88教案网

你的位置: 教案 > 高中教案 > 导航 > 力学专题

小学语文微课教案

发表时间:2021-08-26

力学专题。

俗话说,凡事预则立,不预则废。高中教师要准备好教案,这是每个高中教师都不可缺少的。教案可以让学生们能够在上课时充分理解所教内容,帮助高中教师提高自己的教学质量。优秀有创意的高中教案要怎样写呢?为了让您在使用时更加简单方便,下面是小编整理的“力学专题”,仅供参考,欢迎大家阅读。

内容精讲

力学包括静力学、运动学和动力学。即:力,牛顿运动定律,物体的平衡,直线运动,曲线运动,振动和波,功和能,等。

一.重要概念:(属于矢量的)力、速度、位移、加速度等;(属于标量的)功、功率、动能和势能等。

二.难点:摩擦力。对摩擦力的有无和方向判定方法:①产生摩擦力的条件(两接触面粗糙;两物体相互挤压;两物体有相对运动或相对运动趋势);②平衡条件③牛顿运动定律。

三.重要的规律:1、牛顿运动定律(其中牛顿第二定律:F=ma尤为重要);2、物体的平衡条件;3、匀变速直线运动规律(注意巧用平均速度的公式:V=S/t);4、匀速圆周运动和平抛运动规律(注:处理天体、卫星问题的方法是F引=ma向);5、动能定理(动能定理揭示了外力对物体所做的总功与物体动能变化间的关系。公式W=Ek2-Ek1为标量式,但有正负。W为正(负)表示物体的动能增加(减少)。Ek2-Ek1为正(负)也表示物体的动能增加(减少);6、机械能守恒定律(E2=E1)

下载地址:http://files.eduu.com/down.php?id=138859

相关阅读

20xx高考物理复习微专题07用动力学和能量观点解决力学综合题学案


每个老师不可缺少的课件是教案课件,大家在认真写教案课件了。是时候对自己教案课件工作做个新的规划了,未来的工作就会做得更好!究竟有没有好的适合教案课件的范文?小编收集并整理了“20xx高考物理复习微专题07用动力学和能量观点解决力学综合题学案”,供大家参考,希望能帮助到有需要的朋友。

微专题07用动力学和能量观点解决力学综合题
多运动组合问题
(对应学生用书P96)
1.多运动组合问题主要是指直线运动、平抛运动和竖直面内圆周运动的组合问题.
2.解题策略
(1)动力学方法观点:牛顿运动定律、运动学基本规律.
(2)能量观点:动能定理、机械能守恒定律、能量守恒定律.
3.解题关键
(1)抓住物理情景中出现的运动状态和运动过程,将物理过程分解成几个简单的子过程.
(2)两个相邻过程连接点的速度是联系两过程的纽带,也是解题的关键.很多情况下平抛运动的末速度的方向是解题的重要突破口.
(20xx全国卷Ⅰ)如图,一轻弹簧原长为2R,其一端固定在倾角为37°的固定直轨道AC的底端A处,另一端位于直轨道上B处,弹簧处于自然状态,直轨道与一半径为56R的光滑圆弧轨道相切于C点,AC=7R,A、B、C、D均在同一竖直平面内.质量为m的小物块P自C点由静止开始下滑,最低到达E点(未画出),随后P沿轨道被弹回,最高到达F点,AF=4R.已知P与直轨道间的动摩擦因数μ=14,重力加速度大小为g.取sin37°=35,cos37°=45
(1)求P第一次运动到B点时速度的大小;
(2)求P运动到E点时弹簧的弹性势能;
(3)改变物块P的质量,将P推至E点,从静止开始释放.已知P自圆弧轨道的最高点D处水平飞出后,恰好通过G点.G点在C点左下方,与C点水平相距72R、竖直相距R,求P运动到D点时速度的大小和改变后P的质量.
解析:(1)由题意可知:lBC=7R-2R=5R①
设P到达B点时的速度为vB,由动能定理得
mglBCsinθ-μmglBCcosθ=12mv2B②
式中θ=37°,联立①②式并由题给条件得
vB=2gR③
(2)设BE=x,P到达E点时速度为零,此时弹簧的弹性势能为Ep,由B→E过程,根据动能定理得
mgxsinθ-μmgxcosθ-Ep=0-12mv2B④
E、F之间的距离l1为l1=4R-2R+x⑤
P到达E点后反弹,从E点运动到F点的过程中,由动能定理有
Ep-mgl1sinθ-μmgl1cosθ=0⑥
联立③④⑤⑥式得
x=R⑦
Ep=125mgR⑧
(3)设改变后P的质量为m1,D点与G点的水平距离为x1、竖直距离为y1,由几何关系(如图所示)得θ=37°.
由几何关系得:
x1=72R-56Rsinθ=3R⑨
y1=R+56R+56Rcosθ=52R⑩
设P在D点的速度为vD,由D点运动到G点的时间为t.
由平抛运动公式得:
y1=12gt2
x1=vDt
联立⑨⑩得
vD=355gR
设P在C点速度的大小为vC,在P由C运动到D的过程中机械能守恒,有
12m1v2C=12m1v2D+m1g56R+56Rcosθ
P由E点运动到C点的过程中,由动能定理得Ep-m1g(x+5R)sinθ-μm1g(x+5R)cosθ=12m1v2C
联立⑦⑧得
m1=13m
答案:(1)2gR(2)125mgR(3)355gR13m
多过程问题的解题技巧
1.“合”——初步了解全过程,构建大致的运动图景.
2.“分”——将全过程进行分解,分析每个过程的规律.
3.“合”——找到子过程的联系,寻找解题方法.
(20xx南充模拟)如图所示,AB为倾角θ=37°的斜面轨道,轨道的AC部分光滑,CB部分粗糙,BP为圆心角等于143°、半径R=1m的竖直光滑圆弧形轨道,两轨道相切于B点,P、O两点在同一竖直线上,轻弹簧一端固定在A点,另一自由端在斜面上C点处,现有一质量m=2kg的小物块在外力作用下将弹簧缓慢压缩到D点后(不拴接)释放,物块经过C点后,从C点运动到B点过程中的位移与时间的关系为x=12t-4t2(式中x单位是m,t单位是s),假设物块第一次经过B点后恰能到达P点,sin37°=0.6,cos37°=0.8,g取10m/s2.试求:
(1)若CD=1m,试求物块从D点运动到C点的过程中,弹簧对物块所做的功;
(2)B、C两点间的距离x;
(3)若在P处安装一个竖直弹性挡板,小物块与挡板碰撞后速度反向,速度大小不变,小物块与弹簧相互作用不损失机械能,试通过计算判断物块在第一次与挡板碰撞后的运动过程中是否会脱离轨道?
解析:(1)由x=12t-4t2知,
物块在C点速度为v0=12m/s
设物块从D点运动到C点的过程中,弹簧对物块所做的功为W,由动能定理得:
W-mgsin37°CD=12mv20
代入数据得:W=12mv20+mgsin37°CD=156J.
(2)由x=12t-4t2知,物块从C运动到B的加速度大小为a=8m/s2
物块在P点的速度满足mg=mv2PR
物块从B运动到P的过程中机械能守恒,则有
12mv2B=12mv2P+mghBP
物块从C运动到B的过程中有v2B-v20=-2ax
由以上各式解得x=498m=6.125m.
(3)设物块与斜面间的动摩擦因数为μ,由牛顿第二定律得
mgsinθ+μmgcosθ=ma
代入数据解得μ=0.25
假设物块第一次从圆弧轨道返回并与弹簧相互作用后,能够回到与O点等高的位置Q点,且设其速度为vQ,由动能定理得
12mv2Q-12mv2P=mgR-2μmgcos37°
解得v2Q=-19<0.
可见物块返回后不能到达Q点,故物块在以后的运动过程中不会脱离轨道.
答案:(1)156J(2)6.125m(3)不会
运用数学知识求解物理极值问题
(对应学生用书P97)
数学思想和方法已经渗透到物理学中各个层次和领域,特别是数学中的基本不等式思想在解决物理计算题中的极值问题时会经常用到,这也是数学知识在具体物理问题中实际应用的反映,也是高考中要求的五大能力之一.
如图所示,粗糙水平台面上静置一质量m=0.5kg的小物块(视为质点),它与平台表面的动摩擦因数μ=0.5,与平台边缘O点的距离s=5m.在平台右侧固定了一个1/4圆弧挡板,圆弧半径R=1m,圆弧的圆心为O点.现用F=5N的水平恒力拉动小物块,一段时间后撤去拉力.(不考虑空气阻力影响,g取10m/s2)
(1)为使小物块击中挡板,求拉力F作用的最短时间;
(2)改变拉力F的作用时间,小物块击中挡板的不同位置.求击中挡板时小物块动能的最小值.
解析:(1)由动能定理
Fx-μmgs=ΔEk=0
又F-μmg=ma
x=12at2
解得t=1s.
(2)设物块离开O点的速度为v0时,击中挡板时小物块的动能最小
x=v0t,y=12gt2
x2+y2=R2
击中挡板时的动能
Ek=12mv20+mgy
由以上各式得Ek=14mgR2y+3y
当R2y=3y.即y=33时,Ek最小
最小值Ek=532J.
答案:(1)1s(2)532J
(多选)如图所示,在粗糙水平台阶上有一轻弹簧,左端固定在A点,弹簧处于自然状态时其右端位于台阶右边缘O点.台阶右侧固定了14圆弧挡板,圆弧半径R=1m,圆心为O,P为圆弧上的一点,以圆心O为原点建立平面直角坐标系,OP与x轴夹角53°(sin53°=0.8),用质量m=2kg的小物块,将弹簧压缩到B点后由静止释放,小物块最终水平抛出并击中挡板上的P点.物块与水平台阶表面间的动摩擦因数μ=0.5,BO间的距离s=0.8m,g取10m/s2,不计空气阻力,下列说法正确的是()
A.物块离开O点时的速度大小为1.5m/s
B.弹簧在B点时具有的弹性势能为10.25J
C.改变弹簧的弹性势能,击中挡板时物块的最小动能为103J
D.改变弹簧的弹性势能,物块做平抛运动,可能垂直落到挡板上
解析:选ABC设物块离开O点的速度为v0
则Rsin37°=v0t
Rcos37°=12gt2
解得v0=1.5m/s
由B→O,则
Ep=μmgs+12mv20=10.25J,故A、B正确.
设物块离开O点的速度为v时,击中挡板时动能最小
则Ek=12mv2+mgh
又h=12gt2,t=xv
x2+h2=R2
得Ek=5h+15h.当5h=15h时,Ek最小
故Ek=103J,C正确.
假设物块能垂直打在挡板上,则速度的反向延长过O点,故不可能,D错误.
传送带模型问题
(对应学生用书P97)
1.模型分类:水平传送带问题和倾斜传送带问题.
2.处理方法:求解的关键在于认真分析物体与传送带的相对运动情况,从而确定其是否受到滑动摩擦力作用.如果受到滑动摩擦力作用应进一步确定其大小和方向,然后根据物体的受力情况确定物体的运动情况.当物体速度与传送带速度相等时,物体所受的摩擦力有可能发生突变.
(20xx河北衡水中学二模)如图所示为一皮带传送装置,其中AB段水平,长度LAB=4m,BC段倾斜,长度足够长,倾角为θ=37°,AB和BC在B点通过一段极短的圆弧连接(图中未画出圆弧),传送带以v=4m/s的恒定速率顺时针运转.现将一质量m=1kg的工件(可看成质点)无初速度地放在A点,已知工件与传送带间的动摩擦因数μ=0.5.sin37°=0.6,cos37°=0.8,重力加速度g取10m/s2.求:
(1)工件从A点开始至第一次到达B点所用的时间t;
(2)工件从第一次到达B点至第二次到达B点的过程中,工件与传送带间因摩擦而产生的热量Q.
解析:(1)由牛顿第二定律得μmg=ma1,则a1=μg=5m/s2,
经t1时间工件与传送带的速度相同,则t1=va1=0.8s,
工件前进的位移为x1=12a1t21=1.6m,
此后工件将与传送带一起匀速运动至B点,用时
t2=LAB-x1v=0.6s,
工件第一次到达B点所用的时间t=t1+t2=1.4s.
(2)工件沿BC上升过程中受到摩擦力f=μmgcosθ,
由牛顿第二定律可得,加速度大小a2=mgsinθ-fm=2m/s2,
由运动学公式可得t3=va2=2s,
下降过程加速度大小不变,a3=a2=2m/s2,
由运动学公式可得t4=va3=2s.
工件与传送带的相对位移Δx=v(t3+t4)=16m,
摩擦生热Q=fΔx=64J.
答案:(1)1.4s(2)64J
1.分析流程
2.功能关系
(1)功能关系分析:WF=ΔEk+ΔEp+Q.
(2)对WF和Q的理解:
①传送带的功:WF=Fx传;
②产生的内能Q=Ffx相对.
(20xx安徽江淮十校联考)(多选)如图所示,倾角θ=37°的足够长的传送带以恒定速度运行,将一质量m=1kg的小物体以某一初速度放上传送带,物体相对地面的速度大小随时间变化的关系如图所示,取沿传送带向上为正方向,g取10m/s2,sin37°=0.6,cos37°=0.8.则下列说法正确的是()
A.物体与传送带间的动摩擦因数为0.75
B.0~8s内物体位移的大小为14m
C.0~8s内物体机械能的增量为84J
D.0~8s内物体与传送带之间因摩擦而产生的热量为126J
解析:选BD根据vt图象的斜率表示加速度,可得物体相对传送带滑动时的加速度大小为a=22m/s2=1m/s2,由牛顿第二定律得μmgcosθ-mgsinθ=ma,解得μ=0.875,故A错误.0~8s内物体的位移为s=-12×2×2m+2+62×4m=14m,故B正确.物体上升的高度为h=ssinθ=8.4m,重力势能的增量为ΔEp=mgh=84J,动能增量为ΔEk=12mv22-12mv21=12×1×(42-22)J=6J,机械能增量为ΔE=ΔEp+ΔEk=90J,故C错误.0~8s内只有前6s内物体与传送带发生相对滑动,0~6s内传送带运动的距离为s带=4×6m=24m,0~6s内物体位移为s物=-12×2×2m+4×42m=6m,s相对=s带-s物=18m,产生的热量为Q=μmgcosθs相对=126J,故D正确.
滑块—木板模型问题
(对应学生用书P98)
1.滑块—木板模型根据情况可以分成水平面上的滑块—木板模型和斜面上的滑块—木板模型.
2.滑块从木板的一端运动到另一端的过程中,若滑块和木板沿同一方向运动,则滑块的位移和木板的位移之差等于木板的长度;若滑块和木板沿相反方向运动,则滑块的位移和木板的位移之和等于木板的长度.
3.此类问题涉及两个物体、多个运动过程,并且物体间还存在相对运动,所以应准确求出各物体在各个运动过程中的加速度(注意两过程的连接处加速度可能突变),找出物体之间的位移(路程)关系或速度关系是解题的突破口,求解中应注意联系两个过程的纽带,每一个过程的末速度是下一个过程的初速度.
10个同样长度的木块放在水平地面上,每个木块的质量m=0.5kg、长度L=0.6m,它们与地面之间的动摩擦因数μ1=0.1,在左方第一个木块上放一质量M=1kg的小铅块(视为质点),它与木块间的动摩擦因数μ2=0.25.现给铅块一向右的初速度v0=5m/s,使其在木块上滑行.g取10m/s2,求:
(1)开始带动木块运动时铅块的速度;
(2)铅块与木块间因摩擦产生的总热量;
(3)铅块运动的总时间.
解析:(1)设铅块可以带动n个木块移动,以这n个木块为研究对象,铅块施加的摩擦力应大于地面施加的摩擦力,即μ2Mg>μ1(M+nm)g
解得n<3,取n=2,此时铅块已滑过8个木块
根据动能定理有:12Mv20-12Mv2=μ2Mg×8L
代入数据得,刚滑上木块9时铅块的速度:v=1m/s.
(2)对铅块M:a2=μ2g=2.5m/s2,v2=v-a2t2
对最后两块木块9和10有:
a1=μ2Mg-μ1M+2mg2m=0.5m/s2,v1=a1t2
令v1=v2,故它们获得共同速度所需时间:
t2=va1+a2=13s
铅块位移:x2=vt2-12a2t22,
木块位移:x1=12a1t22
铅块相对木块位移:Δx=x2-x1=16m<L
所以铅块与木块间因摩擦产生的总热量:
Q=μ2Mg(8L+Δx)=12.42J.
(3)由(2)问知,铅块与木块的共同速度为:
v1=a1t2=16m/s
铅块、木块一起做匀减速运动的时间:t3=v1μ1g=16s
铅块在前8个木块上运动时间:t1=v0-vμ2g=1.6s
所以铅块运动的总时间:
t=t1+t2+t3=2.1s.
答案:(1)1m/s(2)12.42J(3)2.1s
如图所示,在水平面上有A、B两块相同的木板.质量均为m=2kg,每块木板长L=1m.两木板放在一起但不粘连,木板与水平地面间的动摩擦因数μ1=0.1,设定最大静摩擦力与滑动摩擦力大小相等.现有一质量M=4kg的金属块C以初速度v0=22m/s从A的左端向右滑动,金属块与木板间的动摩擦因数μ2=0.2,g取g=10m/s2,试求:
(1)金属块滑上B的左端时速度为多少?
(2)金属块停在木块B上何处?
(3)整个过程中木块B的位移是多少?
解析:(1)AB与地面:fAB=μ1(2m+M)g=8N
AC间:fAC=μ2Mg=8N
故开始时AB静止,对C有:v20-v21=2μ2gL
v1=2m/s
(2)BC间:fBC=μ2Mg=8N
B地间:fB=μ1(m+M)g=6N<fBC
则C减速,B加速,设经时间t达共同速度v2,则:
对B:fBC-fB=maB
aB=1m/s2,v2=aBt=v1-μ2gt
t=23sv2=23m/s
此过程C相对B运动s=v1+v22t-v22t=23m
(3)此后BC一起减速,a=μ1g=1m/s2,
B的位移sB=v22t+v222a=49m.
答案:(1)2m/s(2)23m(3)49m

高考物理第三轮专题复习动力学


第一部分动力学
明确研究对象进行受力分析和运动分析是整个力学的基础,是做好题目的前提和关键,而运动定律则将原因(力)和结果(加速度)联系起来,为解决力学问题提供了完整的方法,直线运动和曲线运动属于运动定律的应用。
(一)、力与平衡
【考纲解读】平衡问题大多以力学背景呈现,涉及力学、热学、电学等部分知识。按照考纲的要求,本专题内容可以分成三部分,即:力的概念、三个性质力;力的合成和分解;共点力作用下物体的平衡。其中重点是对摩擦力和弹力的理解、熟练运用平行四边形定则进行力的合成和分解。难点是受力分析。
一.典型题例
题型1.(受力分析问题)如图所示,物体A靠在倾斜的墙面上,在与墙面和B垂直的力F作用下,A、B保持静止,试分析A、B两个物体的受力个数。
题型2.(弹簧连接体问题)如图,在一粗糙的水平面上有三个质量分别为m1、m2、m3的木块1、2和3,中间分别用一原长为L,劲度系数为k的轻弹簧连接起来,木块与地面间的动摩擦因数为。现用一水平力向右拉木块3,当木块一起匀速运动时,1和3两木块之间的距离是(不计木块宽度)()
题型3.(电场和重力场内的物体平衡问题)如图,倾角为300的粗糙绝缘斜面固定在水平地面上,整个装置处在垂直于斜面向上的匀强电场中,一质量为m、电荷量为-q的小滑块恰能沿斜面匀速下滑,已知滑块与斜面之间的动摩擦因数为,求该匀强电场场强E的大小。
题型4.(复合场内平衡问题)如图,坐标系xOy位于竖直平面内,在该区域有场强E=12N/C、方向沿x轴正方向的匀强电场和磁感应强度大小为B=2T、沿水平方向的且垂直于xOy平面指向纸里的匀强磁场。一个质量m=4×10-5kg,电荷量q=2.5×10-5C带正电的微粒,在xOy平面内做匀速直线运动,运动到原点O时,撤去磁场,经一段时间后,带电微粒运动到了x轴上的P点(g=10m/s2),求:
⑴P点到原点O的距离
⑵带电微粒由原点O运动到P点的时间
题型5.(摩擦力问题)在粗糙的水平面上放一物体A,A上再放一质量为m的物体B,AB间的动摩擦因数为,施加一水平力F给物体A,计算下列情况下A对B的摩擦力的大小
⑴当AB一起做匀速运动时
⑵当AB一起以加速度a向右做匀加速运动时
⑶当力F足够大而使AB发生相对运动时
题型6(相似三角形问题)如图2所示,已知带电小球A、B的电荷量分别为QA、QB,OA=OB,都用长L的绝缘丝线悬挂在绝缘墙角O点处。静止时A、B相距为d。为使平衡时AB间距离减为d/2,可采用以下哪些方法()
A.将小球A、B的质量都增加到原来的2倍;
B.将小球B的质量增加到原来的8倍;
C.将小球A、B的电荷量都减小到原来的一半;
D.将小球A、B的电荷量都减小到原来的一半,同时将小球B的质量增加到原来的2倍
二.专题突破
1.某大型游乐场内的新型滑梯可以等效为如图所示的物理模型.一个小朋友在AB段的动摩擦因数μ1tanθ,BC段的动摩擦因数为μ2tanθ,他从A点开始下滑,滑到C点恰好静止,整个过程中滑梯保持静止状态.则该小朋友从斜面顶端A点滑到底端C点的过程中()
A.地面对滑梯始终无摩擦力作用
B.地面对滑梯的摩擦力方向先水平向左,后水平向右
C.地面对滑梯的支持力的大小始终等于小朋友和滑梯的总重力的大小
D.地面对滑梯的支持力的大小先小于、后大于小朋友和滑梯的总重力的大小
2.质量为m的物体,放在质量为M的斜面体上,斜面体放在水平粗糙的地面上,m和M均处于静止状态,如图,在物体m上施加一个水平力F,在F由零逐渐加大到Fm的过程中,m和M仍保持静止状态,在此过程中,下列判断哪些是正确的()
A.斜面体对m的支持力逐渐增大
B.物体m受到的摩擦力逐渐增大
C.地面受到的压力逐渐增大
D.地面对斜面体的摩擦力由零逐渐增大到Fm
3.如图,两个弹簧的质量不计,劲度系数分别为k1、k2,它们一端固定在P、Q上,当物体平衡时上面的弹簧处于原长,若要把物体的质量换为2m(弹簧的长度不变,且弹簧均处于弹性限度内),当物体再次平衡时,物体将比第一次平衡时下降的距离x为()
A.B.
C.D.
4.如图,一质量为m、带电量为q的小球用细线系住,线的一端固定在O点,若在空间加上匀强电场,平衡时线与竖直方向成600,则电场强度的最小值为()
A.mg/2qB.
C.2mg/qD.mg/q
5.如图,AC是上端带定滑轮的固定竖直杆,质量不计的轻杆BC一端通过铰链固定在C点,另一端B悬挂一重为G的物体,且B端系有一根轻绳,并绕过定滑轮A,用力F拉绳,开始时角BCA大于900,现使角BCA缓慢减小,直到杆BC接近竖直杆AC。此过程中,轻杆B端所受的力将()
A.大小不变B.逐渐增大C.逐渐减小D.先减小后增大
6.如图,光滑平面上固定金属小球A,用长l0的绝缘弹簧将A与另一个金属小球B连接,让它们带上等量同种电荷,弹簧伸长量为x1,若两球电量各漏掉一半,弹簧伸长量变为x2,则有:()
7.两根相距为L的足够长的金属直角导轨如图所示放置,它们各有一边在同一水平面内,另一边垂直于水平面。质量均为m的金属细杆ab、cd与导轨垂直接触形成闭合回路,杆与导轨之间的动摩擦因数为μ,导轨电阻不计,回路总电阻为2R。整个装置处于磁感应强度大小为B,方向竖直向上的匀强磁场中。当ab杆在平行于水平导轨的拉力F作用下以速度V1沿导轨匀速运动时,cd杆也正好以速率向下V2匀速运动。重力加速度为g。以下说法正确的是()
A.ab杆所受拉力F的大小为μmg+
B.cd杆所受摩擦力为零
C.回路中的电流强度为
D.μ与大小的关系为μ=
三.考题欣赏
1.(20xx海南物理)如图,水平地面上有一楔形物块,其斜面上有一小物块b,b与平行于斜面的细绳的一端相连,细绳的另一端固定在斜面上.a与b之间光滑,a和b以共同速度在地面轨道的光滑段向左运动.当它们刚运行至轨道的粗糙段时
A.绳的张力减小,b对a的正压力减小
B.绳的张力增加,斜面对b的支持力增加
C.绳的张力减小,地面对a的支持力增加
D.绳的张力增加.地面对a的支持力减小
2.(20xx安徽)L型木板P(上表面光滑)放在固定斜面上,轻质弹簧一端固定在木板上,另一端与置于木板上表面的滑块Q相连,如图所示。若P、Q一起沿斜面匀速下滑,不计空气阻力。则木板P的受力个数为()
A.3B.4C.5D.6
3.(09北京)如图所示,将质量为m的滑块放在倾角为的固定斜面上。滑块与斜面之间的动摩擦因数为。若滑块与斜面之间的最大静摩擦力与滑动摩擦力大小相等,重力加速度为g,则()
A.将滑块由静止释放,如果>tan,滑块将下滑
B.给滑块沿斜面向下的初速度,如果<tan,滑块将减速下滑
C.用平行于斜面向上的力拉滑块向上匀速滑动,如果=tan,拉力大小应是2mgsin
D.用平行于斜面向下的力拉滑块向下匀速滑动,如果=tan,拉力大小应是mgsin
4.(09天津)物块静止在固定的斜面上,分别按图示的方向对物块施加大小相等的力F,A中F垂直于斜面向上。B中F垂直于斜面向下,C中F竖直向上,D中F竖直向下,施力后物块仍然静止,则物块所受的静摩擦力增大的是

5.(09广东)某缓冲装置可抽象成图所示的简单模型。图中为原长相等,劲度系数不同的轻质弹簧。下列表述正确的是
A.缓冲效果与弹簧的劲度系数无关
B.垫片向右移动时,两弹簧产生的弹力大小相等
C.垫片向右移动时,两弹簧的长度保持相等
D.垫片向右移动时,两弹簧的弹性势能发生改变
6.(09广东)如图所示,表面粗糙的斜面固定于地面上,并处于方向垂直纸面向外、磁感应强度为B的匀强磁场中。质量为m、带电量为+Q的小滑块从斜面顶端由静止下滑。在滑块下滑的过程中,下列判断正确的是()
A.滑块受到的摩擦力不变
B.滑块到地面时的动能与B的大小无关
C.滑块受到的洛伦兹力方向垂直斜面向下
D.B很大时,滑块可能静止于斜面上
7.(09江苏)用一根长1m的轻质细绳将一副质量为1kg的画框对称悬挂在墙壁上,已知绳能承受的最大张力为,为使绳不断裂,画框上两个挂钉的间距最大为(取)()
A.B.
C.D.
8.(09广东)建筑工人用图所示的定滑轮装置运送建筑材料。质量为70.0kg的工人站在地面上,通过定滑轮将20.0kg的建筑材料以0.500m/s2的加速度拉升,忽略绳子和定滑轮的质量及定滑轮的摩擦,则工人对地面的压力大小为(g取l0m/s2)()
A.510NB.490NC.890ND.910N
9.(09山东)如图所示,光滑半球形容器固定在水平面上,O为球心,一质量为m的小滑块,在水平力F的作用下静止P点。设滑块所受支持力为FN。OF与水平方向的夹角为0。下列关系正确的是()
A.B.F=mgtan
C.D.FN=mgtan
10.(09安徽)为了节省能量,某商场安装了智能化的电动扶梯。无人乘行时,扶梯运转得很慢;有人站上扶梯时,它会先慢慢加速,再匀速运转。一顾客乘扶梯上楼,恰好经历了这两个过程,如图所示。那么下列说法中正确的是()
A.顾客始终受到三个力的作用
B.顾客始终处于超重状态
C.顾客对扶梯作用力的方向先指向左下方,再竖直向下
D.顾客对扶梯作用的方向先指向右下方,再竖直向下
11.(09浙江)如图所示,质量为m的等边三棱柱静止在水平放置的斜面上。已知三棱柱与斜面之间的动摩擦因数为,斜面的倾角为,则斜面对三棱柱的支持力与摩擦力的大小分别为()
A.mg和mgB.mg和mg
C.mg和mgD.mg和mg
12.(2008全国卷Ⅱ)如图9所示,一固定斜面上两个质量相同的小物块A和B紧挨着匀速下滑,A与B的接触面光滑.已知A与斜面之间的动摩擦因数是B与斜面之间动图9摩擦因数的2倍,斜面倾角为α,B与斜面之间的动摩擦因数是()
A.23tanαB.23cotα
C.tanαD.cotα
四.学法指导
力与物体的平衡常用解题思路:
第一步:选择研究对象(注意整体法与隔离法的应用)
第二步:进行受力分析(一定要准确,不然做题就会全错。一般受力分析的顺序是:场力(重力、电场力、磁场力)、弹力(接触面的弹力、绳子弹力、杆的弹力)、摩擦力等
第三步:选择合适的方法处理力(处理方法有:力的合成(一般适用于三力平衡)、力的分解(正交分解、图像法、相似三角形等)
第四步:列举方程求解(有时还需要讨论)
注意:对研究对象进行受力分析,作好受力分析图是解题的关键。解决问题,一是要认清物体平衡状态的特征和受力环境是分析平衡问题的关键;二是要学会利用力学平衡的结论(比如:合成法、正交分解法、效果分解法、三角形法、假设法等)来解答。三是要养成迅速处理大计算量和辨析图形几何关系的能力。

(一)、力与平衡(答案)
一.典型题例
题型2:C
题型3.解析:
得:
题型4.解析:匀速直线运动时:受力平衡
得:v=10m/s,与x轴370斜向右上③
撤去磁场后受2个力结合速度方向可知做类平抛运动
沿v方向:
垂直v方向:
得:OP=15mt=1.2s⑥
题型5、解析:⑴因AB向右做匀速运动,B物体受到的合力为零,所以B物体受到的摩擦力为零。
⑵因AB无相对滑动,所以B物体受到的摩擦力为静摩擦力,此时不能用滑动摩擦力的公式来计算,用牛顿第二定律对B物体有
⑶因为AB发生了相对滑动,所以B物体受到的摩擦力为滑动摩擦力,用滑动摩擦力的公式来计算,
题型6:AD
二.专题突破
1.BD2.AD3.A4.B5.A6.C7.AD
三.考题欣赏
1.C2.C3.C4.D5.BD6.CD7.A8.B9.A10.C11.A12.A

20xx高考物理复习微专题08动力学动量和能量观点在力学中的应用学案新人教版


微专题08动力学、动量和能量观点在力学中的应用
力学规律的综合应用
(对应学生用书P115)
1.解动力学问题的三个基本观点
(1)力的观点:运用牛顿定律结合运动学知识解题,可处理匀变速运动问题.
(2)能量观点:用动能定理和能量守恒观点解题,可处理非匀变速运动问题.
(3)动量观点:用动量守恒观点解题,可处理非匀变速运动问题.
但综合题的解法并非孤立,而应综合利用上述三种观点的多个规律,才能顺利求解.
2.力学规律的选用原则
(1)如果要列出各物理量在某一时刻的关系式,可用牛顿第二定律.
(2)研究某一物体受到力的持续作用发生运动状态改变时,一般用动量定理(涉及时间的问题)或动能定理(涉及位移的问题)去解决问题.
(3)若研究的对象为一物体系统,且它们之间有相互作用,一般用两个守恒定律去解决问题,但需注意所研究的问题是否满足守恒的条件.
(4)在涉及相对位移问题时则优先考虑能量守恒定律,系统克服摩擦力所做的总功等于系统机械能的减少量,即转变为系统内能的量.
(5)在涉及碰撞、爆炸、打击、绳绷紧等物理现象时,需注意到这些过程一般均隐含有系统机械能与其他形式能量之间的转换.这种问题由于作用时间都极短,因此动量守恒定律一般能派上大用场.
(20xx广东佛山一模)如图所示,王同学在一辆车上荡秋千,开始时车轮被锁定,车的右边有一个和地面相平的沙坑,且车的右端和沙坑的左边缘平齐;当王同学摆动到最大摆角θ=60°时,车轮立即解除锁定,使车可以在水平地面上无阻力运动,王同学此后不再对车做功,并可视其身体为质点.已知秋千绳子长为L=4.5m,王同学和秋千板的质量为m=50kg,车和秋千支架的总质量为M=200kg,重力加速度g取10m/s2.试求:
(1)王同学摆到最低点时的速率;
(2)在摆到最低点的过程中,绳子对王同学做的功;
(3)王同学摆到最低点时,顺势离开秋千板,他落入沙坑的位置离沙坑左边缘的距离.已知车身的长度s=3.6m,秋千架安装在车的正中央,且转轴离地面的高度H=5.75m.
解析:(1)在王同学下摆到最低点的过程中,王同学和车组成的系统在水平方向动量守恒,以水平向右为正方向,有mv1+Mv2=0,
系统的机械能守恒,有
mgL(1-cos60°)=12mv21+12Mv22,
联立两式并代入数据解得v1=6m/s.
(2)在下摆的过程中对王同学由动能定理可得
mgL(1-cos60°)+W绳=12mv21,
代入数据解得W绳=-225J.
(3)在王同学下摆的过程中,王同学与车组成的系统在水平方向动量是守恒的,则mv1+Mv2=0,
由于运动的时间相等,则mx1+Mx2=0,
又x1+|x2|=Lsin60°,解得车的位移x2=-0.779m,即车向左运动了0.779m.
王同学离开秋千后做平抛运动,运动的时间为
t=2H-Lg=2×5.75-4.510s=0.5s,
王同学沿水平方向的位移为x0=v1t=6×0.5m=3m.
所以王同学的落地点到沙坑左边缘的距离为x=x0+x2-s2=0.421m.
答案:(1)6m/s(2)-225J(3)0.421m
(20xx湖北黄冈联考)如图所示,半径为R=0.4m,内壁光滑的半圆形轨道固定在水平地面上,质量m=0.96kg的滑块停放在距轨道最低点A为L=8.0m的O点处,质量为m0=0.04kg的子弹以速度v0=250m/s从右边水平射入滑块,并留在其中.已知滑块与水平地面间的动摩擦因数μ=0.4,子弹与滑块的作用时间很短.g取10m/s2,求:
(1)子弹相对滑块静止时二者的共同速度大小v;
(2)滑块从O点滑到A点的时间t;
(3)滑块从A点滑上半圆形轨道后通过最高点B落到水平地面上C点,A与C间的水平距离.
解析:(1)子弹射入滑块的过程动量守恒,规定水平向左为正方向,则m0v0=(m+m0)v,
代入数据解得v=10m/s.
(2)子弹击中滑块后与滑块一起在摩擦力的作用下向左做匀减速运动,设其加速度大小为a,则μ(m+m0)g=(m+m0)a,
由匀变速直线运动的规律得vt-12at2=L,
联立解得t=1s(t=4s舍去).
(3)滑块从O点滑到A点时的速度vA=v-at,
代入数据解得vA=6m/s.
设滑块从A点滑上半圆形轨道后通过最高点B点时的速度为vB,由机械能守恒定律得
12(m+m0)v2A=(m+m0)g2R+12(m+m0)v2B,
代入数据解得vB=25m/s.
滑块离开B点后做平抛运动,运动的时间t′=22Rg,
又xAC=vBt′,代入数据得xAC=455m.
答案:(1)10m/s(2)1s(3)455m
“子弹打木块”类问题分析
(对应学生用书P116)
这类题型中,通常由于“子弹”和“木块”的相互作用时间极短,内力外力,可认为在这一过程中动量守恒.“木块”对“子弹”的阻力乘以“子弹”的位移为“子弹”损失的动能,阻力乘以“木块”的位移等于“木块”获得的动能,阻力乘以相对位移等于系统损失的机械能.
(20xx福建漳州模拟)长为L、质量为M的木块在粗糙的水平面上处于静止状态,有一质量为m的子弹(可视为质点)以水平速度v0击中木块并恰好未穿出.设子弹射入木块的过程时间极短,子弹受到木块的阻力恒定,木块运动的最大距离为s,重力加速度为g,求:
(1)木块与水平面间的动摩擦因数μ;
(2)子弹受到的阻力大小f.
解析:(1)在子弹射入木块过程的极短时间内,子弹和木块组成的系统在水平方向上动量守恒,以水平向右为正方向,则mv0=(m+M)v共,
在子弹与木块共速到最终停止的过程中,由功能关系得
12(M+m)v2共=μ(M+m)gs,
解得μ=m2v202gsM+m2.
(2)在子弹射入木块过程的极短时间内,设子弹与木块之间因摩擦产生的热量为Q,由能量守恒定律得Q=12mv20-12(M+m)v2共,
又Q=fL,
联立解得f=Mmv202M+mL.
答案:(1)m2v202gsM+m2(2)Mmv202M+mL
(20xx湖南衡阳一模)如图甲所示,在高h=0.8m的水平平台上放置一质量为M=0.9kg的小木块(视为质点),距平台右边缘d=2m.一质量为m=0.1kg的子弹沿水平方向射入小木块并留在其中(作用时间极短),然后二者一起向右运动,在平台上运动的v2x关系图线如图乙所示,最后小木块从平台边缘滑出并落在距平台右侧水平距离为s=1.6m的地面上.g取10m/s2,求:
(1)小木块滑出平台时的速度大小;
(2)子弹射入小木块前的速度大小;
(3)子弹射入木块前至木块滑出平台时,系统所产生的内能.
解析:(1)小木块从平台滑出后做平抛运动,有h=12gt2,s=vt,联立两式可得v=s2hg=4m/s.
(2)设子弹射入木块后两者的共同速度为v1,由图乙并结合数学知识可知40m2s-2-v2=v21-40m2s-2,解得v1=8m/s,
子弹射入木块的过程中,根据动量守恒定律有mv0=(M+m)v1,
解得v0=M+mv1m=80m/s.
(3)设子弹射入木块前至木块滑出平台时系统所产生的内能为Q,
则Q=12mv20-12(M+m)v2=312J.
答案:(1)4m/s(2)80m/s(3)312J
弹簧类模型的处理方法
(对应学生用书P117)
对两个(或两个以上)物体与弹簧组成的系统,在能量方面,由于发生弹性形变的弹簧会具有弹性势能,系统的总动能将发生变化.若系统除重力和系统内弹力以外的力不做功,系统机械能守恒.若还有其他外力做功,这些力做功之和等于系统机械能改变量.做功之和为正,系统总机械能增加,反之减少.在相互作用过程中,弹簧两端的物体把弹簧拉伸至最长(或压缩至最短)时,两端的物体具有相同的速度,弹性势能最大.系统内每个物体除受弹簧弹力外所受其他外力的合力为零,当弹簧为自然长度时,系统内弹簧某一端的物体具有最大速度.
如图甲所示,三个物体A、B、C静止放在光滑水平面上,物体A、B用一轻质弹簧连接,并用细线拴连使弹簧处于压缩状态,三个物体的质量分别为mA=0.1kg、mB=0.2kg和mC=0.1kg.现将细线烧断,物体A、B在弹簧弹力作用下做往复运动(运动过程中物体A不会碰到物体C).若此过程中弹簧始终在弹性限度内,并设以向右为正方向,从细线烧断后开始计时,物体A的速度—时间图象如图乙所示.求:
(1)从细线烧断到弹簧恢复原长运动的时间;
(2)弹簧长度最大时弹簧存储的弹性势能;
(3)若弹簧与物体A、B不连接,在某一时刻使物体C以v0的初速度向右运动,它将在弹簧与物体分离后和物体A发生碰撞,所有碰撞都为完全弹性碰撞,试求在以后的运动过程中,物体C与物体A能够发生二次碰撞,物体C初速度v0的取值范围.(弹簧与物体分离后,迅速取走,不影响物体后面的运动).
解析:(1)当弹簧恢复到原长时,A的速度最大,
则对应的时刻为t=14T+k2T(k=0,1,2,……)
(2)当A的最大速度为4m/s,
此时根据动量守恒定律可得B的速度为:vB=mAvAmB=2m/s,
AB总的动能即为弹簧长度最大时弹簧存储的弹性势能,
即Ep=Ek=12mAv2A+12mBv2B=1.2J;
(3)当A与弹簧分离时的速度为vA=4m/s,
第一次和C碰撞时满足:
mCv0-mAvA=mCvC′+mAvA′,
12mCv20+12mAv2A=12mCv′2C+12mAv′2A,
物体C与物体A能够发生二次碰撞,则需满足vC′>vA′,
联立以上解得v0>20m/s.
答案:(1)t=14T+k2T(k=0,1,2,……)
(2)1.2J(3)v0>20m/s
如图所示,甲、乙、丙三个相同的小物块(可视为质点)质量均为m,将两个不同的轻质弹簧压缩到最紧并用轻绳固定,弹簧与小物块之间不连接.整个系统静止在光滑水平地面上,甲物块与左边墙壁的距离为l(l远大于弹簧的长度).某时刻烧断甲、乙之间的轻绳,甲与乙、丙的连接体立即被弹开.经过时间t,甲与墙壁发生弹性碰撞,与此同时乙、丙之间的连接绳瞬间断开,又经时间t2,甲与乙发生第一次碰撞.设所有碰撞均为弹性碰撞,弹簧弹开后不再影响甲、乙、丙的运动.求:
(1)乙、丙之间连接绳断开前瞬间乙、丙连接体的速度大小?
(2)乙、丙之间弹簧初始时具有的弹性势能.
解析:(1)甲与乙、丙连接体分离时的速度大小为lt
设乙、丙连接体在分离前瞬间的速度大小为v,则有
mlt=2mv
解得v=l2t
(2)设乙、丙分离后乙的速度大小为v乙,丙的速度大小为v丙
l+l2=lt+v乙t2
分离前后乙、丙组成的系统动量守恒:
2mv=mv丙-mv乙
乙、丙之间弹簧初始时具有的弹性势能
Ep=12mv2乙+12mv2丙-12(2m)v2
解得Ep=25ml24t2.
答案:(1)l2t(2)25ml24t2

摩擦力学案


摩擦力学案
1.摩擦力
(1)定义:两个相互接触的物体,当它们发生________________或具有________________时,在接触面上产生阻碍________________或________________的力.
(2)分类:①________________;②________________.
(3)条件①物体接触且;②接触面;③物体间有或.
2.静摩擦力
(1)定义:两个只有________________,没有相对运动的物体间的摩擦力.
(2)产生条件:①两个物体直接接触且________________;②接触面________;③物体间有________________.
(3)大小:是可变的,变化范围为________________,其中Fmax为静摩擦力的最大值,叫________________.
(4)方向:与接触面________并且与物体间________运动趋势方向________.
3.滑动摩擦力
(1)定义:两个相互接触的物体,当发生__________________时,在接触面间产生的阻碍物体________________的力叫滑动摩擦力.
(2)产生条件:①两物体直接接触且________________;②接触面________;③发生_______.
(3)大小:滑动摩擦力F的大小与物体间________________________FN的大小成正比,即F=μFN,式中μ为比例系数,叫____________,其大小与接触面的材料和粗糙程度有关,而与受力面积、物体运动的速度等因素无关.
(4)方向:与接触面________并且与物体间________________的方向相反.
一、静摩擦力
[问题情境]
图1
我们先来做个小实验,体验一下摩擦力.
把木块放在水平桌面上,用弹簧测力计沿水平方向拉木块,如图1所示.
(1)当测力计的示数为1N时,木块没有动.
(2)逐渐增大拉力到2N时,木块仍静止.
(3)继续增大拉力到4N时,木块开始移动,此时拉力突然变小到3.8N,此后木块匀速运动,拉力不变.
请对以上三种现象作出分析.

[要点提炼]
1.两个相互接触挤压而保持相对静止的物体,当它们之间存在相对运动趋势时,在它们的接触面上会产生阻碍物体间相对运动的力,这种力叫做________________.
2.使物体由静止开始运动的最小的水平拉力(或推力),是物体所受静摩擦力的最大值,这个最大值叫做________________.
3.静摩擦力产生的条件:①物体____________且相互挤压;②接触面粗糙;③两物体间有相对运动趋势.
4.静摩擦力的大小与正压力无关,但最大静摩擦力的大小与正压力成____比.
5.静摩擦力的方向与相对运动趋势方向相反,即其效果是阻碍物体间的________运动.
[问题延伸]
图2
如图2所示,A、B两物体竖直叠放在水平面上,今用水平力F拉物体A,两物体一起匀速运动,试分析A、B所受静摩擦力的方向.
二、滑动摩擦力
[问题情境]
一辆汽车正在奔驰,司机突然发现前方有危险,于是立即紧急刹车.车终于停下,路面上留下两条清晰的刹车痕迹,你能解释车停止运动的真正原因吗?
[要点提炼]
1.滑动摩擦力:一个物体在另一个物体表面上滑动的时候,会受到另一个物体______________的力,这种力叫做滑动摩擦力.
2.滑动摩擦力产生的条件
①接触面粗糙;②两物体相互接触且存在弹力;③两物体间有________________.
3.滑动摩擦力的方向
总是沿着__________________________,且与________________的方向相反.
4.滑动摩擦力的大小
滑动摩擦力跟________成正比,也就是跟一个物体对另一个物体表面的垂直作用力成正比.
公式:F=μFN,μ为动摩擦因数,取决于两物体的________和接触面的________________,与接触面的面积________.
[问题延伸]
图3
如图3所示,物体A、B一起向右运动,速度分别为vA=2m/s,vB=1m/s.
请分析A、B两物体受到的滑动摩擦力的方向,并回答滑动摩擦一定阻碍物体的运动吗?
图4
例1有三个相同的物体叠放在一起,置于粗糙水平面上,物体之间不光滑,如图4所示.现用一水平力F作用在B物体上,物体仍保持静止,下列说法正确的是()
A.C受到地面的摩擦力大小为F,方向水平向左
B.A受到水平向右的摩擦力作用
C.B对C的摩擦力方向为水平向右
D.C和地面间无摩擦力的作用
变式训练1下列关于物体受静摩擦力作用的叙述中,正确的是()
A.静摩擦力的方向一定与物体的运动方向相反
B.静摩擦力的方向不可能与物体的运动方向相同
C.静摩擦力的方向可能与物体的运动方向垂直
D.静止的物体所受的静摩擦力一定为零
图5
例2如图5所示,一物体在动摩擦因数μ=0.2的水平面上向左运动,物体质量为10kg,它在运动过程中还受到一个水平向右的大小为20N的拉力作用,则物体受到的摩擦力为()
A.0N
B.20N,水平向右
C.40N,水平向右
D.20N,水平向左
图6
变式训练2如图6所示,一木块放在水平桌面上,在水平方向共受到三个力的作用,木块处于静止状态.其中F1=10N,F2=2N,若撤去力F1,则木块在水平方向受到的摩擦力为()
A.8N,方向向右B.6N,方向向右
C.2N,方向向右D.0
图7
例3质量为2kg的物体静止在水平地面上,如图7所示,物体与地面间的动摩擦因数为0.5,最大静摩擦力与滑动摩擦力视为相等,给物体一水平推力.(取g=10N/kg)
(1)当推力大小为5N时,地面对物体的摩擦力是多大?
(2)当推力大小为12N时,地面对物体的摩擦力是多大?

拓展探究(1)物体运动后将推力变为20N,地面对物体的摩擦力多大?
(2)物体运动过程中突然把推力去掉,此时地面对物体的摩擦力多大?
【效果评估】
1.关于摩擦力,下列说法中正确的是()
A.两个接触的相对静止的物体间一定有摩擦力
B.受静摩擦作用的物体一定是静止的
C.滑动摩擦力方向可能与运动方向相同
D.物体间正压力一定时,静摩擦力的大小可以变化,但有一个限度
2.下列说法中正确的是()
A.两个相互接触的物体之间一定有弹力作用
B.一个物体静止在另一个物体的表面上,它们之间一定不存在摩擦力的作用
C.两个物体之间如果有弹力的作用,就一定有摩擦力的作用
D.两个物体之间如果有摩擦力的作用,就一定有弹力的作用
图8
3.如图8所示,用水平力F将同种材料不同质量的物体压到一竖直墙壁上,下列说法正确的是()
A.若物体保持静止,则F越大,物体所受摩擦力越大
B.若物体保持静止,则质量越大,物体所受摩擦力越小
C.若物体沿墙壁向下滑动,则F越大,物体所受摩擦力越大
D.若物体沿墙壁向下滑动,则质量越大,物体所受摩擦力越大
4.用一根长20cm,劲度系数为k=200N/m的弹簧水平拉着放在水平桌面上的质量为1kg的木块,弹簧的长度逐渐伸长到22.4cm时木块开始运动,当弹簧的长度为21.7cm时,木块在桌面上做匀速直线运动.则:
(1)木块受到的最大静摩擦力多大?静摩擦力的变化范围怎样?

(2)木块和桌面间的动摩擦因数是多少?

(3)木块滑动过程中,当弹簧的长度小于或大于21.7cm时滑动摩擦力如何变化?

参考答案
课前自主学习
1.(1)相对运动相对运动趋势相对运动相对运动趋势(2)①静摩擦力②滑动摩擦力
(3)①相互挤压②粗糙③相对运动相对运动趋势
2.(1)相对运动趋势(2)①相互挤压②粗糙③相对运动趋势(3)0F静≤Fmax最大静摩擦力(4)相切相对相反
3.(1)相对滑动相对运动(2)①相互挤压②粗糙③相对滑动(3)相互挤压的弹力动摩擦因数(4)相切相对滑动
核心知识探究
一、
[问题情境]
(1)当拉力为1N时,木块有相对桌面运动趋势,但没有动,是因为木块除受1N的拉力外,还受到桌面对它的一个力的作用,这个力与1N的拉力大小相等,方向相反.
(2)当拉力增大到2N时,木块仍静止,但它相对桌面运动的趋势更加“强烈”,此时桌面对木块的作用力为2N.
(3)当拉力增大到4N时,木块开始移动,说明“4N的力”是使木块开始运动所需的最小力,此时桌面对木块的力也为4N.木块运动起来以后,拉力变为3.8N,这个力是保证木块匀速运动所需要的力.
[要点提炼]
1.静摩擦力
2.最大静摩擦力
3.接触
4.正
5.相对
[问题延伸]
A受向左的静摩擦力,B受向右的静摩擦力;A受静摩擦力是阻力,B受静摩擦力是动力.
二、
[问题情境]
路面给车一个摩擦力,使车停止运动.
[要点提炼]
1.阻碍它滑动
2.③相对运动
3.接触面的切线方向相对运动
4.压力材料粗糙程度无关
[问题延伸]
如果以A为参考系,则B相对于A向左运动,所以B受到A向右的滑动摩擦力,可见,物体的相对运动方向和实际运动方向有时并不相同.还可以看出A给B的滑动摩擦力与B的实际运动方向相同,促进B的运动而不是阻碍B的运动.
解题方法探究
例1AC[在选项A中,以A、B、C三者的整体为研究对象,此整体在水平方向上受平衡力的作用,因此C受到地面的摩擦力等于拉力F,方向向左,A项正确,D项错误;在选项B中,以A为研究对象,A不受摩擦力,否则A不能平衡,B项错误;选项C中,B对C的摩擦力与C对B的摩擦力大小相等,方向相反.由此可知,B对C的摩擦力大小等于F,方向水平向右,C项正确.]
变式训练1C
[静摩擦力的方向总是与物体的相对运动趋势的方向相反,而物体相对运动趋势的方向可能与物体运动的方向相同(例如:与传送带相对静止,随传送带一起加速运动的物体),也可能与物体运动方向相反(例如:与传送带相对静止,随传送带一起减速运动的物体),还可能与物体运动方向垂直(例如:随车厢一起做加速运动的车厢后壁上相对于车厢静止的物体,如图所示).静止的物体所受静摩擦力不一定为零(例如:用力推静止在地面上的木箱但未推动),故A、B、D项错误,C项正确.]
例2B[研究摩擦力时:(1)首先要根据实际情况判断、分析究竟是静摩擦力还是滑动摩擦力;(2)如果是滑动摩擦力,就要分析滑动面上压力的大小,用公式计算;(3)如果是静摩擦力,就要分析物体所受到的其他力,根据物体所处的运动状态,通过列力学方程求解.
根据滑动摩擦力公式F=μFN可以得到:摩擦力等于20N,其方向水平向右.选B.]
变式训练2C[未撤去F1前,木块静止,说明木块所受的静摩擦力大小F静=F1-F2=8N,方向向左.也说明了最大静摩擦力F静max≥8N.当撤去F1后,在F2作用下木块有向左运动的趋势,地面给木块的静摩擦力方向变为向右,因F2=2N,小于最大静摩擦力,故木块仍保持静止,因而正确选项为C.]
例3(1)5N(2)10N
解析在地面上,FN=mg,则滑动摩擦力(最大静摩擦力Fmax)大小为Fmax=μFN=μmg=0.5×2×10N=10N.
(1)当拉力F=5N时,FFmax,物体静止,则由二力平衡知:F静=F=5N.
(2)当拉力F=12N时,FFmax,物体滑动.则F滑=μFN=μmg=10N.
拓展探究(1)10N(2)10N
效果评估
1.CD2.D
3.C[物体静止时,物体受静摩擦力,大小等于其重力,与水平力F无关,物体质量越大,所受摩擦力越大,故A、B错.物体向下滑动时,受到滑动摩擦力作用,大小为Ff=μFN=μF,故F越大,摩擦力越大,且与物体的质量无关,C对,D错.]
4.(1)4.8N0~4.8N(2)0.34(3)大小不变