88教案网

你的位置: 教案 > 高中教案 > 导航 > 归纳法

小学道德与法治教案

发表时间:2020-11-12

归纳法。

俗话说,凡事预则立,不预则废。教师要准备好教案,这是教师需要精心准备的。教案可以让学生能够在课堂积极的参与互动,帮助教师营造一个良好的教学氛围。你知道怎么写具体的教案内容吗?小编收集并整理了“归纳法”,相信您能找到对自己有用的内容。

普通高中课程标准实验教科书—数学选修2-2[人教版B]
2.3.1数学归纳法

教学目标:
了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题。
教学重点:
了解数学归纳法的原理
教学过程
一、复习:推理与证明方法
二、引入新课
1、数学归纳法:对于某些与自然数n有关的命题常常采用下面的方法来证明它的正确性:先证明当n取第一个值n0时命题成立;然后假设当n=k(kN*,k≥n0)时命题成立,证明当n=k+1时命题也成立这种证明方法就叫做数学归纳法
2、数学归纳法的基本思想:即先验证使结论有意义的最小的正整数n0,如果当n=n0时,命题成立,再假设当n=k(k≥n0,k∈N*)时,命题成立.(这时命题是否成立不是确定的),根据这个假设,如能推出当n=k+1时,命题也成立,那么就可以递推出对所有不小于n0的正整数n0+1,n0+2,…,命题都成立.
3、用数学归纳法证明一个与正整数有关的命题的步骤:
(1)证明:当n取第一个值n0结论正确;
(2)假设当n=k(k∈N*,且k≥n0)时结论正确,证明当n=k+1时结论也正确.
由(1),(2)可知,命题对于从n0开始的所有正整数n都正确
4、例子
例1
用数学归纳法证明:如果{an}是一个等差数列,那么an=a1+(n-1)d对一切n∈N*都成立.
例2用数学归纳法证明
例3判断下列推证是否正确,若是不对,如何改正.
证明:①当n=1时,左边=右边=,等式成立
②设n=k时,有
那么,当n=k+1时,有
即n=k+1时,命题成立
根据①②问可知,对n∈N*,等式成立
课堂练习:第80页练习
课后作业:第82页A:1,2,3

精选阅读

归纳法证明不等式1


选修4-5学案§4.1.1数学归纳法证明不等式姓名
☆学习目标:1.理解数学归纳法的定义、数学归纳法证明基本步骤;
2.会运用数学归纳法证明不等式
重点:应用数学归纳法证明不等式.
知识情景:
关于正整数n的命题(相当于多米诺骨牌),我们可以采用下面方法来证明其正确性:
10.验证n取时命题(即n=时命题成立)(归纳奠基);
20.假设当时命题成立,证明当n=k+1时命题(归纳递推).
30.由10、20知,对于一切n≥的自然数n命题!(结论)
要诀:递推基础,归纳假设,结论写明.

☆数学归纳法的应用:
例1.用数学归纳法证明不等式.

例2已知x-1,且x0,nN*,n≥2.求证:(1+x)n1+nx.

例3证明:如果为正整数)个正数的乘积,
那么它们的和.

例4证明:

例5.当时,求证:

选修4-5练习§4.1.1数学归纳法证明不等式(1)姓名
1、已知f(n)=(2n+7)3n+9,存在自然数m,使得对任意n∈N,都能使m整除f(n),则最大的m的
值为()
A.30B.26C.36D.6
2、.观察下列式子:
…则可归纳出_________.
3、已知,,则的值分别为_________,由此猜想
_________.
4、用数学归纳法证明:能被8整除.
5、用数学归纳法证明

6、.用数学归纳法证明4+3n+2能被13整除,其中n∈N
7、求证:

8、已知,,用数学归纳法证明:
9、.求证:用数学归纳法证明.

答案:
1.关于正整数n的命题(相当于多米诺骨牌),我们可以采用下面方法来证明其正确性:
10.验证n取第一个值时命题成立(即n=时命题成立)(归纳奠基);
20.假设当n=k时命题成立,证明当n=k+1时命题也成立(归纳递推).
30.由10、20知,对于一切n≥的自然数n命题都成立!(结论)
要诀:递推基础不可少,归纳假设要用到,结论写明莫忘掉.
例1⑴当时,上式左边右边,不等式成立.
⑵设当时,不等式成立,即有.
那么,当时,
=
例2证明:(1)当n=2时,左=(1+x)2=1+2x+x2
∵x0,∴1+2x+x21+2x=右,∴n=2时不等式成立
(2)假设n=k(k≥2)时,不等式成立,即(1+x)k1+kx
当n=k+1时,因为x-1,所以1+x0,于是
左边=(1+x)k+1右边=1+(k+1)x.
因为kx2>0,所以左边>右边,即(1+x)k+11+(k+1)x.
这就是说,原不等式当n=k+1时也成立.
根据(1)和(2),原不等式对任何不小于2的自然数n都成立.
例3证明:⑴当时,有,命题成立.
⑵设当时,命题成立,即若个正数的乘积,
那么它们的和.
那么当时,已知个正数满足.
若个正数都相等,则它们都是1.其和为,命题成立.
若这个正数不全相等,则其中必有大于1的数,也有小于1的数
(否则与矛盾).不妨设.
例4证:(1)当n=1时,左边=,右边=,由于故不等式成立.
(2)假设n=k()时命题成立,即
则当n=k+1时,
即当n=k+1时,命题成立.
由(1)、(2)原不等式对一切都成立.
例5(1)
练习
1.解析:∵f(1)=36,f(2)=108=3×36,f(3)=360=10×36
∴f(1),f(2),f(3)能被36整除,猜想f(n)能被36整除.
证明:n=1,2时,由上得证,设n=k(k≥2)时,
f(k)=(2k+7)3k+9能被36整除,则n=k+1时,
f(k+1)-f(k)=(2k+9)3k+1?-(2k+7)3k
=(6k+27)3k-(2k+7)3k
=(4k+20)3k=36(k+5)3k-2?(k≥2)
f(k+1)能被36整除
∵f(1)不能被大于36的数整除,∴所求最大的m值等于36.答案:C
2、解析:
(n∈N*)
(n∈N*)
、、、
4、证:(1)当n=1时,A1=5+2+1=8,命题显然成立.
(2)假设当n=k时,Ak能被8整除,即是8的倍数.
那么:
因为Ak是8的倍数,3k-1+1是偶数即4(3k-1+1)也是8的倍数,所以Ak+1也是8的倍数,
即当n=k+1时,命题成立.
由(1)、(2)知对一切正整数n,An能被8整除.
5.证明:1当n=1时,左边=1-=,右边==,所以等式成立。
2假设当n=k时,等式成立,
即。
那么,当n=k+1时,
这就是说,当n=k+1时等式也成立。
综上所述,等式对任何自然数n都成立。
6.证明:(1)当n=1时,42×1+1+31+2=91能被13整除
(2)假设当n=k时,42k+1+3k+2能被13整除,则当n=k+1时,
42(k+1)+1+3k+3=42k+142+3k+23-42k+13+42k+13
=42k+113+3(42k+1+3k+2?)
∵42k+113能被13整除,42k+1+3k+2能被13整除
∴当n=k+1时也成立.
由①②知,当n∈N*时,42n+1+3n+2能被13整除.
7.证明:(1)当n=2时,右边=,不等式成立.
(2)假设当时命题成立,即.
则当时,
所以则当时,不等式也成立.
由(1),(2)可知,原不等式对一切均成立.
8.证明:
(1)当n=2时,,∴命题成立.
(2)假设当时命题成立,即.
则当时,
所以则当时,不等式也成立.
由(1),(2)可知,原不等式对一切均成立.
9、证明:(1)当n=1时,,不等式成立;
当n=2时,,不等式成立;
当n=3时,,不等式成立.
(2)假设当时不等式成立,即.
则当时,,
∵,∴,(*)
从而,
∴.
即当时,不等式也成立.
由(1),(2)可知,对一切都成立.

高二数学数学归纳法007


俗话说,居安思危,思则有备,有备无患。高中教师要准备好教案,这是老师职责的一部分。教案可以让学生们充分体会到学习的快乐,帮助高中教师在教学期间更好的掌握节奏。那么一篇好的高中教案要怎么才能写好呢?为了让您在使用时更加简单方便,下面是小编整理的“高二数学数学归纳法007”,希望能对您有所帮助,请收藏。

数学归纳法
教学目标
1.了解归纳法的意义,培养学生观察、归纳、发现的能力.
2.了解数学归纳法的原理,并能以递推思想作指导,理解数学归纳法的操作步骤.
3.抽象思维和概括能力进一步得到提高.
教学重点与难点
重点:归纳法意义的认识和数学归纳法产生过程的分析.
难点:数学归纳法中递推思想的理解.
教学过程设计
(一)引入
师:从今天开始,我们来学习数学归纳法.什么是数学归纳法呢?应该从认识什么是归纳法开始.
(板书课题.数学归纳法)
(二)什么是归纳法(板书)
师:请看下面几个问题,并由此思考什么是归纳法,归纳法有什么特点.
问题1:这里有一袋球共十二个,我们要判断这一袋球是白球,还是黑球,请问怎么办?
(可准备一袋白球.问题用小黑板或投影幻灯片事先准备好)
生:把它例出来看一看就可以了.
师:方法是正确的,但操作上缺乏顺序性.顺序操作怎么做?
生:一个一个拿,拿一个看一个.
师:对.问题的结果是什么呢?
(演示操作过程)
第一个白球,第二个白球,第三个白球,……,第十二个白球,由此得到:这一袋球都是白球.问题2:在数列{an}中,a1=1,an+1=(n∈N+),先计算a2,a3,a4的值,再推测通项an的公式.(问题由小黑板或投影幻灯片给出)
生:a2=,a3=,a4=.由此得到:an=(n∈N+).
师:同学们解决以上两个问题用的都是归纳法,你能说说什么是归纳法,归纳法有什么特点吗?
生:归纳法是由一些特殊事例推出一般结论的推理方法.
特点是由特殊一般(板书).
师:很好!其实在中学数学中,归纳法我们早就接触到了.例如,给出数列的前四项,求它的一个通项公式用的是归纳法,确定等差数列、等比数列项公式用的也是归纳法,今后的学高考¥资%源~网习还会看到归纳法的运用.
在生活和生产实际中,归纳法也有广泛应用.例如气象工作者、水文工作者依据积累的历史资料作气象预测,水文预报,用的就是归纳法.
还应该指出,问题1和问题2运用的归纳法还是有区别的.问题1中,一共12个球,全看了,由此而得了结论.这种把研究对象一一都考查到了而推出结论的归纳法称为完全归纳法.对于问题2,由于自然有无数个,用完全归纳法去推出结论就不可能,它是由前4项体现的规律,进行推测,得出结论的,这种归纳法称为不完全归纳法.
(三)归纳法的认识(板书)
归纳法分完全归纳法和不完全归纳法(板书).
师;用不完全归纳法既然要推测,推测是要有点勇气的,请大家鼓起勇气研究问题3.
问题3:对于任意自然数n,比较7n-3与6(7n+9)的大小.(问题由小黑板或投影幻灯片给出)(给学生一定的计算、思考时间)
生:经过计算,我的结论是:对任意n∈N+,7n-3<6(7n+9).
师:你计算了几个数得到的结论?
生:4个.
师:你算了n=1,n=2,n=3,n=4这4个数,而得到的结论,是吧?
生:对.
师:有没有不同意见?
生:我验了n=8,这时有7n-3>6(7n+9),而不是7n-3<6(7n+9).他的结论不对吧!师:那你的结论是什么呢?
(动员大家思考,纠正)
生:我的结论是:
当n=1,2,3,4,5时,7n-3<6(7n+9);
当n=6,7,8,…时,7n-3>6(7n+9).
师:由以上的研究过程,我们应该总结什么经验呢?
首先要仔细地占有准确的材料,不能随便算几个数,就作推测.请把你们计算结果填入下表内:
师:依据数据作推测,决不是乱猜.要注意对数据作出谨慎地分析.由上表可看到,当n依1,2,3,4,…变动时,相应的7n-3的值以后一个是前一个的7倍的速度在增加,而6(7n+9)相应值的增长速度还不到2倍.完全有理由确认,当n取较大值时,7n-3>6(7n+9)会成立的.
师:对问题3推测有误的同学完全不必过于自责,接受教训就可以了.其实在数学史上,一些世界级的数学大师在运用归纳法时,也曾有过失误.
资料1(事先准备好,由学生阅读)
费马(Fermat)是17世纪法国著名数学家,他是解析几何的发明者之一,是对微积分的创立作出贡献最多的人之一,是概率论的的创始者之一,他对数论也有许多贡献.
但是,费马曾认为,当n∈N+时,+1一定都是质数,这是他对n=0,1,2,3,4作了验证后得到的.
18世纪伟大的瑞士科学家欧拉(Euler)却证明了+1=4294967297=6700417×641,从而否定了费马的推测.
师:有的同学说,费马为什么不再多算一个数呢?今天我们是无法回答的.但是要告诉同学们,失误的关键不在于多算一个上!
再请看数学史上的另一个资料(仍由学生阅读):
资料2
f(n)=n2+n+41,当n∈N+时,f(n)是否都为质数?
f(0)=41,f(1)=43,f(2)=47,f(3)=53,f(4)=61,
f(5)=71,f(6)=83,f(7)=97,f(8)=113,f(9)=131,
f(10)=151,…f(39)=1601.
但f(40)=1681=412是合数.
师:算了39个数不算少了吧,但还不行!我们介绍以上两个资料,不是说世界级大师还出错,我们有错就可以原谅,也不是说归纳法不行,不去学了,而是要找出运用归纳法出错的原因,并研究出对策来.
师:归纳法为什么会出错呢?
生:完全归纳法不会出错.
师:对!但运用不完全归纳法是不可避免的,它为什么会出错呢?
生:由于用不完全归纳法时,一般结论的得出带有猜测的成份.
师:完全同意.那么怎么办呢?
生:应该予以证明.
师:大家同意吧?对于生活、生产中的实际问题,得出的结论的正确性,应接受实践的检验,因为实践是检验真理的唯一标准.对于数学问题,应寻求数学证明.
(四)归纳与证明(板书)
师:怎么证明呢?请结合以下问题1思考.
生:问题1共12个球,都看了,它的正确性不用证明了.
师:也可以换个角度看,12个球,一一验看了,这一一验看就可以看作证明.数学上称这种证法为穷举法.它体现了分类讨论的思想.
师:如果这里不是12个球,而是无数个球,我们用不完全归纳法得到,这袋球全是白球,那么怎么证明呢?(稍作酝酿,使学生把注意力更集中起来)
师:这类问题的证明确不是一个容易的课题,在数学史上也经历了多年的酝酿.第一个正式研究此课题的是意大利科学家莫罗利科.他运用递推的思想予以证明.
结合问题1来说,他首先确定第一次拿出来的是白球.
然后再构造一个命题予以证明.命题的条件是:“设某一次拿出来的是白球”,结论是“下一次拿出来的也是白球”.这个命题不是孤立地研究“某一次”,“下一次”取的到底是不是白球,而是研究若某一次是白球这个条件能保证下一次也是白球的逻辑必然性.
大家看,是否证明了上述两条,就使问题得到解决了呢?
生:是.第一次拿出的是白球已确认,反复运用上述构造的命题,可得第二次、第三次、第四次、……拿出的都是白球.
师:对.它使一个原来无法作出一一验证的命题,用一个推一个的递推思想得到了证明.生活上,体现这种递推思想的例子也是不少的,你能举出例子来吗?
生:一排排放很近的自行车,只要碰倒一辆,就会倒下一排.
生:再例如多米诺骨牌游戏.
(有条件可放一段此种游戏的录相)
师:多米诺骨牌游戏要取得成功,必须靠两条:
(1)骨牌的排列,保证前一张牌倒则后一张牌也必定倒;
(2)第一张牌被推倒.
用这种思想设计出来的,用于证明不完全归纳法推测所得命题的正确性的证明方法就是数学归纳法.
(五)数学归纳法(板书)
师:用数学归纳法证明以上推测问题而得的命题,应该证明什么呢?
生:先证n=1时,公式成立(第一步);
再证明:若对某个自然数(n=k)公式成立,则对下一个自然数(n=k+1)公式也成立(第二步).
师:这两步的证明自己会进行吗?请先证明第一步.
生:当n=1时,左式=a1=1,右式==1.此时公式成立.
(应追问各步计算推理的依据)
师:再证明第二步.先明确要证明什么?
生:设n=k时,公式成立,即ak=.以此为条件来证明n=k+1时,公式也成立,即ak+1=也成立.
师:应注意,这里是证明递推关系成立,证明ak+1=成立时,必须用到ak=这个条件生:依已知条件,ak+1=.
师:于是由上述两步,命题得到了证明.这就是用数学归纳法进行的证明的基本要求.
师:请小结一下用数学归纳法作证明应有的基本步骤.
生:共两步(学生说,教师板书):
(1)n=1时,命题成立;
(2)设n=k时命题成立,则当n=k+1时,命题也成立.
师:其实第一步一般来说,是证明开头者命题成立.例如,对于问题3推测得的命题:当n=6,7,8,…时,7n-3>6(7n+9).第一步应证明n=6时,不等式成立.
(若有时间还可讨论此不等关系证明的第二步,若无时间可布置学生课下思考)
(六)小结
师:把本节课内容归纳一下:
(1)本节的中心内容是归纳法和数学归纳法.
(2)归纳法是一种由特殊到一般的推理方法.分完全归纳法和不完全归纳法二种.
(3)由于不完全归纳法中推测所得结论可能不正确,因而必须作出证明,证明可用数学归纳法进行.
(4)数学归纳法作为一种证明方法,它的基本思想是递推(递归)思想,它的操作步骤必须是二步.
数学归纳法在数学中有广泛的应用,将从下节课开始学习.
(七)课外作业
(1)阅读课本
(2)书面作业课堂教学设计说明
1.数学归纳法是一种用于证明与自然数n有关的命题的正确性的证明方法.它的操作步骤简单、明确,教学重点应该是方法的应用.但是我们认为不能把教学过程当作方法的灌输,技能的操练.对方法作简单的灌输,学生必然疑虑重重.为什么必须是二步呢?于是教师反复举例,说明二步缺一不可.你怎么知道n=k时命题成立呢?教师又不得不作出解释,可学生仍未完全接受.学完了数学归纳法的学生又往往有应该用时但想不起来的问题,等等.为此,我们设想强化数学归纳法产生过程的教学,把数学归纳法的产生寓于对归纳法的分析、认识当中,把数学归纳法的产生与不完全归纳法的完善结合起来.这样不仅使学生可以看到数学归纳法产生的背景,从一开始就注意它的功能,为使用它打下良好的基础,而且可以强化归纳思想的教学,这不仅是对中学数学中以演绎思想为主的教学的重要补充,也是引导学生发展创新能力的良机.
数学归纳法产生的过程分二个阶段,第一阶段从对归纳法的认识开始,到对不完全归纳法的认识,再到不完全归纳法可靠性的认识,直到怎么办结束.第二阶段是对策酝酿,从介绍递推思想开始,到认识递推思想,运用递推思想,直到归纳出二个步骤结束.
把递推思想的介绍、理解、运用放在主要位置,必然对理解数学归纳法的实质带来指导意义,也是在教学过程中努力挖掘、渗透隐含于教学内容中的数学思想的一种尝试.
2.在教学方法上,这里运用了在教师指导下的师生共同讨论、探索的方法.目的是在于加强学生对教学过程的参与程度.为了使这种参与有一定的智能度,教师应做好发动、组织、引导和点拨.学生的思维参与往往是从问题开始的,尽快提出适当的问题,并提出思维要求,让学生尽快投入到思维活动中来,是十分重要的.这就要求教师把每节课的课题作出层次分明的分解,并选择适当的问题,把课题的研究内容落于问题中,在逐渐展开中,引导学生用已学的知识、方法予以解决,并获得新的发展.本节课的教学设计也想在这方面作些研究.3.理解数学归纳法中的递推思想,还要注意其中第二步,证明n=k+1命题成立时必须用到n=k时命题成立这个条件.
例如用数学归纳法证明:(n∈N+)时,其中第二步采用下面证法:
设n=k时,等式成立,即,则当n=k+1时,

即n=k+1时等式也成立.
这是不正确的.因为递推思想要求的不是n=k,n=k+1时命题到底成立不成立,而是n=k时命题成立作为条件能否保证n=k+1时命题成立这个结论正确,即要求的这种逻辑关系是否成立.证明的主要部分应改为
以下理解不仅是正确认识数学归纳法的需要,也为第二步证明过程的设计指明了正确的思维方向

高二数学数学归纳法的应用008


一名优秀的教师在教学时都会提前最好准备,教师要准备好教案,这是教师工作中的一部分。教案可以让讲的知识能够轻松被学生吸收,帮助教师能够井然有序的进行教学。写好一份优质的教案要怎么做呢?以下是小编为大家收集的“高二数学数学归纳法的应用008”仅供您在工作和学习中参考。

7.5数学归纳法的应用
一、教学内容分析
1.本小节的重点是用数学归纳法证明等式、证明数或式的整除.教学时应对书写与表达提出严格的要求.尤其是在证明数或式的整除性时,更要注意说理清楚,并以此作为培养学生逻辑推理能力的一个抓手.
2.本小节的难点是用数学归纳法证明数或式的整除性.突破难点的关键是在授课时要重点分析“补项法”的证明思路:通过补项为运用归纳假设创造条件.不要让学生单纯机械地模仿.另外还常用作差方法,通过相减后,证明差能被某数(或某式)整除,再利用归纳假设可得当n=k+1时命题成立.
二、教学目标设计
1.会用数学归纳法证明等式;
2.会用数学归纳法证明数或式的整除;
3.进一步掌握数学归纳法的证明步骤与数学归纳法的实质.
三、教学重点及难点:
用数学归纳法证明等式、证明数或式的整除.
四、教学流程设计
五、教学过程设计
1.复习回顾:
用数学归纳法证明命题的两个步骤,是缺一不可的.如果只完成步骤(i)而缺少步骤(ii)不能说明命题对从n0开始的一切正整数n都成立.
如+1,当n=0、1、2、3、4时都是素数,而n=5时,+1=641×6700417不是素数.
同样只有步骤(ii)而缺少步骤(i),步骤(ii)的归纳假设就没有根据,递推就没有基础,就可能得出不正确的结论.
如2+4+6+…+2k=k2+k+a(a为任何数)
2.讲授新课:
用数学归纳证明等式
例1:用数学归纳法证明:1×4+2×7+3×10+…+n(3n+1)=n(n+1)2
例2:用数学归纳法证明:12+22+32+…+n2=n(n+1)(2n+1).
[说明]上述两例师生共同讨论完成.完成两例讨论后向学生指出:
(1)由于证明当n=k+1等式成立时,需证明的¥资%源~网结论形式是已知的,只要将原等式中的n换成k+1即得,因此学生在证明过程中,证明步骤必须完整,不能跳步骤;(2)有些等式证明题在证明当n=k+1正确时,需用恒等变形,技巧较高,对基础较差的学生来说完成很困难,这时可通过左、右边的多项式乘法来完成.
如求证:…(nN*).
证明:
(1)当n=1时,左边=1,右边=×1×(4-1)=1等式成立.
(2)假设当n=k(kN*)时等式成立,即,
则n=k+1时,

即等式成立.
由(1)(2)知,等式对任何nN*都成立.
(3)用数学归纳法证明恒等式成立时,在逆推过程中应注意等式左右的项数的变化.由当n=k到n=k+1时项数的增加量可能多于一项,各项也因n的变化而变化,因此要根据等式的特点仔细分析项数及各项的变化情况.
例如:求证:
(*).
例3(补充)在1与9之间插入2n-1个正数数,使1,,9成等比数列,在1与9之间又插入2n-1个正数,使1,,9成等差数列.设,,
(1)求、
(2)设,是否存在最大自然数m,使对于nN*都有被m整除,试说明理由.
解:(1)
(2)
当n=1时,=64
当n=2时,=320=5×64
当n=3时,=36×64
由此猜想:最大自然数m=64
用数学归纳法证明上述猜想:
1.当n=1时,猜想显然成立;
2.假设当n=k(kN*)时成立,即能被64整除,
则当n=k+1时,
由归纳假设知能被64整除,又也能被64整除,所以也能被64整除.
由1、2知,能被64整除(nN*).
又因为,所以存在最大自然数64,使能被64整除(nN*).
[说明]本例是较难的数列与数学归纳法的综合题.在第(1)小题的解题过程中充分利用了等差、等比数列的性质,起到了对等差、等比数列知识的复习作用.本例也可以先将等差、等比数列的公差d、公比q用n表示,然后求出、(可让学生完成),同时本例的第(2)小题既复习了用数学归纳法证明数式的整除性,又为进一步掌握归纳—猜测—论证的问题提供了保证,是否选用本题教师可根据学校学生的实际数学学习水平决定.
3.巩固练习:
练习7.6(2)1,2,3
4.课后习题:
习题7.5A组习题7.5B组
5.课堂小结:
(1)本节中心内容是数学归纳法的应用,数学归纳法适用的范围是:证明某些与连续自然数有关的命题;
(2)归纳法是一种由特殊到一般的推理方法,分类是完全归纳法和不完全归纳法二种,完全归纳法只局限于有限个元素,而不完全归纳法得出的结论不具有可靠性,必须用数学归纳法进行严格证明;归纳法是有一系列特殊事例得出一边结论的推理方法,它属于归纳推理.而数学归纳法它是一种演绎推理方法,是一种证明命题的方法!因此,它不属于“不完全归纳法”!甚至连“归纳法”都不是!
(3)学归纳法作为一种证明方法,它的基本思想是递推(递归)思想,它的证明步骤必须是两步,最后还要总结;数学归纳法证题的步骤:
①验证P()成立.
②假设P(k)成立(k∈N*且k≥),推证P(k+1)成立.
数学归纳法的核心,是在验证P()正确的基础上,证明P(n)的正确具有递推性(n≥).第一步是递推的基础或起点,第二步是递推的依据.因此,两步缺一不可,证明中,恰当地运用归纳假设是关键.
(4)本节课所涉及到的数学思想方法有:递推思想、分类讨论思想、函数与方程思想从这节课的学习中你有何感想?你能否体会到数学归纳法的魅力?
六.教学设计说明
1.数学归纳法是一种用于证明与自然数n有关的命题的正确性的证明方法.它的操作步骤简单、明确,教学重点应该是方法的应用.但是我们认为不能把教学过程当作方法的灌输,技能的操练.对方法作简单的灌输,学生必然疑虑重重.为什么必须是二步呢?于是教师反复举例,说明二步缺一不可.你怎么知道n=k时命题成立呢?教师又不得不作出解释,可学生仍未完全接受.学完了数学归纳法的学生又往往有应该用时但想不起来的问题,等等.为此,我们设想强化数学归纳法产生过程的教学,把数学归纳法的产生寓于对归纳法的分析、认识当中,把数学归纳法的产生与不完全归纳法的完善结合起来.这样不仅使学生可以看到数学归纳法产生的背景,从一开始就注意它的功能,为使用它打下良好的基础,而且可以强化归纳思想的教学,这不仅是对中学数学中以演绎思想为主的教学的重要补充,也是引导学生发展创新能力的良机.
数学归纳法产生的过程分二个阶段,第一阶段从对归纳法的认识开始,到对不完全归纳法的认识,再到不完全归纳法可靠性的认识,直到怎么办结束.第二阶段是对策酝酿,从介绍递推思想开始,到认识递推思想,运用递推思想,直到归纳出二个步骤结束.
把递推思想的介绍、理解、运用放在主要位置,必然对理解数学归纳法的实质带来指导意义,也是在教学过程中努力挖掘、渗透隐含于教学内容中的数学思想的一种尝试.
2.在教学方法上,这里运用了在教师指导下的师生共同讨论、探索的方法.目的是在于加强学生对教学过程的参与程度.为了使这种参与有一定的智能度,教师应做好发动、组织、引导和点拨.学生的思维参与往往是从问题开始的,尽快提出适当的问题,并提出思维要求,让学生尽快投入到思维活动中来,是十分重要的.这就要求教师把每节课的课题作出层次分明的分解,并选择适当的问题,把课题的研究内容落于问题中,在逐渐展开中,引导学生用已学的知识、方法予以解决,并获得新的发展.本节课的教学设计也想在这方面作些研究.
3.理解数学归纳法中的递推思想,还要注意其中第二步,证明n=k+1命题成立时必须用到n=k时命题成立这个条件.
即n=k+1时等式也成立.
这是不正确的.因为递推思想要求的不是n=k,n=k+1时命题到底成立不成立,而是n=k时命题成立作为条件能否保证n=k+1时命题成立这个结论正确,即要求的这种逻辑关系是否成立.证明的主要部分应改为
以上理解不仅是正确认识数学归纳法的需要,也为第二步证明过程的设计指明了正确的思维方向.

高二上册数学《数学归纳法》教学设计


一名优秀的教师在每次教学前有自己的事先计划,作为教师就要精心准备好合适的教案。教案可以让学生更好的吸收课堂上所讲的知识点,帮助教师缓解教学的压力,提高教学质量。那么,你知道教案要怎么写呢?为此,小编从网络上为大家精心整理了《高二上册数学《数学归纳法》教学设计》,欢迎大家与身边的朋友分享吧!

高二上册数学《数学归纳法》教学设计

教材分析:

“数学归纳法”既是高中数学中的一种重要的数学方法。它贯通了高中数学的几大知识点:不等式,数列,三角函数……在教学过程中,教师应着力解决的内容是:使学生理解数学归纳法的实质,掌握数学归纳法的证题步骤(特别要注意递推步骤中归纳假设的运用和恒等变换的运用)。只有真正了解了数学归纳法的实质,掌握了证题步骤,学生才能信之不疑,才能用它灵活证明相关问题。本节课是数学归纳法的第一节课,有两大难点:使学生理解数学归纳法证题的有效性;递推步骤中归纳假设的利用。不突破以上难点,学生往往会怀疑数学归纳法的可靠性,或者只是形式上的模仿而不知其所以然。这会对以后的学习造成极大的阻碍。根据本节课的教学内容和学生实际水平,本节课采用“引导发现法”和“讲练结合法”。通过课件的动画模拟展示,引发和开启学生的探究热情,通过“师生”和“生生”的交流合作,掌握概念的深层实质。

教学目标

1、知识和技能目标

(1)了解数学推理的常用方法(归纳法)

(2)了解数学归纳法的原理及使用范围。

(3)初步掌握数学归纳法证题的两个步骤和一个结论。

(4)会用数学归纳法证明一些简单的等式问题。

2、过程与方法目标

通过多米诺骨牌实验加深对数学归纳法的原理的理解,使学生理解理论与实际的辨证关系。在学习中培养学生探索发现问题、提出问题的意识,解决问题和数学交流的能力,学会用总结、归纳、演绎类比探求新知识。

3.情感态度价值观目标

通过对问题的探究活动,亲历知识的构建过程,领悟其中所蕴涵的数学思想;体验探索中挫折的艰辛和成功的快乐,感悟“数学美”,激发学习热情,培养他们手脑并用,多思勤练的好习惯和勇于探索的治学精神。初步形成正确的数学观,创新意识和科学精神。

教学重点和难点

教学重点:(1)使学生理解数学归纳法的实质。

(2)掌握数学归纳法证题步骤,尤其是递推步骤中归纳假设和恒等变换的运用。

教学难点:

(1)数学归纳法的原理;

教学方法:讲授法、引导发现法、类比探究法、讲练结合法

教学过程:

(一):

如何通过有限个步骤的推理,证明n取所有正整数都成立?

(二)新课讲解

1、多米诺骨牌实验

要使所有的多米诺骨牌一一倒下?需要几个步骤才能做到?

(1)第一张牌被推倒(奠基作用)

(2)任意一张牌倒下必须保证它的下一张牌倒下(递推作用)

于是可以获得结论:多米诺骨牌会全部倒下。

2、类比总结(板书)

板书例1

引导学生总结数学归纳法步骤:

第二步的证明没有用到假设,这不是数学归纳法

注意:递推基础不可少,

归纳假设要用到,

结论写明莫忘掉。

用数学归纳法证明恒等式的步骤及注意事项:

①明确首取值n0并验证真假。(必不可少)

②“假设n=k时命题正确”并写出命题形式。

③分析“n=k+1时”命题是什么,并找出与“n=k”时

命题形式的差别。弄清左端应增加的项。

④明确等式左端变形目标,掌握恒等式变形常用的方法:乘法公式、因

式分解、添拆项、配方等,并用上假设。

课堂练习

①用数学归纳法证明:在验证n=1成立时,左边计算所得的结果是(C)

A.1B.C.D.

②用数学归纳法证明命题时,假设那么

③课本37页练习1,2,3

(三)、课堂小结

1、数学归纳法能够解决哪一类问题?

一般被应用于证明某些与正整数有关的数学命题

2、数学归纳法证明命题的步骤是什么?

两个步骤和一个结论,缺一不可

3、数学归纳法证明命题的关键在哪里?

关键在第二步,即归纳假设要用到,解题目标要明确

4、数学归纳法体现的核心思想是什么?

递推思想,运用“有限”的手段,来解决“无限”的问题

注意类比思想的运用

(四)、作业:39页习题2-3A组1,2,3

(五)、板书设计:

数学归纳法(一)例1:……学生板演

数学归纳法:证明:…………

1.…………

2.……

…………