能够快速的解决各种教学问题。关于好的教案要怎么样去写呢?下面是小编为大家整理的“2012届高考数学备考复习:数列求和及综合应用”,相信能对大家有所帮助。

专题三:数列
第二讲数列求和及综合应用

【最新考纲透析】
1.了解数列求和的基本方法。
2.能在具体问题情景中识别数列的等差、等比关系,并能用有关知识解决相应问题。
3.了解等差数列与一次函数、等比数列与指数函数的关系。

【核心要点突破】
要点考向1:可转化为等差、等比数列的求和问题

考情聚焦:1.可转化为等差或等比数列的求和问题,已经成为高考考查的重点内容之一。
2.该类问题出题背景选择面广,易与函数方程、递推数列等知识综合,在知识交汇点处命题。
3.多以解答题的形式出现,属于中、高档题目。
考向链接:某些递推数列可转化为等差、等比数列解决,其转化途径有:
1.凑配、消项变换——如将递推公式(q、d为常数,q≠0,≠1)。通过凑配变成;或消常数转化为
2.倒数变换—如将递推公式(c、d为非零常数)取倒数得
3.对数变换——如将递推公式取对数得
4.换元变换——如将递推公式(q、d为非零常数,q≠1,d≠1)变换成,令,则转化为的形式。
例1:(2010福建高考文科T17)数列{}中=,前n项和满足-=(n).
(I)求数列{}的通项公式以及前n项和;
(II)若S1,t(S1+S2),3(S2+S3)成等差数列,求实数t的值。
【命题立意】本题考查数列、等差数列、等比数列等基础知识,考查运算求解能力,考查函数方程思想、化归转化思想。
【思路点拨】第一步先求的通项,可知为等比数列,利用等比数列的前n项和求解出;第二步利用等差中项列出方程求出t
【规范解答】(I)由得,又,故,从而
(II)由(I)从而由S1,t(S1+S2),3(S2+S3)成等差数列可得解得。
【方法技巧】要求数列通项公式,由题目提供的是一个递推公式,如何通过递推公式来求数列的通项。题目要求的是项的问题,这就涉及有关“项”与“和”如何转化的问题。一般地,含有的递推关系式,一般利用化“和”为“项”。
要点考向2:错位相减法求和
考情聚焦:1.错位相减法求和,是高中数学中重要的数列求和方法,是近年来高考的重点考查内容。
2.该类问题背景选择面广,可与等差、等比数列、函数、不等式等知识综合,在知识交汇点处命题。
3.多以解答题的形式出现,属于中、高档题。
考向链接:几种求通项及求和方法
(1)已知,求可用叠加法,即
(2)已知,求可用叠乘法,即
(3)设{}为等差数列,为等比数列,求数列的前n项和可用错位相减法。
例2:(2010海南宁夏高考理科T17)设数列满足,
(Ⅰ)求数列的通项公式:
(Ⅱ)令,求数列的前n项和.
【命题立意】本题主要考查了数列通项公式以及前项和的求法,解决本题的关键是仔细观察形式,找到规律,利用等比数列的性质解题.
【思路点拨】由给出的递推关系,求出数列的通项公式,在求数列的前n项和.
【规范解答】(Ⅰ)由已知,当时,
而,满足上述公式,
所以的通项公式为.
(Ⅱ)由可知,

从而②
①②得

【方法技巧】利用累加法求数列的通项公式,利用错位相减法求数列的和.
要点考向3:裂项相消法求和
考情聚焦:1.裂项相消求和是高中数学中的一个重要的数列求和方法,是近年来高考的重点考查内容。
2.该类问题背景选择面广,可与等差、等比数列、函数、不等式等知识综合,在知识交汇点处命题。
3.多以解答题的形式出现,属中、高档题目。
考向链接:裂项求和的几种常见类型
(1);
(2);
(3);
(4);
(5)若是公差为d的等差数列,则

(6);
(7)
(8)。
例3:(2010山东高考理科T18)已知等差数列满足:,,的前n项和为.
(1)求及;
(2)令(nN*),求数列的前n项和.
【命题立意】本题考查等差数列的通项公式与前n项和公式的应用、裂项法求数列的和,考查了考生的逻辑推理、等价变形和运算求解能力.
【思路点拨】(1)设出首项和公差,根据已知条件构造方程组可求出首项和公差,进而求出求及;(2)由(1)求出的通项公式,再根据通项的特点选择求和的方法.
【规范解答】(1)设等差数列的公差为d,因为,,所以有
,解得,
所以;==.
(2)由(1)知,所以bn===,
所以==,
即数列的前n项和=.
【方法技巧】数列求和的常用方法:
1、直接由等差、等比数列的求和公式求和,注意对公比的讨论.
2、错位相减法:主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广.
3、分组转化法:把数列的每一项分成两项,使其转化为几个等差、等比数列,再求解.
4、裂项相消法:主要用于通项为分式的形式,通项拆成两项之差求和,正负项相消剩下首尾若干项,注意一般情况下剩下正负项个数相同.
5、倒序相加法:把数列正着写和倒着写相加(即等差数列求和公式的推导过程的推广).
要点考向4:与不等式有关的数列问题
考情聚焦:1.数列综合问题,特别是数列与不等式的综合问题是高考中经常考查的重要内容。
2.该类问题可与函数的单调性、基本不等式、导数函数等知识交汇,综合命题。
3.多以解答题的形式出现,属高档题。
例4:(2010天津高考文科T22)在数列中,=0,且对任意k,成等差数列,其公差为2k.
(Ⅰ)证明成等比数列;
(Ⅱ)求数列的通项公式;
(Ⅲ)记,证明.
【命题立意】本小题主要考查等差数列的定义及前n项和公式、等比数列的定义、数列求和等基础知识,考查运算能力、推理论证能力、综合分析和解决问题的能力及分类讨论的思想方法.
【思路点拨】(Ⅰ)(Ⅱ)应用定义法证明、求解;(Ⅲ)对n分奇数、偶数进行讨论.
【规范解答】(I)由题设可知,,,,,。从而,所以,,成等比数列.
(II)由题设可得
所以
.
由,得,从而.
所以数列的通项公式为或写为,.
(III)由(II)可知,,
以下分两种情况进行讨论:
当n为偶数时,设n=2m
若,则,
若,则
.
所以,从而
(2)当n为奇数时,设.
所以,从而
综合(1)和(2)可知,对任意有

【高考真题探究】
1.(2010天津高考理科T6)已知是首项为1的等比数列,是的前n项和,且,则数列的前5项和为()
(A)或5(B)或5(C)(D)
【命题立意】考查等比数列的通项公式、前n项和公式.
【思路点拨】求出数列的通项公式是关键.
【规范解答】选C.设,则,
即,,.
2.(2010天津高考文科T15)设{an}是等比数列,公比,Sn为{an}的前n项和.
记设为数列{}的最大项,则=.
【命题立意】考查等比数列的通项公式、前n项和、均值不等式等基础知识.
【思路点拨】化简利用均值不等式求最值.
【规范解答】

∵当且仅当即,所以当n=4,即时,最大.
【答案】4.
3.(2010安徽高考理科T20)设数列中的每一项都不为0.
证明:为等差数列的充分必要条件是:对任何,都有

【命题立意】本题主要考查等差数列与充要条件等知识,考查考生推理论证,运算求解能力.
【思路点拨】证明可分为两步,先证明必要性,适宜采用列项相消法,再证明充分性,可采用数学归纳法或综合法.
【规范解答】已知数列中的每一项都不为0,
先证
若数列为等差数列,设公差为,
当时,有,
即对任何,有成立;
当时,显然也成立.
再证
对任意,有①,
②,
由②-①得:-
上式两端同乘,得③,
同理可得④,
由③-④得:,所以为等差数列
【方法技巧】
1、在进行数列求和问题时,要善于观察关系式特点,进行适当的变形,如分组、裂项等,转化为常见的类型进行求和;
2、对数列中的含n的式子,注意可以把式子中的n换为或得到相关的式子,再进行化简变形处理;也可以把n取自然数中的具体的数1,2,3…等,得到一些等式归纳证明.
4.(2010安徽高考文科T21)设是坐标平面上的一列圆,它们的圆心都在轴的正半轴上,且都与直线相切,对每一个正整数,圆都与圆相互外切,以表示的半径,已知为递增数列.
(1)证明:为等比数列;
(2)设,求数列的前项和.

【命题立意】本题主要考查等比数列的基本知识,利用错位相减法求和等基本方法,考察考生的抽象概括能力以及推理论证能力.
【思路点拨】(1)求直线倾斜角的正弦,设的圆心为,得,同理得,结合两圆相切得圆心距与半径间的关系,得两圆半径之间的关系,即中与的关系,可证明为等比数列;
(2)利用(1)的结论求的通项公式,代入数列,然后采用错位相减法求和.
【规范解答】

【方法技巧】
1、对数列中的含n的式子,注意可以把式子中的n换为或得到相关的式子,再进行化简变形处理;
2、在进行数列求和问题时,要善于观察关系式特点,进行适当的处理,如分组、列项相消、错位相减等,转化为常见的类型进行求和.
5.(2010江苏高考T19)设各项均为正数的数列的前n项和为,已知,数列是公差为的等差数列.
(1)求数列的通项公式(用表示);
(2)设为实数,对满足的任意正整数,不等式都成立。求证:的最大值为.
【命题立意】本题主要考查等差数列的通项、求和、基本不等式以及不等式的恒成立问题等有关知识,考查探索、分析及论证的能力.
【思路点拨】(1)先求,然后利用的关系求解;(2)利用(1)中所求利用基本不等式解决.
【规范解答】(1)由题意知:,

化简,得:

当时,,适合情形.
故所求.
(2)(方法一)
,恒成立.
又,,
故,即的最大值为.
(方法二)由及,得,.
于是,对满足题设的,,有

所以的最大值.
另一方面,任取实数.设为偶数,令,则符合条件,且.
于是,只要,即当时,.
所以满足条件的,从而.
因此的最大值为.
6.(2010重庆高考理科T21)在数列中,=1,,其中实数。
(1)求的通项公式;
(2)若对一切有,求的取值范围。
【命题立意】本小题考查归纳、猜想解题,考查数学归纳法及其应用,考查数列的基础知识,考查运算求解能力,考查化归与转化思想,考查分类讨论的思想.
【思路点拨】(1)先求出数列的前几项,归纳猜想得出结论,再用数学归纳法证明;(2)对恒成立问题进行等价转化,
【规范解答】(1)【方法1】:由,,

,猜测(),
下面用数学归纳法证明
当n=1时,等式成立;
假设当n=k时,等式成立,即,则当n=k+1时,
综上可知,对任何都成立.
【方法2】:由原式,
令,则,,因此对有
因此,,。又当n=1时上式成立。
因此,,。
(2)【方法1】:由,得
因,所以
解此不等式得:对一切,有或,其中
易知(因为的分子、分母的最高次项都是2,且系数都是8,所以极限值是);用放缩法得:
,所以,
因此由对一切成立得;
又,易知单调递增,故对一切成立,因此由对一切成立得:
,从而c的取值范围为.
【方法2】:由,得,
因,所以对恒成立.
记,下分三种情况讨论。
(i)当即或时,代入验证可知只有满足要求
(ii)当时,抛物线开口向下,因此当正整数k充分大时,,不符合题意,此时无解。
(iii)当,即或时,抛物线开口向上,其对称轴必在直线的左侧,因此,在上是增函数。
所以要使对恒成立,只需即可。
由解得或
结合或得或
综合以上三种情况,的取值范围为.
【方法技巧】(1)第(1)问有两种方法解答:①归纳猜想并用数学归纳法证明;②数列的迭代法(或累加消项法);(2)第(2)问中对条件“恒成立”进行等价转化,转化为一元二次不等式求解或转化为二次函数进行讨论;(3)放缩法的运用

【跟踪模拟训练】
一、选择题(每小题6分,共36分)
1.已知{an}为等差数列,若-1,且它的前n项和Sn有最大值,那么使Sn0的n的最大值为()
(A)11(B)20(C)19(D)21
2.已知等比数列{an}中,a2=1,则其前3项的和S3的取值范围是()
(A)(-∞,-1]
(B)(-∞,0)∪(1,+∞)
(C)[3,+∞)
(D)(-∞,-1]∪[3,+∞)
3.首项为b,公比为a的等比数列{an}的前n项和为Sn,对任意的n∈N*,点(Sn,Sn+1)在()
(A)直线y=ax+b上
(B)直线y=bx+a上
(C)直线y=bx-a上
(D)直线y=ax-b上
4.在数列中,若存在非零整数,使得对于任意的正整数均成立,那么称数列为周期数列,其中叫做数列的周期.若数列满足,如,当数列的周期最小时,该数列的前2010项的和是()
5.古希腊人常用小石子在沙滩上摆成各种形状来研究数.比如:
他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16,…,这样的数为正方形数.下列数中既是三角形数又是正方形数的是()
(A)289(B)1024(C)1225(D)1378
6.(2010届安徽省安庆市高三二模(文))已知实数、满足:(其中是虚数单位),若用表示数列的前项和,则的最大值是()
A.12B.14C.15D.16
二、填空题(每小题6分,共18分)
7.已知等比数列满足,且,则当时,
________
8.类比是一个伟大的引路人。我们知道,等差数列和等比数列有许多相似的性质,请阅读下表并根据等差数列的结论,类似的得出等比数列的两个结论:,
9.将杨辉三角中的奇数换成1,偶数换成0,得到如图所示的0-1三角数表,从上往下数,第1次全行的数都为1的是第1行,第2次全行的数都为1的是第3行,…,第n次全行的数都为1的是第_______行;第61行中1的个数是_______.
三、解答题(10、11题每题15分,12题16分,共46分)
10.已知数列{an}的首项a1=5,前n项和为Sn,且Sn+1=2Sn+n+5(n∈N*).
(1)证明数列{an+1}是等比数列;
(2)令f(x)=a1x+a2x2+…+anxn,求函数f(x)在点x=1处的导数f′(1).
11.已知二次函数y=f(x)的图象经过坐标原点,其导函数为f′(x)=6x-2.数列{an}的前n项和为Sn,点(n,Sn)(n∈N*)均在函数y=f(x)的图象上.
(1)求数列{an}的通项公式;
12.在数列中,.
(1)求的值;
(2)求数列的通项公式;
(3)求的最大值.

参考答案
一、选择题
1.【解析】选C.∵等差数列{an}中,-1且它的前n项和Sn有最大值,∴a100,a110,故a11-a10.
即a11+a100,而a10+a100,
∴使Sn0的n的最大值为19.
2.
3.
4.D
5.【解析】选C.从图中观察知
图1中an=1+2+…+n=
图2中bn=n2,
显然1225在an中n=49,
在bn中n=35.
6.D
二、填空题
7.
8.,
9.【解析】①第1次全行的数都是1的是第1行,
第2次全行的数都是1的是第3行,
第3次全行的数都是1的是第7行,
……
第n次全行的数都是1的是第2n-1行,
②由上面结论知第63行有64个1,
则1100……0011……61行
1010……101……62行
1111……11……63行
从上面几行可知第61行数的特点是两个1两个0交替出现,最后两个为1,
∴在第61行的62个数中有32个1.
答案:2n-132
三、解答题
10.【解析】(1)由已知Sn+1=2Sn+n+5,
∴n≥2时,Sn=2Sn-1+n+4,
两式相减,得Sn+1-Sn=2(Sn-Sn-1)+1,
即an+1=2an+1.
从而an+1+1=2(an+1).
当n=1时,S2=2S1+1+5,
∴a1+a2=2a1+6,
又a1=5,∴a2=11,
∴a2+1=2(a1+1),故总有an+1+1=2(an+1),n∈N*.
又∵a1=5,∴an+1≠0,
即{an+1}是以a1+1=6为首项,2为公比的等比数列.
(2)由(1)知an=3×2n-1.
∵f(x)=a1x+a2x2+…+anxn,
∴f′(x)=a1+2a2x+…+nanxn-1.
11.【解析】(1)依题意可设f(x)=ax2+bx(a≠0),
则f′(x)=2ax+b.
由f′(x)=6x-2得a=3,b=-2,
所以f(x)=3x2-2x.
又由点(n,Sn)(n∈N*)均在函数y=f(x)的图象上得Sn=3n2-2n.
当n≥2时,an=Sn-Sn-1
=(3n2-2n)-[3(n-1)2-2(n-1)]=6n-5;
当n=1时,a1=S1=3×12-2×1=1=6×1-5.
所以an=6n-5(n∈N*).
12.【解析】(1)由且…)
得.
(2)由变形得

是首项为公比为的等比数列
即()
(3)①当是偶数时
随增大而减少
当为偶数时,最大值是.
②当是奇数时
随增大而增大且
综上最大值为

【备课资源】
1.已知等比数列{an}的公比q0,前n项的和为Sn,则S4a5与S5a4的大小关系是()
(A)S4a5=S5a4(B)S4a5S5a4
(C)S4a5S5a4(D)不能确定

相关推荐

2012届高考数学备考复习:导数及其应用


一名优秀的教师在教学时都会提前最好准备,高中教师要准备好教案,这是每个高中教师都不可缺少的。教案可以让讲的知识能够轻松被学生吸收,帮助高中教师在教学期间更好的掌握节奏。那么怎么才能写出优秀的高中教案呢?下面是小编精心为您整理的“2012届高考数学备考复习:导数及其应用”,但愿对您的学习工作带来帮助。

专题一:集合、常用逻辑用语、不等式、函数与导数
第五讲导数及其应用
【最新考纲透析】
1.导数概念及其几何意义
(1)了解导数概念的实际背景。
(2)理解导数的几何意义。
2.导数的运算
(1)能根据导数定义求函数的导数。
(2)能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数。
(3)能求简单的复合函数(仅限于形如的复合函数)的导数。
3.导数在研究函数中的应用
(1)了解函数单调性和导数的关系,能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次)。
(2)了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间了函数的最大值、最小值(其中多项式函数一般不超过三次)。
4.生活中的优化问题
会利用导数解决某些实际问题
5.定积分与微积分基本定理
(1)了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念。
(2)了解微积分基本定理的含义。

【核心要点突破】
要点考向1:利用导数研究曲线的切线
考情聚焦:1.利用导数研究曲线的切线是导数的重要应用,为近几年各省市高考命题的热点。
2.常与函数的图象、性质及解析几何知识交汇命题,多以选择、填空题或以解答题中关键一步的形式出现,属容易题。
考向链接:1.导数的几何意义
函数在处的导数的几何意义是:曲线在点处的切线的斜率(瞬时速度就是位移函数对时间的导数)。
2.求曲线切线方程的步骤:
(1)求出函数在点的导数,即曲线在点处切线的斜率;
(2)在已知切点坐标和切线斜率的条件下,求得切线方程为。
注:①当曲线在点处的切线平行于轴(此时导数不存在)时,由切线定义可知,切线方程为;
②当切点坐标未知时,应首先设出切点坐标,再求解。
例1:(2010海南高考理科T3)曲线在点处的切线方程为()
(A)(B)(C)(D)
【命题立意】本题主要考查导数的几何意义,以及熟练运用导数的运算法则进行求解.
【思路点拨】先求出导函数,解出斜率,然后根据点斜式求出切线方程.
【规范解答】选A.因为,所以,在点处的切线斜率,所以,切线方程为,即,故选A.
要点考向2:利用导数研究导数的单调性
考情聚焦:1.导数是研究函数单调性有力的工具,近几年各省市高考中的单调性问题,几乎均用它解决。
2.常与函数的其他性质、方程、不等式等交汇命题,且函数一般为含参数的高次、分式或指、对数式结构,多以解答题形式考查,属中高档题目。
考向链接:利用导数研究函数单调性的一般步骤。
(1)确定函数的定义域;
(2)求导数;
(3)①若求单调区间(或证明单调性),只需在函数的定义域内解(或证明)不等式>0或<0。
②若已知的单调性,则转化为不等式≥0或≤0在单调区间上恒成立问题求解。
例2:(2010山东高考文科T21)已知函数
(1)当时,求曲线在点处的切线方程;
(2)当时,讨论的单调性.
【命题立意】本题主要考查导数的概念、导数的几何意义和利用导数研究函数性质的能力.考查分类讨论思想、数形结合思想和等价变换思想.
【思路点拨】(1)根据导数的几何意义求出曲线在点处的切线的斜率;(2)直接利用函数与导数的关系讨论函数的单调性,同时应注意分类标准的选择.
【规范解答】(1)当
所以
因此,,即曲线

所以曲线
(2)因为,所以,令
当时,所以
当时,0,此时,函数单调递减;
当时,0,此时,函数单调递增.
当时,由,
即,解得.
①当时,,恒成立,此时,函数在(0,+∞)上单调递减;
②当时,,
时,,此时,函数单调递减
时,0,此时,函数单调递增
时,,此时,函数单调递减
③当时,由于,
时,,此时,函数单调递减:
时,0,此时,函数单调递增.
综上所述:
当时,函数在上单调递减;函数在上单调递增
当时,函数在上单调递减
当时,函数在上单调递减;函数在上单调递增;
函数在上单调递减.
【方法技巧】1、分类讨论的原因
(1)某些概念、性质、法则、公式分类定义或分类给出;
(2)数的运算:如除法运算中除式不为零,在实数集内偶次方根的被开方数为非负数,对数中真数与底数的要求,不等式两边同乘以一个正数还是负数等;
(3)含参数的函数、方程、不等式等问题,由参数值的不同而导致结果发生改变;
(4)在研究几何问题时,由于图形的变化(图形位置不确定或形状不确定),引起问题的结果有多种可能.
2、分类讨论的原则
(1)要有明确的分类标准;
(2)对讨论对象分类时要不重复、不遗漏;
(3)当讨论的对象不止一种时,应分层次进行.
3、分类讨论的一般步骤
(1)明确讨论对象,确定对象的范围;
(2)确定统一的分类标准,进行合理分类,做到不重不漏;
(3)逐段逐类讨论,获得阶段性结果;
(4)归纳总结,得出结论.
要点考向3:利用导数研究函数的极值与最值
考情聚焦:1.导数是研究函数极值与最值问题的重要工具,几乎是近几年各省市高考中极值与最值问题求解的必用方法。
2.常与函数的其他性质、方程、不等式等交汇命题,且函数一般为含参数的高次、分式、或指、对数式结构,多以解答题形式出现,属中高档题。
考向链接:1.利用导数研究函数的极值的一般步骤:
(1)确定定义域。(2)求导数。(3)①或求极值,则先求方程=0的根,再检验在方程根左右值的符号,求出极值。(当根中有参数时要注意分类讨论)
②若已知极值大小或存在情况,则转化为已知方程=0的根的大小或存在情况,从而求解。
2.求函数的极值与端点处的函数值比较,其中最大的一个是最大值,最小的一个是最小值。
例3:(2010天津高考理科T21)已知函数
(Ⅰ)求函数的单调区间和极值;
(Ⅱ)已知函数的图象与函数的图象关于直线对称,证明当时,
(III)如果,且,证明
【命题立意】本小题主要考查导数的应用,利用导数研究函数的单调性与极值等基础知识,考查运算能力及用函数思想分析解决问题的能力。
【思路点拨】利用导数及函数的性质解题。
【规范解答】
(Ⅰ)解:f’,令f’(x)=0,解得x=1,
当x变化时,f’(x),f(x)的变化情况如下表
x()1()
f’(x)+0-
f(x)极大值
所以f(x)在()内是增函数,在()内是减函数。
函数f(x)在x=1处取得极大值f(1)且f(1)=
(Ⅱ)证明:由题意可知g(x)=f(2-x),得g(x)=(2-x)
令F(x)=f(x)-g(x),即
于是
当x1时,2x-20,从而’(x)0,从而函数F(x)在[1,+∞)是增函数。
又F(1)=F(x)F(1)=0,即f(x)g(x).
(Ⅲ)证明:(1)

(2)若
根据(1)(2)得
由(Ⅱ)可知,,则=,所以,从而.因为,所以,又由(Ⅰ)可知函数f(x)在区间(-∞,1)内是增函数,所以,即2。
要点考向4:利用导数研究函数的图象
考情聚焦:1.该考向由于能很好地综合考查函数的单调性、极值(最值)、零点及数形结合思想等重要考点,而成为近几年高考命题专家的新宠。
2.常与函数的其他性质、方程、不等式、解析几何知识交汇命题,且函数一般为含参数的高次、分式、指、对数式结构,多以解答题中压轴部分出现。属于较难题。
例4:(2010福建高考理科T20)(Ⅰ)已知函数f(x)=x3-x,其图像记为曲线C.
(i)求函数f(x)的单调区间;
(ii)证明:若对于任意非零实数x1,曲线C与其在点P1(x1,f(x1)处的切线交于另一点P2(x2,f(x2).曲线C与其在点P2处的切线交于另一点P3(x3f(x3)),线段P1P2,P2P3与曲线C所围成封闭图形的面积分别记为S1,S2,则为定值:
(Ⅱ)对于一般的三次函数g(x)=ax3+bx2+cx+d(a0),请给出类似于(Ⅰ)(ii)的正确命题,并予以证明。
【命题立意】本小题主要考查函数、导数、定积分等基础知识,考查抽象概括、推理论证、运算求解能力,考查函数与方程思想、数形结合思想、化归转化思想、特殊与一般的思想。
【思路点拨】第一步(1)利用导数求解函数的单调区间,(2)利用导数求解切线的斜率,写出切线方程,并利用定积分求解及其比值;第二步利用合情推理的方法对问题进行推广得到相关命题,并利用平移的方法进行证明。
【规范解答】(Ⅰ)(i),令得到,令有,因此原函数的单调递增区间为和;单调递减区间为;
(ii),,,因此过点的切线方程为:,即,由得,所以或,故,进而有,用代替,重复上面的计算,可得和,又,,因此有。
(Ⅱ)【命题】若对于任意函数的图像为曲线,其类似于(I)(ii)的命题为:若对任意不等于的实数,曲线与其在点处的切线交于另一点,曲线与其在点处的切线交于另外一点,线段、与曲线所围成面积为,则。
【证明】对于曲线,无论如何平移,其面积值是恒定的,所以这里仅考虑的情形,,,,因此过点的切线方程为:
,联立,得到:,
化简:得到
从而所以同样运用(i)中方法便可以得到
所以。
【方法技巧】函数导数的内容在历届高考中主要切线方程、导数的计算,利用导数判断函数单调性、极值、最值等问题,试题还与不等式、三角函数、数列、立几、解几等知识的联系,类型有交点个数、恒成立问题等,其中渗透并充分利用构造函数、分类讨论、转化与化归、数形结合等重要的思想方法,主要考查导数的工具性作用。

【高考真题探究】
1.(2010全国高考卷Ⅱ文科T7)若曲线在点处的切线方程是,则
(A)(B)
(C)(D)
【命题立意】本题考查了导数的几何意义和曲线的切线方程知识。
【思路点拨】由题意知,曲线在点处的切线的斜率为1,根据导数的几何意义得y在x=0
处的导数为1,再把(0,b)代入切线方程可以解出a、b的值。
【规范解答】选A,,在点处的切线方程是。
斜率为1,所以,所以.
2.(2010江西高考理科T12)如图,一个正五角星薄片(其对称轴与水面垂直)匀速地升出水面,记时刻五角星露出水面部分的图形面积为,则导函数的图像大致为

【命题立意】本题将各知识点有机结合,属创新题型,主要考查对函数的图像识别能力,灵活分析问题和解决问题的能力,考查分段函数,考查分段函数的导数,考查分类讨论的数学思想,考查函数的应用,考查平面图形面积的计算,考查数形结合的思维能力.
【思路点拨】本题结合题意及图像的变化情况可用排除法;也可先求面积的函数,再求其导数,最后结合图像进行判断.
【规范解答】选A.方法一:在五角星匀速上升过程中露出的图形部分的面积共有四段不同变化情况,第一段和第三段的变化趋势相同,只有选项A、C符合要求,从而先排除B、D,在第二段变化中,面积的增长速度显然较慢,体现在导函数图像中其图像应下降,排除选项C,故选A.
方法二:设正五角星的一个顶点到内部较小正五边形的最近边的距离为1,且设,则依据题意可得:
其导函数故选A.
【方法技巧】从题设条件出发,结合所学知识点,根据“四选一”的要求,逐步剔除干扰项,从而得出正确的判断.这种方法适应于定性型或不易直接求解的选择题.当题目中的变化情况较多时,先根据某些条件在选择支中找出明显与之矛盾的,予以排除,再根据另一些条件在缩小的选择支的范围内找出矛盾,这样逐步筛选,直到得出正确的选择.它与特例法、图解法等结合使用是解选择题的常用方法,近几年高考选择题中考查较多.
3.(2010全国高考卷Ⅱ理科T10)若曲线在点处的切线与两个坐标围成的三角形的面积为18,则[来
(A)64(B)32(C)16(D)8
【命题立意】本题主要考查了导数的几何意义,曲线的切线方程求法,考查考生的运算求解能力.
【思路点拨】先求出切线方程,然后表示出切线与两个坐标围成的三角形的面积。
【规范解答】选A,所以曲线在点处的切线:
所以,
【方法技巧】利用导数解决切线问题有两种类型:(1)“在”曲线上一点处的切线问题,先对函数求导,代入点的横坐标得到斜率。(2)“过”曲线上一点的切线问题,此时该点未必是切点,
故应先设切点,再求切点坐标。
4.(2010北京高考理科T18)已知函数()=In(1+)-+,(≥0)。
(Ⅰ)当=2时,求曲线=()在点(1,(1))处的切线方程;
(Ⅱ)求()的单调区间。
【命题立意】本题考查了导数的应用,考查利用导数求切线方程及单调区间。解决本题时一个易错点是忽视定义域。
【思路点拨】(1)求出,再代入点斜式方程即可得到切线方程;(2)由讨论的正负,从而确定单调区间。
【规范解答】(I)当时,,
由于,,
所以曲线在点处的切线方程为

(II),.
当时,.
所以,在区间上,;在区间上,.
故的单调递增区间是,单调递减区间是.
当时,由,得,
所以,在区间和上,;在区间上,
故的单调递增区间是和,单调递减区间是.
当时,
故的单调递增区间是.
当时,,得,.
所以在区间和上,;在区间上,
故得单调递增区间是和,单调递减区间是
【方法技巧】
(1)过的切线方程为。
(2)求单调区间时要在定义域内讨论内的正负。
5.(2010全国高考卷Ⅱ理科T22)设函数.
(Ⅰ)证明:当时,;
(Ⅱ)设当时,,求a的取值范围.
【命题立意】本题考查了导数的单调性、极值等知识,结合不等式考查推理论证能力、运算求解能力,
考查分类讨论思想、化归与转化思想。
【思路点拨】(Ⅰ)可以构造函数,利用导数单调性,求当时的最值证明不等式成立,
(Ⅱ)可结合(Ⅰ)的结论和方法证明,要注意对a分类讨论.
【规范解答】(Ⅰ)当时,当且仅当
令,则
当时,是增函数;当时,是减函数;
于是g(x)在x=0处达到最小值,因而当时,即
所以当x-1时,
(Ⅱ)由题设,此时
当a0时,若,则不成立;
当a0时,令h(x)=axf(x)+f(x)-x,则.当且仅当
⑴当时,由(Ⅰ)知
=(2a-1)f(x)
h(x)在是减函数,即
⑵当a时,由⑴知x
当时,所以h(x)h(0)=0,即
综上,a的取值范围是[0,.
6.(2010江苏高考T20)设是定义在区间上的函数,其导函数为。如果存在实数和函数,其中对任意的都有0,使得,则称函数具有性质。
(1)设函数,其中为实数。
(i)求证:函数具有性质;(ii)求函数的单调区间。
(2)已知函数具有性质,给定设为实数,
,,且,
若||||,求的取值范围。
【命题立意】本题主要考查函数的概念、性质、图象及导数等基础知识,考查灵活运用数形结合、分类讨论的思想方法进行探索、分析与解决问题的综合能力。
【思路点拨】(1)求出,并将其表示为的形式,注意.
(2)利用一的结论求解。
【规范解答】
(1)(i)
∵时,恒成立,
∴函数具有性质;
(ii)(方法一)设,与的符号相同。
当时,,,故此时在区间上递增;
当时,对于,有,所以此时在区间上递增;
当时,图像开口向上,对称轴,而,所以当x1时,所以此时在区间上递增;
当时,图像开口向上,对称轴,方程的两根为:,而
当时,,,故此时在区间上递减;同理得:在区间上递增。
综上所述,当时,在区间上递增;
当时,在上递减;在上递增。
(方法二)当时,对于,
所以,故此时在区间上递增;
当时,图像开口向上,对称轴,方程的两根为:,而
当时,,,故此时在区间上递减;同理得:在区间上递增。
综上所述,当时,在区间上递增;
当时,在上递减;在上递增。
(2)(方法一)由题意,得:
又对任意的都有0,
所以对任意的都有,在上递增。
又。
当时,,且,
若,∴,(不合题意)。
综合以上讨论,得所求的取值范围是(0,1)。
(方法二)由题设知,的导函数,其中函数对于任意的都成立。所以,当时,,从而在区间上单调递增。
①当时,有,
,得,同理可得,所以由的单调性知、,
从而有||||,符合题设。
②当时,,
,于是由及的单调性知,所以||≥||,与题设不符。
③当时,同理可得,进而得||≥||,与题设不符。
因此综合①、②、③得所求的的取值范围是(0,1)

【跟踪模拟训练】
一、选择题(共6小题,每小题6分,总分36分)
1.若函数在R上可导,且,则(C)
A.B.C.D.无法确定
2.函数在定义域内可导,若,且当时,,设,,,则(D)
A.B.C.D.
3.设函数在上可导,且,则当时有(A)
A.B.
C.D.
4.设f(x)是函数f(x)的导函数,y=f(x)的图像如右图所示,则y=f(x)的图像最有可能的是(C)
5.在区间上的最大值是(C)
A.B.0C.2D.4
6.如图,函数的图象在点P处的切线是,则=(C).
A.B.0C.D.不确定

二、填空题(共3小题,每小题6分,总分18分)
7.过原点作函数的图像的切线,则切点坐标是
8.函数y=x2(x0)的图像在点(ak,ak2)处的切线与x轴的交点的横坐标为ak+1,,若a1=16,则a1+a3+a5的值是________
9.函数的单调减区间为。
三、解答题(10、11小题各15分,12题16分)
10.已知函数f(x)=x3-3ax-1,a≠0.
(1)求f(x)的单调区间;
(2)若f(x)在x=-1处取得极值,直线y=m与y=f(x)的图象有三个不同的交点,求m的取值范围.
11.(2010安徽安庆高三二模(文))已知函数.
⑴当时,求函数的最小值;
⑵若在上是单调函数,求的取值范围.
12.(2010届北京市朝阳区高三一模(文))已知函数,.
(Ⅰ)若函数在处取得极值,试求的值,并求在点处的切线方程;
(Ⅱ)设,若函数在上存在单调递增区间,求的取值范围.

参考答案
1.C
2.D
3.A
4.C
5.C
6.C
7.
8.【命题立意】本题考查导数的几何意义、函数的切线方程以及数列的通项等内容。
【思路点拨】先由导数的几何意义求得函数y=x2(x0)的图像在点(ak,ak2)处的切线的斜率,然后求得切线方程,再由,即可求得切线与x轴交点的横坐标。
【规范解答】由y=x2(x0)得,,
所以函数y=x2(x0)在点(ak,ak2)处的切线方程为:
当时,解得,
所以.
【答案】21
9.【解析】考查利用导数判断函数的单调性。

由得单调减区间为。亦可填写闭区间或半开半闭区间。
【答案】
10.【解析】(1)f′(x)=3x2-3a=3(x2-a),
当a0时,对x∈R有f′(x)0.
∴当a0时,f(x)的单调增区间为(-∞,+∞).
(2)∵f(x)在x=-1处取得极值,
∴f′(-1)=3×(-1)2-3a=0,∴a=1.
∴f(x)=x3-3x-1.f′(x)=3x2-3,
由f′(x)=0解得x1=-1,x2=1,
由(1)中f(x)的单调性可知,f(x)在x=-1处取得极大值
f(-1)=1,在x=1处取得极小值f(1)=-3.
∵直线y=m与函数y=f(x)的图象有三个不同的交点,又f(-3)=
-19-3.f(3)=171,结合f(x)的单调性可知,m的取值范围是
(-3,1).
11.解析:(1)当时,
………2分
令得或(,舍去负值)。………3分
函数及导数的变化情况如下表:
∴当时,函数的最小值是………6分
(2),………7分

要使在上为单调函数,只需对,都有或
,∴,∴………8分
①当时,恒成立即恒成立;………10分
②当时,,∴,∴恒成立;……12分
综上所述:当时,在上为单调函数………13分
12.解析:(Ⅰ)=.
因为函数在处取得极值,所以,解得.
于是函数,,.
函数在点处的切线的斜率,
则在点处的切线方程为.…………………………6分
(Ⅱ)当时,是开口向下的抛物线,要使在上存在子区间使,应满足或
解得,或,所以的取值范围是.……14分

【备课资源】
1.(2008全国Ⅱ)设曲线在点处的切线与直线平行,则()
A.1B.C.D.
【解析】选A.,于是切线的斜率,∴有
2.(2009江西高考)设函数f(x)=g(x)+x2,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,则曲线y=f(x)在点(1,f(1))处切线的斜率为()
【解析】选A.由已知g′(1)=2,而f′(x)=g′(x)+2x,
所以f′(1)=g′(1)+2×1=4.
3.若函数y=f(x)的导函数在区间[a,b]上是增函数,则函数y=f(x)在区间[a,b]上的图象可能是()
【解析】选A.因为函数y=f(x)的导函数y=f′(x)在区间[a,b]上是增函数,即在区间[a,b]上各点处的斜率k是递增的,由图易知,选A.
4.已知函数f(x)满足f(x)=f(π-x),且当x∈(-,)时,f(x)=x+sinx,则()
(A)f(1)f(2)f(3)
(B)f(2)f(3)f(1)
(C)f(3)f(2)f(1)
(D)f(3)f(1)f(2)

5.函数f(x)=x3+3ax2+3[(a+2)x+1]有极大值又有极小值,则a的取值范围是________.
【解析】f′(x)=3x2+6ax+3(a+2),若f(x)既有极大值,又有极小值,则f′(x)=0有两个不等的实根,
即Δ=(6a)2-4×3×3(a+2)0,a2-a-20,
解得a2或a-1.
答案:{a|a-1或a2}
6.(2009马鞍山模拟)由直线x=1,x=2,曲线y=sinx及x轴所围图形的面积为_________.
【解析】由已知方程
=cos1-(2cos21-1)=1+cos1-2cos21
答案:1+cos1-2cos21
7.已知函数
(1)求的导数;
(2)求证:不等式sin3x>x3cosx在(0,]上恒成立;
(3)求的最大值.
9.(2009马鞍山模拟)已知函数f(x)=x2-alnx,

(1)若函数f(x)在x=2处的切线方程为y=x+b,求a,b的值;
(2)若函数f(x)在(1,+∞)上是增函数,求实数a的取值范围;
(3)讨论方程f(x)=0解的个数,并说明理由.
【解析】(1)∵f′(2)=1,∴a=2,
∵(2,f(2))在直线y=x+b上,
∴b=f(2)-2=2-2ln2-2=-2ln2.
10.(2009芜湖模拟)若存在实常数k和b,使得函数f(x)和g(x)对其定义域上的任意实数x分别满足:
f(x)≥kx+b和g(x)≤kx+b,则称直线l:y=kx+b为f(x)和g(x)的“隔离直线”.已知h(x)=x2,φ(x)=2elnx(其中e为自然对数的底数).
(1)求F(x)=h(x)-φ(x)的极值;
(2)函数h(x)和φ(x)是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.
11.(2009山东高考)已知函数f(x)=ax3+bx2+x+3,其中a≠0.
(1)当a,b满足什么条件时,f(x)取得极值?
(2)已知a0.且f(x)在区间(0,1]上单调递增,试用a表示出b的取值范围.
【解析】(1)由已知得f′(x)=ax2+2bx+1,令f′(x)=0得ax2+2bx+1=0.
若f(x)可取得极值,方程ax2+2bx+1=0必须有解,其中Δ=4b2-4a.
当Δ=(2b)2-4a≤0时无极值.
当Δ=(2b)2-4a0,即b2a时.
f′(x)=ax2+2bx+1=0有两个不同的解,即
因此f′(x)=a(x-x1)(x-x2),
①当a>0时,f(x),f’(x)随x的变化情况如下表:
由此表可知f(x)在点x1,x2处分别取得极大值和极小值.
②当a<0时,f(x),f’(x)随x的变化情况如下表:
由此表可知f(x)在点x1,x2处分别取得极大值和极小值.
综上所述,当a和b满足b2>a时,f(x)能取得极值.

常见的数列求和及应用


一名优秀的教师在教学时都会提前最好准备,作为教师就需要提前准备好适合自己的教案。教案可以让学生们能够在上课时充分理解所教内容,帮助教师掌握上课时的教学节奏。怎么才能让教案写的更加全面呢?下面的内容是小编为大家整理的常见的数列求和及应用,供您参考,希望能够帮助到大家。

常见的数列求和及应用
一、自主探究
1、等差数列的前n项和公式:
=。
2、等比数列的前n项和公式:
①当时,;
②当时,=。
3、常见求和公式有:
①1+2+3+4+…+n=
②1+3+5+…+(2n-1)=
※③=
※④
二、典例剖析
(一)、分组求和法:某些数列,通过适当分组,可得出两个或几个等差数列或等比数列,进而利用公式分别求和,从而得出原数列的和。
例1已知,求数列{}的前n项和。

变式练习:已知,求数列{}的前n项和。

(二)、裂项求和法:如果数列的通项公式可转化为形式,常采用裂项求和的方法。特别地,当数列形如,其中是等差数列,可采用此法
例2求和:()

变式练习:已知数列的通项公式,求数列{}的前n项和。

(三)、奇偶并项法:当数列通项中出现时,常常需要对n取值的奇偶性进行分类讨论。
例3求和:

(四)、倒序相加法:此法主要适用数列前后具有“对称性”,即“首末两项之和相等”的形式。
例4求在区间内分母是3的所有不可约分数之和。

变式练习:已知且.求

(五)错位相减法:一般地,如果数列时等差数列,是等比数列,求数列的前项和时,可采用此法,在等式的两边乘以或,再错一位相减。
例5求和:
变式练习:求和:

三、提炼总结:数列的求和是数列的一个重要内容,它往往是数列知识的综合体现,求和题在试题中更是常见,它常用来考察我们的基础知识,分析问题和解决问题的能力。任何一个数列的前n项和都是从第1项一直加到第n项。数列的求和主要有以下几种方法。⑴公式法;⑵分组求和法;⑶裂项求和法;拆项成差求和经常用到下列拆项公式,请补充完整:①=;
②=;
③=;
④=;
⑷奇偶并项法;⑸倒序相加法;⑹错位相减法。
四、课堂检测:
1、已知数列的通项,由所确定的数列的前项之和是()
A.B.C.D.
2、已知数列为等比数列,前三项为则等于()
A.B.C.D.
3、设数列,(1+2+4),…,()的前m项和为2036,则m的值为()
A.8B.9C.10D.11
4、在50和350之间所有末位数是1的整数之和是()
A.5880B.5539C.5280D.4872
5、
6、若,则n=
7、设正项等比数列的首项,前n项和为,且
①求的通项;
②求的前n项和
8、数列中,且满足,
①求数列的通项公式;
②设是否存在最大的整数m,使得任意的n均有>总成立。

2012届高考数学备考复习教案


高考综合演练3

一、选择题(本大题共12小题,每小题5分,共60分)
1.若集合,则是()
(A)(B)
(C)(D)

2.在同一坐标系中画出函数,,的图象,可能正确的是(D)
3.已知数列(D)
A.28B.33C.D.
4.已知非零向量、,若+2与-2互相垂直,则等于(B)
A.B.2
C.D.4
5.如图,若是长方体被平面EFCH截去几何体后得到的几何体,其中E为线段上异于的点,F为线段上异于的点,且EH//,则下列结论中不正确的是()
A.EH//FGB.四边形EFGH是矩形
C.是棱柱D.是棱台

6.二项式的展开式中所得的x的多项式中,系数为有理数的项共有()
A、4项B、5项C、6项D、7项
7.将7个市三好学生名额分配给5个不同的学校,其中甲、乙两校至少各有两个名额,则不同的分配方案种数有()
A.25B.35C.60D.120
8.某班有50名学生,在一次考试中,统计数学平均成绩为70分,方差为102,后来发现2名同学的成绩有误,甲实得80分却记为50分,乙实得60分却记为90分,更正后平均成绩和方差分别为()
A.70,90B.70,114C.65,90D.65,114
9.曲线在点处的切线方程为()
(A)(B)(C)(D)
10.函数是()
(A)最小正周期为2π的奇函数(B)最小正周期为2π的偶函数
(C)最小正周期为π的奇函数(D)最小正周期为π的偶函数
11.设,且=sinx+cosx,则()
A.0≤x≤πB.―≤x≤
C.≤x≤D.―≤x≤―或≤x<
12.已知随机变量服从正态分布,若,则
(A)0.477(B)0.628(C)0.954(D)0.977

二、填空题(本大题共4个小题,每小题4分,共16分)
13.设{an}是等比数列,公比,Sn为{an}的前n项和.记设为数列{}的最大项,则=.
14.已知有公共焦点的椭圆与双曲线中心为原点,焦点在轴上,左右焦点分别为,且它们在第一象限的交点为P,是以为底边的等腰三角形.若,双曲线的离心率的取值范围为.则该椭圆的离心率的取值范围是.

15.
已知程序框图如图所示,则执行该程序后输出的结果是_______________.
16.设极点与原点重合,极轴与轴正半轴重合.已知曲线C1的极坐标方程是:,曲线C2参数方程为:(θ
为参数),若两曲线有公共点,则实数m的取值范围是.

三、解答题(本大题共6个小题,总分74分)
17.若向量,在函数
的图象中,对称中心到对称轴的最小距离为且当的最大值为1。
(I)求函数的解析式;
(II)求函数的单调递增区间。

18.已知动圆过定点,且与直线相切。
(l)求动圆的圆心轨迹的方程;
(2)是否存在直线,使过点,并与轨迹交于两点,使以为直径的圆过原点?若存在,求出直线的方程;若不存在,说明理由。

19.如图,直线与相交
于点P。直线与x轴交于点P1,过点P1作x轴的垂线交直线于点Q1,过点
Q1作y轴的垂线交直线于点P2,过点P2作x轴的垂线交直线于点Q2,…,
这样一直作下去,可得到一系列点P1,Q1,P2,Q2,…。点Pn(n=1,2,…)的横
坐标构成数列。
(Ⅰ)证明
(Ⅱ)求数列的通项公式;
(Ⅲ)比较与的大小。

20.如图,在三棱柱中,每个侧面均为正方形,为底边的中点,为侧棱的中点.
(Ⅰ)求证:∥平面;
(Ⅱ)求证:平面;
(Ⅲ)求直线与平面所成角的正弦值.

21.在某校组织的一次篮球定点投篮训练中,规定每人最多投3次;在A处每投进一球得3分,在B处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投第三次,某同学在A处的命中率q为0.25,在B处的命中率为q,该同学选择先在A处投一球,以后都在B处投,用表示该同学投篮训练结束后所得的总分,其分布列为
(1)求q的值;
(2)求随机变量的数学期望E;
(3)试比较该同学选择都在B处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小.

22.(2010届广东高三二模)已知函数(R)的一个极值点为.方程的两个
实根为,函数在区间上是单调的.
(1)求的值和的取值范围;
(2)若,证明:.

参考答案
一、选择题
1.
2.D
3.D
4.B
5.【命题立意】本题考查考生对立体几何体的理解程度、空间想像能力。灵活,全面地考查了考生对知识的理解。
【思路点拨】利用线线平行线线平行线面平行线线平行可以判断A的正误,进而判断其他答案。
【规范解答】选D,若FG不平行于EH,则FG与EH相交,交点必然在B1C1上,而EH平行于B1C1,矛盾,所以FG平行于EH;由面,得到,可以得到四边形EFGH为矩形,将从正面看过去,就知道是一个五棱柱,C正确;D没能正确理解棱台与这个图形。
【方法技巧】线线平行,线面平行,面面平行是空间中的三种重要的平行关系,他们之间可以进行相互的转化,他们之间的转化关系就是我们学习的六个判定定理和性质定理,我们要熟练掌握这些定理并利用这些定理进行转化。

6.D
7.B
8.A
9.【命题立意】本题主要考查导数的几何意义,以及熟练运用导数的运算法则进行求解.
【思路点拨】先求出导函数,解出斜率,然后根据点斜式求出切线方程.
【规范解答】选A.因为,所以,在点处的切线斜率,所以,切线方程为,即,故选A.

10.【命题立意】本题考查倍角公式、三角函数的基本性质,属保分题。
【思路点拨】是奇函数C正确
【规范解答】选C因为,所以是最小正周期为π的奇函数

11.B
12.【命题立意】本题考查正态分布的基础知识,考查了考生的推理论证能力和运算求解能力.
【思路点拨】先由服从正态分布得出正态曲线关于直线对称,于是得到
与的关系,最后进行求解.
【规范解答】选C,因为随机变量服从正态分布,所以正态曲线关于直线对称,又,所以,所以0.954,故选C.

二、填空题
13.【命题立意】考查等比数列的通项公式、前n项和、均值不等式等基础知识.
【思路点拨】化简利用均值不等式求最值.
【规范解答】

∵当且仅当即,所以当n=4,即时,最大.
【答案】4.

14.
15.
16.【解析】将两曲线方程化为直角坐标坐标方程,得C1:,C2:.
因为两曲线有公共点,所以,即-1≤m≤3,故m∈[-1,3].

三、解答题
17.解析:(I)由题意得
∵对称中心到对称轴的最小距离为
的最小正周期为
………………6分
(II)………………10分

18.解析:(1)如图。设为动圆圆心,,过点作直线的垂线,垂足为,由题意知:
即动点到定点与定直线的距离相等,由抛物线的定义知,点的轨迹为抛物线,其中为焦点,为准线,动点的轨迹方程为
(2)由题可设直线的方程为,
由得

设,则
因为以为直径的圆过原点,
则,即,于是
即,
,解得或(舍去)
又,直线存在,其方程为

19.解析:(Ⅰ)证明设点的坐标是由已知条件得
点的坐标分别是:
由在直线上,

所以

(Ⅱ)解由题设知又由(Ⅰ)知
所以数列是首项为x1—1,公比为的等比数列。
从而即,。
(Ⅲ)解由得点P的坐标为(1,1)。
所以
(当,即或时,
而此时0所以故
当0即时,
而此时所以故

20.解析:解法一:证明:(Ⅰ)设的交点为O,连接,连接.
因为为的中点,为的中点,
所以∥且.又是中点,
所以∥且,
所以∥且.
所以,四边形为平行四边形.所以∥.
又平面,平面,则∥平面.
(Ⅱ)因为三棱柱各侧面都是正方形,所以,.
所以平面.
因为平面,所以.
由已知得,所以,
所以平面.
由(Ⅰ)可知∥,所以平面.
所以.
因为侧面是正方形,所以.
又,平面,平面,
所以平面.
(Ⅲ)解:取中点,连接.
在三棱柱中,因为平面,
所以侧面底面.
因为底面是正三角形,且是中点,
所以,所以侧面.
所以是在平面上的射影.
所以是与平面所成角.
.
解法二:如图所示,建立空间直角坐标系.
设边长为2,可求得,,
,,,,
,,.
(Ⅰ)易得,,
.所以,所以∥.
又平面,平面,则∥平面.
(Ⅱ)易得,,,
所以.
所以
又因为,,
所以平面.
(Ⅲ)设侧面的法向量为,
因为,,,,
所以,.
由得解得
不妨令,设直线与平面所成角为.
所以.
所以直线与平面所成角的正弦值为.

21.解析:(1)设该同学在A处投中为事件A,在B处投中为事件B,则事件A,B相互独立,且P(A)=0.25,,P(B)=q,.
根据分布列知:=0时=0.03,所以,q=0.8.
(2)当=2时,P1=
=0.75q()×2=1.5q()=0.24
当=3时,P2==0.01,
当=4时,P3==0.48,
当=5时,P4=
=0.24
所以随机变量的分布列为
随机变量的数学期望
(3)该同学选择都在B处投篮得分超过3分的概率为
;
该同学选择(1)中方式投篮得分超过3分的概率为0.48+0.24=0.72.
由此看来该同学选择都在B处投篮得分超过3分的概率大.

22.解析:(1):∵,∴.
∵的一个极值点为,∴.
∴.∴,
当时,;当时,;当时,;
∴函数在上单调递增,在上单调递减,在上单调递增.
∵方程的两个实根为,即的两根为,
∴.
∴,.
∵函数在区间上是单调的,
∴区间只能是区间,,之一的子区间.
由于,故.
若,则,与矛盾.
∴.
∴方程的两根都在区间上.
令,的对称轴为,
则解得.
∴实数的取值范围为.
说明:6分至8分的得分点也可以用下面的方法.
∵且函数在区间上是单调的,
∴.
由即解得.∴实数的取值范围为.
(2)证明:由(1)可知函数在区间上单调递减,
∴函数在区间上的最大值为,最小值为.
∵,
.
令,则,.
设,则.
∵,∴.∴.
∴函数在上单调递增

2012届高考数学第二轮数列备考复习教案


俗话说,凡事预则立,不预则废。教师在教学前就要准备好教案,做好充分的准备。教案可以让学生更容易听懂所讲的内容,使教师有一个简单易懂的教学思路。教案的内容具体要怎样写呢?小编为此仔细地整理了以下内容《2012届高考数学第二轮数列备考复习教案》,相信能对大家有所帮助。

2012届高考数学二轮复习资料
专题三数列(教师版)
【考纲解读】
1.理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.
2.理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能运用公式解答简单的问题.
3.理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能运用公式解决简单的问题.
【考点预测】
1.等差(比)数列的基本知识是必考内容,这类问题既有选择题、填空题,也有解答题;难度易、中、难三类皆有.
2.数列中an与Sn之间的互化关系也是高考的一个热点.
3.函数思想、方程思想、分类讨论思想等数学思想方法在解决问题中常常用到,解答试题时要注意灵活应用.
4.解答题的难度有逐年增大的趋势,还有一些新颖题型,如与导数和极限相结合等.
因此复习中应注意:
1.数列是一种特殊的函数,学习时要善于利用函数的思想来解决.如通项公式、前n项和公式等.
2.运用方程的思想解等差(比)数列,是常见题型,解决此类问题需要抓住基本量a1、d(或q),掌握好设未知数、列出方程、解方程三个环节,常通过“设而不求,整体代入”来简化运算.
3.分类讨论的思想在本章尤为突出.学习时考虑问题要全面,如等比数列求和要注意q=1和q≠1两种情况等等.
4.等价转化是数学复习中常常运用的,数列也不例外.如an与Sn的转化;将一些数列转化成等差(比)数列来解决等.复习时,要及时总结归纳.
5.深刻理解等差(比)数列的定义,能正确使用定义和等差(比)数列的性质是学好本章的关键.
6.解题要善于总结基本数学方法.如观察法、类比法、错位相减法、待定系数法、归纳法、数形结合法,养成良好的学习习惯,定能达到事半功倍的效果.
7.数列应用题将是命题的热点,这类题关键在于建模及数列的一些相关知识的应用.
【要点梳理】
1.证明数列是等差数列的两种基本方法:(1)定义法:为常数;(2)等差中项法:.
2.证明数列是等比数列的两种基本方法:(1)定义法:(非零常数);(2)等差中项法:.
3.常用性质:(1)等差数列中,若,则;
(2)等比数列中,若,则.
4.求和:
(1)等差等比数列,用其前n项和求出;
(2)掌握几种常见的求和方法:错位相减法、裂项相消法、分组求和法、倒序相加法;
(3)掌握等差等比数列前n项和的常用性质.
【考点在线】
考点1等差等比数列的概念及性质
在等差、等比数列中,已知五个元素或,中的任意三个,运用方程的思想,便可求出其余两个,即“知三求二”。本着化多为少的原则,解题时需抓住首项和公差(或公比)。另外注意等差、等比数列的性质的运用.例如
(1)等差数列中,若,则;等比数列中,若,则.
(2)等差数列中,成等差数列。其中是等差数列的前n项和;等比数列中(),成等比数列。其中是等比数列的前n项和;
(3)在等差数列中,项数n成等差的项也称等差数列.
(4)在等差数列中,;.
在复习时,要注意深刻理解等差数列与等比数列的定义及其等价形式.注意方程思想、整体思想、分类讨论思想、数形结合思想的运用.
例1.(2011年高考重庆卷理科11)在等差数列中,,则
.
【答案】74
【解析】,故
【名师点睛】本题考查等差数列的性质.
【备考提示】:熟练掌握等差等比数列的概念与性质是解答好本类题的关键.
考点2数列的递推关系式的理解与应用
在解答给出的递推关系式的数列问题时,要对其关系式进行适当的变形,转化为常见的类型进行解题。如“逐差法”若且;我们可把各个差列出来进行求和,可得到数列的通项.
再看“逐商法”即且,可把各个商列出来求积。
另外可以变形转化为等差数列与等比数列,利用等差数列与等比数列的性质解决问题.
例2.(2011年高考四川卷文科9)数列{an}的前n项和为Sn,若a1=1,an+1=3Sn(n≥1),则a6=()
(A)3×44(B)3×44+1
(C)44(D)44+1
【答案】A
【解析】由题意,得a2=3a1=3.当n≥1时,an+1=3Sn(n≥1)①,所以an+2=3Sn+1②,
②-①得an+2=4an+1,故从第二项起数列等比数列,则a6=3×44.
【名师点睛】本小题主要考查与的关系:,数列前n项和和通项是数列中两个重要的量,在运用它们的关系式时,一定要注意条件,求通项时一定要验证是否适合。解决含与的式子问题时,通常转化为只含或者转化为只的式子.
【备考提示】:递推数列也是高考的内容之一,要熟练此类题的解法,这是高考的热点.
练习2.(2011年高考辽宁卷文科5)若等比数列{an}满足anan+1=16n,则公比为()[Z
(A)2(B)4(C)8(D)16
【答案】B
【解析】设公比是q,根据题意a1a2=16①,a2a3=162②,②÷①,得q2=16.因为a12q=160,a120,则q0,q=4.
考点3数列的通项公式与前n项和公式的应用
等差、等比数列的前n项和公式要深刻理解,等差数列的前n项和公式是关于n的二次函数.等比数列的前n项和公式(),因此可以改写为是关于n的指数函数,当时,.
例3.(2011年高考江苏卷13)设,其中成公比为q的等比数列,成公差为1的等差数列,则q的最小值是.
【答案】
【解析】由题意:,
【答案】A
【解析】通过,设公比为,将该式转化为,解得=-2,带入所求式可知答案选A,本题主要考察了本题主要考察了等比数列的通项公式与前n项和公式.
考点4.数列求和
例4.(山东省济南市2011年2月高三教学质量调研理科20题)
已知为等比数列,;为等差数列的前n项和,.
(1)求和的通项公式;
(2)设,求.
【解析】(1)设的公比为,由,得所以
设的公差为,由得,
所以
(2)


②-①得:
所以
【名师点睛】本小题主要考查等比等差数列的通项公式及前n项和公式、数列求和等基础知识,考查运算能力、综合分析和解决问题的能力.
【备考提示】:熟练数列的求和方法等基础知识是解答好本类题目的关键.
练习4.(2010年高考山东卷文科18)
已知等差数列满足:,.的前n项和为.
(Ⅰ)求及;(Ⅱ)令(),求数列的前n项和.
【解析】(Ⅰ)设等差数列的公差为d,因为,,所以有
考点5等差、等比数列的综合应用
解综合题要总揽全局,尤其要注意上一问的结论可作为下面论证的已知条件,在后面求解的过程中适时应用.
例5.(2011年高考浙江卷理科19)已知公差不为0的等差数列的首项(),设数列的前n项和为,且,,成等比数列(Ⅰ)求数列的通项公式及(Ⅱ)记,,当时,试比较与的大小.[
当时,即;
所以当时,;当时,.
【名师点睛】本小题主要考查等差等比数列的通项与前n项和等基本知识,考查逻辑思维能力、分析问题和解决问题的能力.
【备考提示】:熟练掌握等差等比数列的基础知识是解决本类问题的关键.
练习5.(2011年高考天津卷文科20)
已知数列与满足,,且.
(Ⅰ)求的值;
(Ⅱ)设,,证明是等比数列;
(Ⅲ)设为的前n项和,证明.
【解析】(Ⅰ)由,可得
,,
当n=1时,由,得;
当n=2时,可得.
(Ⅱ)证明:对任意,--------①
---------------②
②-①得:,即,于是,所以是等比数列.
(Ⅲ)证明:,由(Ⅱ)知,当且时,
=2+3(2+)=2+,故对任意,,
由①得所以,,
因此,,于是,
故=,
所以.
【易错专区】
问题:已知,求时,易忽视的情况
例.(2010年高考上海卷文科21)
已知数列的前项和为,且,
(1)证明:是等比数列;
(2)求数列的通项公式,并求出使得成立的最小正整数.
【考题回放】
1.(2011年高考安徽卷文科7)若数列的通项公式是,则()
(A)15(B)12(C)(D)
【答案】A
【解析】法一:分别求出前10项相加即可得出结论;
法二:,故.故选A.
2.(2011年高考江西卷文科5)设{}为等差数列,公差d=-2,为其前n项和.若,则=()
A.18B.20C.22D.24
【答案】B
【解析】.
3.(2011年高考江西卷理科5)已知数列{}的前n项和满足:,且=1.那么=()
A.1B.9C.10D.55
【答案】A
【解析】因为,所以令,可得;令,可得;同理可得,,,
,所以=,故选A.
4.(2011年高考四川卷理科8)数列的首项为,为等差数列且.若则,,则()
(A)0(B)3(C)8(D)11
【答案】B
【解析】由已知知由叠加法.
5.(2010年高考全国Ⅰ卷文科4)已知各项均为正数的等比数列{},=5,=10,则=()
(A)(B)7(C)6(D)
【答案】A
【解析】由等比数列的性质知,10,所以,所以.
6.(2010年高考全国卷Ⅱ文科6)如果等差数列中,++=12,那么++…+=()
(A)14(B)21(C)28(D)35
【答案】C
【解析】∵,∴
7.(2009年高考安徽卷理科第5题)已知为等差数列,++=105,=99,以表示的前项和,则使得达到最大值的是高.()
【解析】设公比为,由已知得,即,因为等比数列的公比为正数,所以,故,选B
9.(2009年高考湖南卷文科第3题)设是等差数列的前n项和,已知,,则等于()
A.13B.35C.49D.63
【答案】C
【解析】故选C.
或由,
所以故选C.
10.(2009年高考福建卷理科第3题)等差数列的前n项和为,且=6,=4,则公差d等于()
A.1BC.-2D3
【答案】C
【解析】∵且.故选C
11.(2009年高考江西卷理科第8题)数列的通项,其前项和为,则为()
A.B.C.D.
【答案】A
【解析】由于以3为周期,故
故选A
12.(2011年高考湖北卷文科9)《九章算术》“竹九节”问题:现有一根9节的竹子,自下而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为()
A.1升B.升C.升D.升
【答案】D
【解析】设9节竹子的容积从上往下依次为a1,a2,……a9,公差为d,则有a1+a2+a3+a4=3,a7+a8+a9=4,即4a5-10d=3,3a5+9d=4,联立解得:,所以选B.
13.(2011年高考湖南卷理科12)设是等差数列的前项和,且,,则.
【答案】25
【解析】因为,,所以,则.故填25
14.(2011年高考广东卷理科11)等差数列前9项的和等于前4项的和.若,则.
【答案】10
【解析】由题得.
【解析】则
于是令得,则,时递增,令得,则,时递减,故是最大项,即.
17.(2011年高考江西卷文科21)(本小题满分14分)
(1)已知两个等比数列,满足,
若数列唯一,求的值;
(2)是否存在两个等比数列,使得成公差为
的等差数列?若存在,求的通项公式;若存在,说明理由.
【解析】(1)要唯一,当公比时,由且,
,最少有一个根(有两个根时,保证仅有一个正根)
,此时满足条件的a有无数多个,不符合。
当公比时,等比数列首项为a,其余各项均为常数0,唯一,此时由,可推得符合
综上:。
(2)假设存在这样的等比数列,则由等差数列的性质可得:,整理得:
要使该式成立,则=或此时数列,公差为0与题意不符,所以不存在这样的等比数列.
18.(2011年高考福建卷文科17)(本小题满分12分)
已知等差数列{an}中,a1=1,a3=-3.
(I)求数列{an}的通项公式;
(II)若数列{an}的前k项和Sk=-35,求k的值.
【解析】(I)设等差数列{an}的公差为,则,由,可得,解得
,从而.
(II)由(I)可知,所以,由Sk=-35,可得,
即,解得或,又,故.
19.(2011年高考湖南卷文科20)(本题满分13分)
某企业在第1年初购买一台价值为120万元的设备M,M的价值在使用过程中逐年减少,从第2年到第6年,每年初M的价值比上年初减少10万元;从第7年开始,每年初M的价值为上年初的75%.
(I)求第n年初M的价值的表达式;
(II)设若大于80万元,则M继续使用,否则须在第n年初对M更新,证明:须在第9年初对M更新.
【解析】(I)当时,数列是首项为120,公差为的等差数列.
因为是递减数列,所以是递减数列,又
所以须在第9年初对M更新.
20.(2011年高考四川卷文科20)(本小题共12分)
已知﹛﹜是以为首项,q为公比的等比数列,为它的前项和.
(Ⅰ)当成等差数列时,求q的值;
(Ⅱ)当,,成等差数列时,求证:对任意自然数也成等差数列.
【解析】(Ⅰ)当时,,因为成等差数列,所以,解得,因为,故;
当时,,由成等差数列得,得,即,.
21.(2010年高考天津卷文科22)(本小题满分14分)
在数列中,=0,且对任意k,成等差数列,其公差为2k.
(Ⅰ)证明成等比数列;(Ⅱ)求数列的通项公式;
(Ⅲ)记,证明.
【解析】(I)证明:由题设可知,,,,,.从而,所以,,成等比数列.
(II)解:由题设可得
所以
.
由,得,从而.
所以数列的通项公式为或写为,。
(III)证明:由(II)可知,,
以下分两种情况进行讨论:
(1)当n为偶数时,设n=2m
若,则,
若,则
.
所以,从而
(2)当n为奇数时,设。
所以,从而
综合(1)和(2)可知,对任意有
22.(2010年高考北京卷文科16)(本小题共13分)
已知为等差数列,且,。
(Ⅰ)求的通项公式;
(Ⅱ)若等差数列满足,,求的前n项和公式
【解析】(Ⅰ)设等差数列的公差。
23.(2010年高考江西卷文科22)(本小题满分14分)
正实数数列中,,,且成等差数列.
(1)证明数列中有无穷多项为无理数;
(2)当为何值时,为整数,并求出使的所有整数项的和.
【解析】证明:(1)由已知有:,从而,
方法一:取,则.
用反证法证明这些都是无理数.
假设为有理数,则必为正整数,且,
故.,与矛盾,
所以都是无理数,即数列中有无穷多项为无理数;
方法二:因为,当得末位数字是3,4,8,9时,的末位数字是3和7,它不是整数的平方,也不是既约分数的平方,故此时不是有理数,因这种有无穷多,故这种无理项也有无穷多.
(2)要使为整数,由可知:同为偶数,且其中一个必为3的倍数,所以有或当时,有又必为偶数,所以满足
即时,为整数;同理有
也满足
即时,为整数;显然和是数列中的不同项;所以当和时,为整数;由有,
由有.
设中满足的所有整数项的和为,则

24.(2010年高考浙江卷文科19)(本题满分14分)设a1,d为实数,首项为a1,公差为d的等差数列{an}的前n项和为Sn,满足+15=0.
(Ⅰ)若=5,求及a1;(Ⅱ)求d的取值范围.
【解析】(Ⅰ)解:由题意知S6==-3,
A6=S6-S5=-8所以解得a1=7,所以S6=-3,a1=7
(Ⅱ)解:因为S5S6+15=0,所以(5a1+10d)(6a1+15d)+15=0,即2a12+9da1+10d2+1=0.
【解析】通过,设公比为,将该式转化为,解得=-2,带入所求式可知答案选A,本题主要考察了本题主要考察了等比数列的通项公式与前n项和公式
2.(2010年高考安徽卷文科5)设数列的前n项和,则的值为()
(A)15(B)16(C)49(D)64
【答案】A
【解析】.
3.(2010年高考山东卷文科7)设是首项大于零的等比数列,则“”是“数列是递增数列”的()
(A)充分而不必要条件(B)必要而不充分条件
(C)充分必要条件(D)既不充分也不必要条件
【答案】C
【解析】若已知,则设数列的公比为,因为,所以有,解得又,所以数列是递增数列;反之,若数列是递增数列,则公比且,所以,即,所以是数列是递增数列的充分必要条件。
4.(2010年高考江西卷文科7)等比数列中,,,,则
A.B.C.D.
5.(2010年高考辽宁卷文科3)设为等比数列的前项和,已知,,则公比()
(A)3(B)4(C)5(D)6
【答案】B
【解析】两式相减得,,.

6.(2010年高考广东卷文科4)已知数列{}为等比数列,是它的前n项和,若,
且与的等差中项为,则S5=w()
A.35B.33C.31D.29
7.(2010年高考重庆卷文科2)在等差数列中,,则的值为()
(A)5(B)6
(C)8(D)10
【答案】A
【解析】由角标性质得,所以=5.
8.(2010年高考湖北卷文科7)已知等比数列{}中,各项都是正数,且,成等差数列,则()
A.B.C.D
【答案】C
二.填空题:
13.(2009年高考北京卷文科第10题)若数列满足:,则
;前8项的和.(用数字作答)
【答案】255
【解析】,
易知.
14.(2010年高考辽宁卷文科14)设为等差数列的前项和,若,则。
【答案】15
【解析】由,解得,
15.(浙江省温州市2011年高三第一次适应性测试理科)已知数列是公比为的等比数列,集合,从中选出4个不同的数,使这4个数成等比数列,这样得到4个数的不同的等比数列共有.
【答案】
【解析】以公比为的等比数列有…共组;
以公比为的等比数列有…共组;
以公比为的等比数列有共组.
再考虑公比分别为的情形,可得得到4个数的不同的等比数列共有个.
三.解答题:
17.(2009年高考山东卷理科第20题)(本小题满分12分)
等比数列{}的前n项和为,已知对任意的,点,均在函数的图像上.
(Ⅰ)求r的值;
(文科)(Ⅱ)当b=2时,记,求数列的前n项和.
(理科)(Ⅱ)当b=2时,记,证明:对任意的,不等式成立
【解析】(Ⅰ)由题意知:,
当时,,
由于且所以当时,{}是以为公比的等比数列,
又,,即解得.
(理科)(Ⅱ)∵,∴当时,,
又当时,,适合上式,∴,,
∴,
下面用数学归纳法来证明不等式:
证明:(1)当时,左边=右边,不等式成立.
(2)假设当时,不等式成立,即,
则当时,
不等式左边=
所以当时,不等式也成立,
综上(1)(2)可知:当时,不等式恒成立,
所以对任意的,不等式成立.
(文科)(Ⅱ)由(Ⅰ)知,,,所以=,
,
+,
两式相减得:
,
故=.
(Ⅱ)因为,…10分
所以
.…14分
19.(天津市南开中学2011年3月高三月考文科)已知数列的前以项和为且对于任意的恒有设
(1)求证:数列是等比数列;(2)求数列的通项公式和
(3)若证明:
【解析】(1)当n=l时,得
当时,两式相减得:
是以为首项,2为公比的等比数列.……………………4分
(2)由(1)得
……………………………………8分
由为正项数列,所以也为正项数列,
从而所以数列递减,
所以…12分
另证:由
所以
20.(天津市红桥区2011届高三一模文科)(本题满分14分)
设数列的前项和为,且;数列为等差数列,且。
(1)求数列的通项公式;
(2)若为数列的前项和,求证:。
【解析】(1)由,
(2)数列为等差数列,公差
从而
从而
21.(山东省济南市2011年2月高三教学质量调研文科)
已知{an}是递增的等差数列,满足a2a4=3,a1+a5=4.
(1)求数列{an}的通项公式和前n项和公式;
(2)设数列{bn}对n∈N*均有成立,求数列{bn}的通项公式.
22.(山东省青岛市2011年3月高考第一次模拟理科)已知数列满足,且,为的前项和.
(Ⅰ)求证:数列是等比数列,并求的通项公式;
(Ⅱ)如果对任意,不等式恒成立,求实数的取值范围.
【解析】(Ⅰ)对任意,都有,所以
则成等比数列,首项为,公比为…………2分
所以,…………4分
(Ⅱ)因为
所以…………6分
因为不等式,化简得对任意恒成立…………7分
设,则…………8分
当,,为单调递减数列,当,,为单调递增数列
,所以,时,取得最大值…………11分
所以,要使对任意恒成立,…………12分