88教案网

你的位置: 教案 > 高中教案 > 导航 > 高考数学(理科)一轮复习数学归纳法学案带答案

小学数学复习教案

发表时间:2020-11-24

高考数学(理科)一轮复习数学归纳法学案带答案。

俗话说,居安思危,思则有备,有备无患。作为高中教师就需要提前准备好适合自己的教案。教案可以更好的帮助学生们打好基础,让高中教师能够快速的解决各种教学问题。那么如何写好我们的高中教案呢?下面是小编帮大家编辑的《高考数学(理科)一轮复习数学归纳法学案带答案》,欢迎您参考,希望对您有所助益!

学案39数学归纳法

导学目标:1.了解数学归纳法的原理.2.能用数学归纳法证明一些简单的数学命题.
自主梳理
1.归纳法
由一系列有限的特殊事例得出________的推理方法叫归纳法.根据推理过程中考查的对象是涉及事物的全体或部分可分为____归纳法和________归纳法.
2.数学归纳法
设{Pn}是一个与正整数相关的命题集合,如果:(1)证明起始命题________(或________)成立;(2)在假设______成立的前提下,推出________也成立,那么可以断定{Pn}对一切正整数成立.
3.数学归纳法证题的步骤
(1)(归纳奠基)证明当n取第一个值__________时命题成立.
(2)(归纳递推)假设______________________________时命题成立,证明当________时命题也成立.只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立.
自我检测
1.用数学归纳法证明:“1+a+a2+…+an+1=1-an+21-a(a≠1)”在验证n=1时,左端计算所得的项为()
A.1B.1+a
C.1+a+a2D.1+a+a2+a3
2.如果命题P(n)对于n=k(k∈N*)时成立,则它对n=k+2也成立,又若P(n)对于n=2时成立,则下列结论正确的是()
A.P(n)对所有正整数n成立
B.P(n)对所有正偶数n成立
C.P(n)对所有正奇数n成立
D.P(n)对所有大于1的正整数n成立
3.(2011台州月考)证明n+221+12+13+14+…+12nn+1(n1),当n=2时,中间式子等于()
A.1B.1+12
C.1+12+13D.1+12+13+14
4.用数学归纳法证明“2nn2+1对于nn0的正整数n都成立”时,第一步证明中的起始值n0应取()
A.2B.3C.5D.6
5.用数学归纳法证明“n3+(n+1)3+(n+2)3(n∈N*)能被9整除”,要利用归纳假设证n=k+1时的情况,只需展开()
A.(k+3)3B.(k+2)3
C.(k+1)3D.(k+1)3+(k+2)3
探究点一用数学归纳法证明等式
例1对于n∈N*,用数学归纳法证明:
1n+2(n-1)+3(n-2)+…+(n-1)2+n1=16n(n+1)(n+2).

变式迁移1(2011金华月考)用数学归纳法证明:
对任意的n∈N*,1-12+13-14+…+12n-1-12n=1n+1+1n+2+…+12n.

探究点二用数学归纳法证明不等式
例2用数学归纳法证明:对一切大于1的自然数,不等式1+131+15…1+12n-12n+12均成立.

变式迁移2已知m为正整数,用数学归纳法证明:当x-1时,(1+x)m≥1+mx.

探究点三用数学归纳法证明整除问题
例3用数学归纳法证明:当n∈N*时,an+1+(a+1)2n-1能被a2+a+1整除.

变式迁移3用数学归纳法证明:当n为正整数时,f(n)=32n+2-8n-9能被64整除.

从特殊到一般的思想
例(14分)已知等差数列{an}的公差d大于0,且a2、a5是方程x2-12x+27=0的两根,数列{bn}的前n项和为Tn,且Tn=1-12bn.
(1)求数列{an}、{bn}的通项公式;
(2)设数列{an}的前n项和为Sn,试比较1bn与Sn+1的大小,并说明理由.
【答题模板】
解(1)由已知得a2+a5=12a2a5=27,又∵{an}的公差大于0,
∴a5a2,∴a2=3,a5=9.∴d=a5-a23=9-33=2,a1=1,
∴an=1+(n-1)×2=2n-1.[2分]
∵Tn=1-12bn,∴b1=23,当n≥2时,Tn-1=1-12bn-1,
∴bn=Tn-Tn-1=1-12bn-1-12bn-1,
化简,得bn=13bn-1,[4分]
∴{bn}是首项为23,公比为13的等比数列,
即bn=2313n-1=23n,
∴an=2n-1,bn=23n.[6分]
(2)∵Sn=1+2n-12n=n2,∴Sn+1=(n+1)2,1bn=3n2.
以下比较1bn与Sn+1的大小:
当n=1时,1b1=32,S2=4,∴1b1S2,当n=2时,1b2=92,S3=9,∴1b2S3,
当n=3时,1b3=272,S4=16,∴1b3S4,当n=4时,1b4=812,S5=25,∴1b4S5.
猜想:n≥4时,1bnSn+1.[9分]
下面用数学归纳法证明:
①当n=4时,已证.
②假设当n=k(k∈N*,k≥4)时,1bkSk+1,即3k2(k+1)2.[10分]
那么,n=k+1时,1bk+1=3k+12=33k23(k+1)2=3k2+6k+3=(k2+4k+4)+2k2+2k-1[(k+1)+1]2=S(k+1)+1,∴n=k+1时,1bnSn+1也成立.[12分]
由①②可知n∈N*,n≥4时,1bnSn+1都成立.
综上所述,当n=1,2,3时,1bnSn+1,当n≥4时,1bnSn+1.[14分]
【突破思维障碍】
1.归纳——猜想——证明是高考重点考查的内容之一,此类问题可分为归纳性问题和存在性问题,本例中归纳性问题需要从特殊情况入手,通过观察、分析、归纳、猜想,探索出一般规律.
2.数列是定义在N*上的函数,这与数学归纳法运用的范围是一致的,并且数列的递推公式与归纳原理实质上是一致的,数列中有不少问题常用数学归纳法解决.
【易错点剖析】
1.严格按照数学归纳法的三个步骤书写,特别是对初始值的验证不可省略,有时要取两个(或两个以上)初始值进行验证;初始值的验证是归纳假设的基础.
2.在进行n=k+1命题证明时,一定要用n=k时的命题,没有用到该命题而推理证明的方法不是数学归纳法.
1.数学归纳法:先证明当n取第一个值n0时命题成立,然后假设当n=k(k∈N*,k≥n0)时命题成立,并证明当n=k+1时命题也成立,那么就证明了这个命题成立.这是因为第一步首先证明了n取第一个值n0时,命题成立,这样假设就有了存在的基础,至少k=n0时命题成立,由假设合理推证出n=k+1时命题也成立,这实质上是证明了一种循环,如验证了n0=1成立,又证明了n=k+1也成立,这就一定有n=2成立,n=2成立,则n=3成立,n=3成立,则n=4也成立,如此反复以至无穷,对所有n≥n0的整数就都成立了.
2.(1)第①步验证n=n0使命题成立时n0不一定是1,是使命题成立的最小正整数.
(2)第②步证明n=k+1时命题也成立的过程中一定要用到归纳递推,否则就不是数学归纳法.
(满分:75分)

一、选择题(每小题5分,共25分)
1.用数学归纳法证明命题“当n是正奇数时,xn+yn能被x+y整除”,在第二步时,正确的证法是()
A.假设n=k(k∈N*)时命题成立,证明n=k+1命题成立
B.假设n=k(k是正奇数)时命题成立,证明n=k+1命题成立
C.假设n=2k+1(k∈N*)时命题成立,证明n=k+1命题成立
D.假设n=k(k是正奇数)时命题成立,证明n=k+2命题成立
2.已知f(n)=1n+1n+1+1n+2+…+1n2,则()
A.f(n)中共有n项,当n=2时,f(2)=12+13
B.f(n)中共有n+1项,当n=2时,f(2)=12+13+14
C.f(n)中共有n2-n项,当n=2时,f(2)=12+13
D.f(n)中共有n2-n+1项,当n=2时,f(2)=12+13+14
3.如果命题P(n)对n=k成立,则它对n=k+1也成立,现已知P(n)对n=4不成立,则下列结论正确的是()
A.P(n)对n∈N*成立
B.P(n)对n4且n∈N*成立
C.P(n)对n4且n∈N*成立
D.P(n)对n≤4且n∈N*不成立
4.(2011日照模拟)用数学归纳法证明1+2+3+…+n2=n4+n22,则当n=k+1时左端应在n=k的基础上加上()
A.k2+1
B.(k+1)2
C.k+14+k+122
D.(k2+1)+(k2+2)+(k2+3)+…+(k+1)2
5.(2011湛江月考)已知f(x)是定义域为正整数集的函数,对于定义域内任意的k,若f(k)≥k2成立,则f(k+1)≥(k+1)2成立,下列命题成立的是()
A.若f(3)≥9成立,且对于任意的k≥1,均有f(k)≥k2成立
B.若f(4)≥16成立,则对于任意的k≥4,均有f(k)k2成立
C.若f(7)≥49成立,则对于任意的k7,均有f(k)k2成立
D.若f(4)=25成立,则对于任意的k≥4,均有f(k)≥k2成立
二、填空题(每小题4分,共12分)
6.用数学归纳法证明“1+2+3+…+n+…+3+2+1=n2(n∈N*)”时,从n=k到n=k+1时,该式左边应添加的代数式是________.
7.(2011南京模拟)用数学归纳法证明不等式1n+1+1n+2+…+1n+n1324的过程中,由n=k推导n=k+1时,不等式的左边增加的式子是______________.
8.凸n边形有f(n)条对角线,凸n+1边形有f(n+1)条对角线,则f(n+1)=f(n)+________.
三、解答题(共38分)
9.(12分)用数学归纳法证明1+n2≤1+12+13+…+12n≤12+n(n∈N*).

10.(12分)(2011新乡月考)数列{an}满足an0,Sn=12(an+1an),求S1,S2,猜想Sn,并用数学归纳法证明.

11.(14分)(2011郑州月考)已知函数f(x)=1x2e-1|x|(其中e为自然对数的底数).
(1)判断f(x)的奇偶性;
(2)在(-∞,0)上求函数f(x)的极值;
(3)用数学归纳法证明:当x0时,对任意正整数n都有f(1x)n!x2-n.

学案39数学归纳法
自主梳理
1.一般结论完全不完全2.(1)P1P0(2)PkPk+1
3.(1)n0(n0∈N*)(2)n=k(k≥n0,k∈N*)n=k+1
自我检测
1.C[当n=1时左端有n+2项,∴左端=1+a+a2.]
2.B[由n=2成立,根据递推关系“P(n)对于n=k时成立,则它对n=k+2也成立”,可以推出n=4时成立,再推出n=6时成立,…,依次类推,P(n)对所有正偶数n成立”.]
3.D[当n=2时,中间的式子
1+12+13+122=1+12+13+14.]
4.C[当n=1时,21=12+1;
当n=2时,2222+1;当n=3时,2332+1;
当n=4时,2442+1.而当n=5时,2552+1,∴n0=5.]
5.A[假设当n=k时,原式能被9整除,
即k3+(k+1)3+(k+2)3能被9整除.
当n=k+1时,(k+1)3+(k+2)3+(k+3)3为了能用上面的归纳假设,只需将(k+3)3展开,让其出现k3即可.]
课堂活动区
例1解题导引用数学归纳法证明与正整数有关的一些等式命题,关键在于弄清等式两边的构成规律:等式的两边各有多少项,由n=k到n=k+1时,等式的两边会增加多少项,增加怎样的项.
证明设f(n)=1n+2(n-1)+3(n-2)+…+(n-1)2+n1.
(1)当n=1时,左边=1,右边=1,等式成立;
(2)假设当n=k(k≥1且k∈N*)时等式成立,
即1k+2(k-1)+3(k-2)+…+(k-1)2+k1
=16k(k+1)(k+2),
则当n=k+1时,
f(k+1)=1(k+1)+2[(k+1)-1]+3[(k+1)-2]+…+[(k+1)-1]2+(k+1)1
=f(k)+1+2+3+…+k+(k+1)
=16k(k+1)(k+2)+12(k+1)(k+1+1)
=16(k+1)(k+2)(k+3).
由(1)(2)可知当n∈N*时等式都成立.
变式迁移1证明(1)当n=1时,
左边=1-12=12=11+1=右边,
∴等式成立.
(2)假设当n=k(k≥1,k∈N*)时,等式成立,即
1-12+13-14+…+12k-1-12k
=1k+1+1k+2+…+12k.
则当n=k+1时,
1-12+13-14+…+12k-1-12k+12k+1-12k+2
=1k+1+1k+2+…+12k+12k+1-12k+2
=1k+1+1+1k+1+2+…+12k+12k+1+1k+1-12k+2
=1k+1+1+1k+1+2+…+12k+12k+1+12k+1,
即当n=k+1时,等式也成立,
所以由(1)(2)知对任意的n∈N*等式都成立.
例2解题导引用数学归纳法证明不等式问题时,从n=k到n=k+1的推证过程中,证明不等式的常用方法有比较法、分析法、综合法、放缩法等.
证明(1)当n=2时,左边=1+13=43;右边=52.
∵左边右边,∴不等式成立.
(2)假设当n=k(k≥2,且k∈N*)时不等式成立,
即1+131+15…1+12k-12k+12.
则当n=k+1时,
1+131+15…1+12k-11+12k+1-1
2k+122k+22k+1=2k+222k+1=4k2+8k+422k+1
4k2+8k+322k+1=2k+32k+122k+1=2k+1+12.
∴当n=k+1时,不等式也成立.
由(1)(2)知,对于一切大于1的自然数n,不等式都成立.
变式迁移2证明(1)当m=1时,原不等式成立;
当m=2时,左边=1+2x+x2,右边=1+2x,
因为x2≥0,所以左边≥右边,原不等式成立;
(2)假设当m=k(k≥2,k∈N*)时,不等式成立,
即(1+x)k≥1+kx,则当m=k+1时,
∵x-1,∴1+x0.
于是在不等式(1+x)k≥1+kx两边同时乘以1+x得,
(1+x)k(1+x)≥(1+kx)(1+x)=1+(k+1)x+kx2
≥1+(k+1)x.
所以(1+x)k+1≥1+(k+1)x,
即当m=k+1时,不等式也成立.
综合(1)(2)知,对一切正整数m,不等式都成立.
例3解题导引用数学归纳法证明整除问题,由k过渡到k+1时常使用“配凑法”.在证明n=k+1成立时,先将n=k+1时的原式进行分拆、重组或者添加项等方式进行整理,最终将其变成一个或多个部分的和,其中每个部分都能被约定的数(或式子)整除,从而由部分的整除性得出整体的整除性,最终证得n=k+1时也成立.
证明(1)当n=1时,a2+(a+1)=a2+a+1能被a2+a+1整除.
(2)假设当n=k(k≥1且k∈N*)时,
ak+1+(a+1)2k-1能被a2+a+1整除,
则当n=k+1时,
ak+2+(a+1)2k+1=aak+1+(a+1)2(a+1)2k-1
=aak+1+a(a+1)2k-1+(a2+a+1)(a+1)2k-1
=a[ak+1+(a+1)2k-1]+(a2+a+1)(a+1)2k-1,
由假设可知a[ak+1+(a+1)2k-1]能被a2+a+1整除,
∴ak+2+(a+1)2k+1也能被a2+a+1整除,
即n=k+1时命题也成立.
综合(1)(2)知,对任意的n∈N*命题都成立.
变式迁移3证明(1)当n=1时,f(1)=34-8-9=64,
命题显然成立.
(2)假设当n=k(k≥1,k∈N*)时,
f(k)=32k+2-8k-9能被64整除.
则当n=k+1时,
32(k+1)+2-8(k+1)-9=9(32k+2-8k-9)+98k+99-8(k+1)-9=9(32k+2-8k-9)+64(k+1)
即f(k+1)=9f(k)+64(k+1)
∴n=k+1时命题也成立.
综合(1)(2)可知,对任意的n∈N*,命题都成立.
课后练习区
1.D[A、B、C中,k+1不一定表示奇数,只有D中k为奇数,k+2为奇数.]
2.D
3.D[由题意可知,P(n)对n=3不成立(否则P(n)对n=4也成立).同理可推P(n)对n=2,n=1也不成立.]
4.D[∵当n=k时,左端=1+2+3+…+k2,
当n=k+1时,
左端=1+2+3+…+k2+(k2+1)+…+(k+1)2,
∴当n=k+1时,左端应在n=k的基础上加上
(k2+1)+(k2+2)+(k2+3)+…+(k+1)2.]
5.D[f(4)=2542,∴k≥4,均有f(k)≥k2.
仅有D选项符合题意.]
6.2k+1
解析∵当n=k+1时,
左边=1+2+…+k+(k+1)+k+…+2+1,
∴从n=k到n=k+1时,应添加的代数式为(k+1)+k=2k+1.
7.12k+12k+2
解析不等式的左边增加的式子是
12k+1+12k+2-1k+1=12k+12k+2.
8.n-1
解析∵f(4)=f(3)+2,f(5)=f(4)+3,
f(6)=f(5)+4,…,∴f(n+1)=f(n)+n-1.
9.证明(1)当n=1时,左边=1+12,右边=12+1,
∴32≤1+12≤32,命题成立.(2分)
当n=2时,左边=1+22=2;右边=12+2=52,
∴21+12+13+1452,命题成立.(4分)
(2)假设当n=k(k≥2,k∈N*)时命题成立,
即1+k21+12+13+…+12k12+k,(6分)
则当n=k+1时,
1+12+13+…+12k+12k+1+12k+2+…+12k+2k1+k2+2k12k+1=1+k+12.(8分)
又1+12+13+…+12k+12k+1+12k+2+…+12k+2k12+k+2k12k=12+(k+1),
即n=k+1时,命题也成立.(10分)
由(1)(2)可知,命题对所有n∈N*都成立.(12分)
10.解∵an0,∴Sn0,
由S1=12(a1+1a1),变形整理得S21=1,
取正根得S1=1.
由S2=12(a2+1a2)及a2=S2-S1=S2-1得
S2=12(S2-1+1S2-1),
变形整理得S22=2,取正根得S2=2.
同理可求得S3=3.由此猜想Sn=n.(4分)
用数学归纳法证明如下:
(1)当n=1时,上面已求出S1=1,结论成立.
(6分)
(2)假设当n=k时,结论成立,即Sk=k.
那么,当n=k+1时,
Sk+1=12(ak+1+1ak+1)=12(Sk+1-Sk+1Sk+1-Sk)
=12(Sk+1-k+1Sk+1-k).
整理得S2k+1=k+1,取正根得Sk+1=k+1.
故当n=k+1时,结论成立.(11分)
由(1)、(2)可知,对一切n∈N*,Sn=n都成立.
(12分)
11.(1)解∵函数f(x)定义域为{x∈R|x≠0}
且f(-x)=1-x2=1x2=f(x),
∴f(x)是偶函数.(4分)
(2)解当x0时,f(x)=1x2,
f′(x)=-2x3+1x2(-1x2)
=-1x4(2x+1),(6分)
令f′(x)=0有x=-12,
当x变化时,f′(x),f(x)的变化情况如下表:
x(-∞,-12)
-12
(-12,0)

f′(x)+0-
f(x)增极大值减
由表可知:当x=-12时,f(x)取极大值4e-2,
无极小值.(8分)
(3)证明当x0时f(x)=1x2,∴f(1x)=x2e-x.
考虑到:x0时,不等式f(1x)n!x2-n等价于x2e-xn!x2-nxnn!ex(ⅰ)(9分)
所以只要用数学归纳法证明不等式(ⅰ)对一切n∈N*都成立即可.
①当n=1时,设g(x)=ex-x(x0),
∵x0时,g′(x)=ex-10,∴g(x)是增函数,
故g(x)g(0)=10,即exx(x0).
所以当n=1时,不等式(ⅰ)成立.(10分)
②假设n=k(k≥1,k∈N*)时,不等式(ⅰ)成立,
即xkk!ex,
当n=k+1时,设h(x)=(k+1)!ex-xk+1(x0),
h′(x)=(k+1)!ex-(k+1)xk=(k+1)(k!ex-xk)0,
故h(x)=(k+1)!ex-xk+1(x0)为增函数,
∴h(x)h(0)=(k+1)!0,
∴xk+1(k+1)!ex,
即n=k+1时,不等式(ⅰ)也成立,(13分)
由①②知不等式(ⅰ)对一切n∈N*都成立,
故当x0时,原不等式对n∈N*都成立.(14分)

相关阅读

高考数学(理科)一轮复习直线及其方程学案带答案


第九章解析几何
学案47直线及其方程

导学目标:1.在平面直角坐标系中,结合具体图形,确定直线位置的几何要素.2.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.3.掌握确定直线位置的几何要素,掌握直线方程的几种形式,了解斜截式与一次函数的关系.
自主梳理
1.直线的倾斜角与斜率
(1)直线的倾斜角
①定义:当直线l与x轴相交时,我们取x轴作为基准,x轴________与直线l________方向之间所成的角α叫做直线l的倾斜角.当直线l与x轴平行或重合时,规定它的倾斜角为________.
②倾斜角的范围为______________.
(2)直线的斜率
①定义:一条直线的倾斜角α的________叫做这条直线的斜率,斜率常用小写字母k表示,即k=________,倾斜角是90°的直线斜率不存在.
②过两点的直线的斜率公式:
经过两点P1(x1,y1),P2(x2,y2)(x1≠x2)的直线的斜率公式为k=______________________.
2.直线的方向向量
经过两点P1(x1,y1),P2(x2,y2)的直线的一个方向向量为P1P2→,其坐标为________________,当斜率k存在时,方向向量的坐标可记为(1,k).
3.直线的方程和方程的直线
已知二元一次方程Ax+By+C=0(A2+B2≠0)和坐标平面上的直线l,如果直线l上任意一点的坐标都是方程____________的解,并且以方程Ax+By+C=0的任意一个解作为点的坐标都在__________,就称直线l是方程Ax+By+C=0的直线,称方程Ax+By+C=0是直线l的方程.
4.直线方程的五种基本形式
名称方程适用范围
点斜式不含直线x=x0
斜截式不含垂直于x轴的直线
两点式不含直线x=x1(x1≠x2)和直线y=y1(y1≠y2)
截距式不含垂直于坐标轴和过原点的直线
一般式平面直角坐标系内的直线都适用
5.线段的中点坐标公式
若点P1,P2的坐标分别为(x1,y1),(x2,y2),且线段P1P2的中点M的坐标为(x,y),则x=,y=,此公式为线段P1P2的中点坐标公式.
自我检测
1.(2011银川调研)若A(-2,3),B(3,-2),C12,m三点共线,则m的值为()
A.12B.-12C.-2D.2
2.直线l与两条直线x-y-7=0,y=1分别交于P、Q两点,线段PQ的中点为(1,-1),则直线l的斜率为()
A.-32B.32C.23D.-23
3.下列四个命题中,假命题是()
A.经过定点P(x0,y0)的直线不一定都可以用方程y-y0=k(x-x0)表示
B.经过两个不同的点P1(x1,y1)、P2(x2,y2)的直线都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)来表示
C.与两条坐标轴都相交的直线不一定可以用方程xa+yb=1表示
D.经过点Q(0,b)的直线都可以表示为y=kx+b
4.(2011商丘期末)如果AC0,且BC0,那么直线Ax+By+C=0不通过()
A.第一象限B.第二象限
C.第三象限D.第四象限
5.已知直线l的方向向量与向量a=(1,2)垂直,且直线l过点A(1,1),则直线l的方程为()
A.x-2y-1=0B.2x+y-3=0
C.x+2y+1=0D.x+2y-3=0
探究点一倾斜角与斜率

例1已知两点A(-1,-5)、B(3,-2),直线l的倾斜角是直线AB倾斜角的一半,求l的斜率.

变式迁移1直线xsinα-y+1=0的倾斜角的变化范围是()
A.0,π2B.(0,π)
C.-π4,π4D.0,π4∪3π4,π
探究点二直线的方程
例2(2011武汉模拟)过点M(0,1)作直线,使它被两直线l1:x-3y+10=0,l2:2x+y-8=0所截得的线段恰好被M所平分,求此直线方程.

变式迁移2求适合下列条件的直线方程:
(1)经过点P(3,2)且在两坐标轴上的截距相等;
(2)经过点A(-1,-3),倾斜角等于直线y=3x的倾斜角的2倍.

探究点三直线方程的应用

例3过点P(2,1)的直线l交x轴、y轴正半轴于A、B两点,求使:
(1)△AOB面积最小时l的方程;
(2)|PA||PB|最小时l的方程.
变式迁移3为了绿化城市,拟在矩形区域ABCD内建一个矩形草坪(如图),另外△EFA内部有一文物保护区不能占用,经测量|AB|=100m,|BC|=80m,|AE|=30m,|AF|=20m,应如何设计才能使草坪面积最大?
探究点四数形结合思想
例4已知实数x,y满足y=x2-2x+2(-1≤x≤1).
试求y+3x+2的最大值与最小值.

变式迁移4直线l过点M(-1,2)且与以点P(-2,-3)、Q(4,0)为端点的线段恒相交,则l的斜率范围是()
A.[-25,5]B.[-25,0)∪(0,5]
C.(-∞,-25]∪[5,+∞)D.[-25,π2)∪(π2,5]
1.要正确理解倾斜角的定义,明确倾斜角的范围为0°≤α180°,熟记斜率公式k=y2-y1x2-x1,该公式与两点顺序无关.已知两点坐标(x1≠x2),根据该公式可以求出经过两点的直线斜率,而x1=x2,y1≠y2时,直线斜率不存在,此时直线的倾斜角为90°.
2.当直线没有斜率(x1=x2)或斜率为0(y1=y2)时,不能用两点式y-y1y2-y1=x-x1x2-x1求直线方程,但都可以写成(x2-x1)(y-y1)=(y2-y1)(x-x1)的形式.直线方程的点斜式、斜截式、两点式、截距式都可以化成一般式,但是有些直线的一般式方程不能化成点斜式、斜截式、两点式或截距式.
3.使用直线方程时,一定要注意限制条件以免解题过程中丢解,如点斜式的使用条件是直线必须有斜率,截距式的使用条件是截距存在且不为零,两点式的使用条件是直线不与坐标轴垂直.
(满分:75分)

一、选择题(每小题5分,共25分)
1.(2011临沂月考)已知直线l经过A(2,1)、B(1,m2)(m∈R)两点,那么直线l的倾斜角的取值范围是()
A.(0,π)B.0,π4∪π2,π
C.0,π4D.π4,π2∪π2,π
2.若直线l:y=kx-3与直线2x+3y-6=0的交点位于第一象限,则直线l的倾斜角的取值范围是()
A.π6,π3B.π6,π2
C.π3,π2D.π6,π2
3.点P(x,y)在经过A(3,0),B(1,1)两点的直线上,那么2x+4y的最小值是()
A.22B.42
C.16D.不存在
4.(2011宜昌调研)点A(a+b,ab)在第一象限内,则直线bx+ay-ab=0不经过的象限是()
A.第一象限B.第二象限
C.第三象限D.第四象限
5.(2011包头期末)经过点P(2,-1),且在y轴上的截距等于它在x轴上的截距的2倍的直线l的方程为()
A.2x+y=2B.2x+y=4
C.2x+y=3D.2x+y=3或x+2y=0
二、填空题(每小题4分,共12分)
6.过两点A(m2+2,m2-3),B(3-m-m2,2m)的直线l的倾斜角为45°,则m=________.
7.直线x+(a2+1)y+1=0(a∈R)的倾斜角的取值范围是________.
8.设A、B是x轴上的两点,点P的横坐标为2,且|PA|=|PB|,若直线PA的方程为x-y+1=0,则直线PB的方程是________________.
三、解答题(共38分)
9.(12分)已知两点A(-1,2),B(m,3),求:
(1)直线AB的斜率k;
(2)求直线AB的方程;
(3)已知实数m∈-33-1,3-1,求直线AB的倾斜角α的范围.

10.(12分)(2011秦皇岛模拟)已知线段PQ两端点的坐标分别为(-1,1)、(2,2),若直线l:x+my+m=0与线段PQ有交点,求m的范围.
11.(14分)已知直线l:kx-y+1+2k=0(k∈R).
(1)证明:直线l过定点;
(2)若直线不经过第四象限,求k的取值范围;
(3)若直线l交x轴负半轴于A,交y轴正半轴于B,△AOB的面积为S,求S的最小值并求此时直线l的方程.

学案47直线及其方程
自主梳理
1.(1)①正向向上0°②0°≤α180°(2)①正切值tanα②y2-y1x2-x12.(x2-x1,y2-y1)3.Ax+By+C=0
直线l上4.y-y0=k(x-x0)y=kx+by-y1y2-y1=x-x1x2-x1xa+yb=1(a≠0,b≠0)Ax+By+C=0(A、B不同时为0)5.x1+x22y1+y22
自我检测
1.A2.D3.D4.C5.D
课堂活动区
例1解题导引斜率与倾斜角常与三角函数联系,本题需要挖掘隐含条件,判断角的范围.关键是熟练掌握好根据三角函数值确定角的范围这一类题型.
解设直线l的倾斜角为α,则直线AB的倾斜角为2α,
由题意可知:tan2α=-2--53--1=34,∴2tanα1-tan2α=34.
整理得3tan2α+8tanα-3=0.
解得tanα=13或tanα=-3,∵tan2α=340,
∴0°2α90°,∴0°α45°,∴tanα0,
故直线l的斜率为13.
变式迁移1D[直线xsinα-y+1=0的斜率是k=sinα,
又∵-1≤sinα≤1,∴-1≤k≤1.
当0≤k≤1时,倾斜角的范围是0,π4,
当-1≤k0时,倾斜角的范围是3π4,π.]
例2解题导引(1)对直线问题,要特别注意斜率不存在的情况.
(2)求直线方程常用方法——待定系数法.
待定系数法就是根据所求的具体直线设出方程,然后按照它们满足的条件求出参数.
解过点M且与x轴垂直的直线是y轴,它和两已知直线的交点分别是0,103和(0,8),
显然不满足中点是点M(0,1)的条件.
故可设所求直线方程为y=kx+1,与两已知直线l1、l2分别交于A、B两点,联立方程组y=kx+1,x-3y+10=0,①
y=kx+1,2x+y-8=0,②
由①解得xA=73k-1,由②解得xB=7k+2.
∵点M平分线段AB,∴xA+xB=2xM,
即73k-1+7k+2=0,解得k=-14.
故所求直线方程为x+4y-4=0.
变式迁移2解(1)设直线l在x,y轴上的截距均为a,
若a=0,即l过点(0,0)和(3,2),
∴l的方程为y=23x,即2x-3y=0.
若a≠0,则设l的方程为xa+ya=1,
∵l过点(3,2),∴3a+2a=1,
∴a=5,∴l的方程为x+y-5=0,
综上可知,直线l的方程为2x-3y=0或x+y-5=0.
(2)由已知:设直线y=3x的倾斜角为α,
则所求直线的倾斜角为2α.
∵tanα=3,∴tan2α=2tanα1-tan2α=-34.
又直线经过点A(-1,-3),
因此所求直线方程为y+3=-34(x+1),
即3x+4y+15=0.
例3解题导引先设出A、B所在的直线方程,再求出A、B两点的坐标,表示出△ABO的面积,然后利用相关的数学知识求最值.
确定直线方程可分为两个类型:一是根据题目条件确定点和斜率或确定两点,进而套用直线方程的几种形式,写出方程,此法称直接法;二是利用直线在题目中具有的某些性质,先设出方程(含参数或待定系数),再确定参数值,然后写出方程,这种方法称为间接法.
解设直线的方程为xa+yb=1(a2,b1),
由已知可得2a+1b=1.
(1)∵22a1b≤2a+1b=1,∴ab≥8.
∴S△AOB=12ab≥4.
当且仅当2a=1b=12,
即a=4,b=2时,S△AOB取最小值4,
此时直线l的方程为x4+y2=1,
即x+2y-4=0.
(2)由2a+1b=1,得ab-a-2b=0,变形得(a-2)(b-1)=2,
|PA||PB|
=2-a2+1-022-02+1-b2
=[2-a2+1][1-b2+4]
≥2a-24b-1.
当且仅当a-2=1,b-1=2,
即a=3,b=3时,|PA||PB|取最小值4.
此时直线l的方程为x+y-3=0.
变式迁移3解如图所示建立直角坐标系,则E(30,0),F(0,20),
∴线段EF的方程为x30+y20=1(0≤x≤30).
在线段EF上取点P(m,n),
作PQ⊥BC于点Q,
PR⊥CD于点R,设矩形PQCR的面积为S,
则S=|PQ||PR|=(100-m)(80-n).
又m30+n20=1(0≤m≤30),
∴n=20(1-m30).
∴S=(100-m)(80-20+23m)
=-23(m-5)2+180503(0≤m≤30).
∴当m=5时,S有最大值,这时|EP||PF|=30-55=5.
所以当矩形草坪的两边在BC、CD上,一个顶点在线段EF上,且这个顶点分EF成5∶1时,草坪面积最大.
例4解题导引解决这类问题的关键是弄清楚所求代数式的几何意义,借助数形结合,将求最值问题转化为求斜率取值范围问题,简化了运算过程,收到事半功倍的效果.
解由y+3x+2的几何意义可知,它表示经过定点P(-2,-3)与曲线段AB上任一点(x,y)的直线的斜率k,由图可知:
kPA≤k≤kPB,由已知可得:
A(1,1),B(-1,5),
∴43≤k≤8,
故y+3x+2的最大值为8,最小值为43.
变式迁移4C
[如图,过点M作y轴的平行线与线段PQ相交于点N.
kMP=5,kMQ=-25.
当直线l从MP开始绕M按逆时针方向旋转到MN时,倾斜角在增大,斜率也在增大,这时,k≥5.当直线l从MN开始逆时针旋转到MQ时,
∵正切函数在(π2,π)上仍为增函数,
∴斜率从-∞开始增加,增大到kMQ=-25,
故直线l的斜率范围是(-∞,-25]∪[5,+∞).]
课后练习区
1.B2.B3.B4.C5.D
6.-27.[34π,π)8.x+y-5=0
9.解(1)当m=-1时,
直线AB的斜率不存在;(1分)
当m≠-1时,k=1m+1.(3分)
(2)当m=-1时,AB的方程为x=-1,(5分)
当m≠-1时,AB的方程为y-2=1m+1(x+1),
即y=xm+1+2m+3m+1.(7分)
∴直线AB的方程为x=-1或y=xm+1+2m+3m+1.
(8分)
(3)①当m=-1时,α=π2;
②当m≠-1时,
∵k=1m+1∈(-∞,-3]∪33,+∞,
∴α∈π6,π2∪π2,2π3.(10分)
综合①②,知直线AB的倾斜角
α∈π6,2π3.(12分)
10.
解直线x+my+m=0恒过A(0,-1)点.(2分)
kAP=-1-10+1=-2,
kAQ=-1-20-2=32,(5分)
则-1m≥32或-1m≤-2,
∴-23≤m≤12且m≠0.(9分)
又m=0时直线x+my+m=0与线段PQ有交点,
∴所求m的范围是-23≤m≤12.(12分)
11.(1)证明直线l的方程是:k(x+2)+(1-y)=0,
令x+2=01-y=0,解之得x=-2y=1,
∴无论k取何值,直线总经过定点(-2,1).(4分)
(2)解由方程知,当k≠0时直线在x轴上的截距为-1+2kk,在y轴上的截距为1+2k,要使直线不经过第四象限,则必须有-1+2kk≤-21+2k≥1,解之得k0;(7分)
当k=0时,直线为y=1,符合题意,故k≥0.(9分)
(3)解由l的方程,得A-1+2kk,0,
B(0,1+2k).依题意得-1+2kk0,1+2k0,
解得k0.(11分)
∵S=12|OA||OB|
=121+2kk|1+2k|
=121+2k2k=124k+1k+4≥12×(2×2+4)=4,
“=”成立的条件是k0且4k=1k,
即k=12,
∴Smin=4,此时l:x-2y+4=0.(14分)

高考数学(理科)一轮复习函数及其表示学案带答案


第二章函数
学案4函数及其表示

导学目标:1.了解构成函数的要素,会求一些简单函数的定义域和值域,了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法等)表示函数.3.了解简单的分段函数,并能简单应用.
自主梳理
1.函数的基本概念
(1)函数定义
设A,B是非空的,如果按照某种确定的对应关系f,使对于集合A中的,在集合B中,称f:A→B为从集合A到集合B的一个函数,x的取值范围A叫做函数的__________,__________________叫做函数的值域.
(2)函数的三要素
__________、________和____________.
(3)函数的表示法
表示函数的常用方法有:________、________、________.
(4)函数相等
如果两个函数的定义域和__________完全一致,则这两个函数相等,这是判定两函数相等的依据.
(5)分段函数:在函数的________内,对于自变量x的不同取值区间,有着不同的____________,这样的函数通常叫做分段函数.
分段函数是一个函数,它的定义域是各段取值区间的________,值域是各段值域的________.
2.映射的概念
(1)映射的定义
设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的.?
(2)由映射的定义可以看出,映射是概念的推广,函数是一种特殊的映射,要注意构成函数的两个集合,A、B必须是数集.
自我检测
1.(2011佛山模拟)设集合M={x|0≤x≤2},N={y|0≤y≤2},给出下列4个图形,其中能表示集合M到N的函数关系的有()
A.0个B.1个
C.2个D.3个
2.(2010湖北)函数y=1log0.54x-3的定义域为()
A.(34,1)B.(34,+∞)
C.(1,+∞)D.(34,1)∪(1,+∞)
3.(2010湖北)已知函数f(x)=log3x,x02x,x≤0,则f(f(19))等于()
A.4B.14
C.-4D.-14
4.下列函数中,与函数y=x相同的函数是()
A.y=x2xB.y=(x)2
C.y=lg10xD.y=2log2x
5.(2011衡水月考)函数y=lg(ax2-ax+1)的定义域是R,求a的取值范围.
探究点一函数与映射的概念
例1(教材改编)下列对应关系是集合P上的函数的是________.
(1)P=Z,Q=N*,对应关系f:对集合P中的元素取绝对值与集合Q中的元素相对应;
y=x2,x∈P,y∈Q;
(2)P={-1,1,-2,2},Q={1,4},对应关系:f:x→y=x2,x∈P,y∈Q;?
(3)P={三角形},Q={x|x0},对应关系f:对P中三角形求面积与集合Q中元素对应.

变式迁移1已知映射f:A→B.其中B.其中A=B=R,对应关系f:x→y=-x2+2x,对于实数k∈B,在集合A中不存在元素与之对应,则k的取值范围是()
A.k1B.k≥1
C.k1D.k≤1
探究点二求函数的定义域
例2(1)求函数y=x+1+x-10lg2-x的定义域;
(2)已知函数f(2x+1)的定义域为(0,1),求f(x)的定义域.

变式迁移2已知函数y=f(x)的定义域是[0,2],那么g(x)=fx21+lgx+1的定义域是________________________________________________________________________.
探究点三求函数的解析式
例3(1)已知f(2x+1)=lgx,求f(x);
(2)已知f(x)是一次函数,且满足3f(x+1)-2f(x-1)=2x+17,求f(x);
(3)已知f(x)满足2f(x)+f(1x)=3x,求f(x).
变式迁移3(2011武汉模拟)给出下列两个条件:
(1)f(x+1)=x+2x;
(2)f(x)为二次函数且f(0)=3,f(x+2)-f(x)=4x+2.试分别求出f(x)的解析式.
探究点四分段函数的应用
例4设函数f(x)=x2+bx+c,x≤0,2,x0.若f(-4)=f(0),f(-2)=-2,则关于x的方程f(x)=x的解的个数为()
A.1B.2C.3D.4
变式迁移4(2010江苏)已知函数f(x)=x2+1,x≥0,1,x0,则满足不等式f(1-x2)f(2x)的x的范围是________________.

1.与定义域有关的几类问题
第一类是给出函数的解析式,这时函数的定义域是使解析式有意义的自变量的取值范围;
第二类是实际问题或几何问题,此时除要考虑解析式有意义外,还应考虑使实际问题或几何问题有意义;
第三类是不给出函数的解析式,而由f(x)的定义域确定函数f[g(x)]的定义域或由f[g(x)]的定义域确定函数f(x)的定义域.
第四类是已知函数的定义域,求参数范围问题,常转化为恒成立问题来解决.
2.解析式的求法
求函数解析式的一般方法是待定系数法和换元法,除此还有代入法、拼凑法和方程组法.

(满分:75分)

一、选择题(每小题5分,共25分)
1.下列各组中的两个函数是同一函数的为()
(1)y1=x+3x-5x+3,y2=x-5;
(2)y1=x+1x-1,y2=x+1x-1;
(3)f(x)=x,g(x)=x2;
(4)f(x)=3x4-x3,F(x)=x3x-1;
(5)f1(x)=(2x-5)2,f2(x)=2x-5.
A.(1)(2)B.(2)(3)
C.(4)D.(3)(5)
2.函数y=f(x)的图象与直线x=1的公共点数目是()
A.1B.0
C.0或1D.1或2
3.(2011洛阳模拟)已知f(x)=x+2x≤-1,x2-1x2,2xx≥2,若f(x)=3,则x的值是()
A.1B.1或32
C.1,32或±3D.3
4.(2009江西)函数y=lnx+1-x2-3x+4的定义域为()
A.(-4,-1)B.(-4,1)
C.(-1,1)D.(-1,1]
5.(2011台州模拟)设f:x→x2是从集合A到集合B的映射,如果B={1,2},则A∩B为()
A.B.{1}
C.或{2}D.或{1}
题号12345
答案
二、填空题(每小题4分,共12分)
6.下列四个命题:(1)f(x)=x-2+1-x有意义;(2)函数是其定义域到值域的映射;(3)函数y=2x(x∈N)的图象是一条直线;(4)函数y=x2,x≥0,-x2,x0的图象是抛物线.其中正确的命题个数是________.
7.设f(x)=3x+1x≥0x2x0,g(x)=2-x2x≤12x1,
则f[g(3)]=________,g[f(-12)]=________.
8.(2010陕西)已知函数f(x)=3x+2,x1,x2+ax,x≥1,若f(f(0))=4a,则实数a=______.
三、解答题(共38分)
9.(12分)(1)若f(x+1)=2x2+1,求f(x)的表达式;
(2)若2f(x)-f(-x)=x+1,求f(x)的表达式;
(3)若函数f(x)=xax+b,f(2)=1,又方程f(x)=x有唯一解,求f(x)的表达式.

10.(12分)已知f(x)=x2+2x-3,用图象法表示函数g(x)=fx+|fx|2,并写出g(x)的解析式.

11.(14分)(2011湛江模拟)某产品生产厂家根据以往的生产销售经验得到下面有关销售的统计规律:每生产产品x(百台),其总成本为G(x)万元,其中固定成本为2万元,并且每生产100台的生产成本为1万元(总成本=固定成本+生产成本),销售收入R(x)(万元)满足R(x)=-0.4x2+4.2x-0.8,0≤x≤5,10.2,x5.假定该产品产销平衡,那么根据上述统计规律:
(1)要使工厂有盈利,产品x应控制在什么范围?
(2)工厂生产多少台产品时盈利最大?此时每台产品的售价为多少?

答案自主梳理
1.(1)数集任意一个数x都有唯一确定的数f(x)和它对应定义域函数值的集合{f(x)|x∈A}(2)定义域值域对应关系(3)解析法列表法图象法(4)对应关系(5)定义域对应关系并集并集2.(1)都有唯一一个映射(2)函数非空
自我检测
1.B[对于题图(1):M中属于(1,2]的元素,在N中没有象,不符合定义;
对于题图(2):M中属于(43,2]的元素的象,不属于集合N,因此它不表示M到N的函数关系;对于题图(3):符合M到N的函数关系;对于题图(4):其象不唯一,因此也不表示M到N的函数关系.]
2.A3.B4.C
5.解函数y=lg(ax2-ax+1)的定义域是R,即ax2-ax+10恒成立.
①当a=0时,10恒成立;
②当a≠0时,应有a0,Δ=a2-4a0,
∴0a4.
综上所述,a的取值范围为0≤a4.
课堂活动区
例1解题导引函数是一种特殊的对应,要检验给定的两个变量之间是否具有函数关系,只需要检验:①定义域和对应关系是否给出;②根据给出的对应关系,自变量在其定义域中的每一个值,是否都有唯一确定的函数值.
(2)
解析由于(1)中集合P中元素0在集合Q中没有对应元素,并且(3)中集合P不是数集,所以(1)和(3)都不是集合P上的函数.由题意知,(2)正确.
变式迁移1A[由题意知,方程-x2+2x=k无实数根,即x2-2x+k=0无实数根.∴Δ=4(1-k)0,∴k1时满足题意.]
例2解题导引在(2)中函数f(2x+1)的定义域为(0,1)是指x的取值范围还是2x+1的取值范围?f(x)中的x与f(2x+1)中的2x+1的取值范围有什么关系?
解(1)要使函数有意义,
应有x+1≥0,x-1≠0,2-x0,2-x≠1,即x≥-1,x≠1,x2,
解得-1≤x2,x≠1.
所以函数的定义域是{x|-1≤x1或1x2}.
(2)∵f(2x+1)的定义域为(0,1),
∴12x+13,
所以f(x)的定义域是(1,3).
变式迁移2(-1,-910)∪(-910,2]
解析由0≤x2≤2x+101+lgx+1≠0得-1x≤2且x≠-910.
即定义域为(-1,-910)∪(-910,2].
例3解题导引函数解析式的类型与求法
(1)若已知函数的类型(如一次函数、二次函数),可用待定系数法.
(2)已知复合函数f(g(x))的解析式,可用换元法,此时要注意变量的取值范围.
(3)已知f(x)满足某个等式,这个等式除f(x)是未知量外,还出现其他未知量,如f(-x)、f(1x)等,要根据已知等式再构造其他等式组成方程组,通过解方程组求出f(x).
解(1)令2x+1=t,则x=2t-1,
∴f(t)=lg2t-1,
∴f(x)=lg2x-1,x∈(1,+∞).
(2)设f(x)=ax+b,(a≠0)
则3f(x+1)-2f(x-1)=3ax+3a+3b-2ax+2a-2b
=ax+b+5a=2x+17,
∴a=2,b+5a=17,
∴a=2,b=7,故f(x)=2x+7.
(3)2f(x)+f(1x)=3x,①
把①中的x换成1x,得
2f(1x)+f(x)=3x,②
①×2-②,得3f(x)=6x-3x,
∴f(x)=2x-1x.
变式迁移3解(1)令t=x+1,
∴t≥1,x=(t-1)2.
则f(t)=(t-1)2+2(t-1)=t2-1,
即f(x)=x2-1,x∈[1,+∞).
(2)设f(x)=ax2+bx+c(a≠0),
∴f(x+2)=a(x+2)2+b(x+2)+c,
则f(x+2)-f(x)=4ax+4a+2b=4x+2.
∴4a=4,4a+2b=2.∴a=1,b=-1.
又f(0)=3,∴c=3,∴f(x)=x2-x+3.
例4解题导引①本题可以先确定解析式,然后通过解方程f(x)=x来确定解的个数;也可利用数形结合,更为简洁.
②对于分段函数,一定要明确自变量所属的范围,以便于选择与之相应的对应关系.
③分段函数体现了数学的分类讨论思想,相应的问题处理应分段解决.
C[方法一若x≤0,则f(x)=x2+bx+c.
∵f(-4)=f(0),f(-2)=-2,
∴-42+b-4+c=c,-22+b-2+c=-2,
解得b=4,c=2.∴f(x)=x2+4x+2,x≤0,2,x0.
当x≤0,由f(x)=x,得x2+4x+2=x,
解得x=-2,或x=-1;
当x0时,由f(x)=x,得x=2.
∴方程f(x)=x有3个解.
方法二由f(-4)=f(0)且f(-2)=-2,可得f(x)=x2+bx+c的对称轴是x=-2,且顶点为(-2,-2),于是可得到f(x)的简图(如图所示).方程f(x)=x的解的个数就是函数图象y=f(x)与y=x的图象的交点的个数,所以有3个解.]
变式迁移4(-1,2-1)
解析函数f(x)=x2+1,x≥0,1,x0的图象如图所示:
f(1-x2)f(2x)1-x22x1-x20,
解得-1x2-1.
课后练习区
1.C[(1)定义域不同;(2)定义域不同;(3)对应关系不同;(4)定义域相同,且对应关系相同;(5)定义域不同.]
2.C[有可能是没有交点的,如果有交点,那么对于x=1仅有一个函数值.]
3.D[该分段函数的三段各自的值域为(-∞,1],[0,4),[4,+∞),而3∈[0,4),∴f(x)=x2=3,x=±3,而-1x2,∴x=3.]
4.C
5.D[由已知x2=1或x2=2,解之得,x=±1或x=±2,若1∈A,则A∩B={1},若1A,则A∩B=,
故A∩B=或{1}.]
6.1
解析(1)x≥2且x≤1,不存在;(2)函数是特殊的映射;(3)该图象是由离散的点组成的;(4)该图象是两个不同的抛物线的两部分组成的,不是抛物线.故只有(2)正确.
7.73116
8.2
9.解(1)令t=x+1,则x=t-1,∴f(t)=2(t-1)2+1=2t2-4t+3,∴f(x)=2x2-4x+3.………………………………………………………………………………………………(4分)
(2)∵2f(x)-f(-x)=x+1,用-x去替换式子中的x,得2f(-x)-f(x)=-x+1,……(6分)
即有2fx-f-x=x+12f-x-fx=-x+1,
解方程组消去f(-x),得f(x)=x3+1.……………………………………………………(8分)
(3)由f(2)=1得22a+b=1,即2a+b=2;
由f(x)=x得xax+b=x,变形得x(1ax+b-1)=0,解此方程得x=0或x=1-ba,…(10分)
又∵方程有唯一解,
∴1-ba=0,解得b=1,代入2a+b=2得a=12,
∴f(x)=2xx+2.……………………………………………………………………………(12分)
10.解函数f(x)的图象如图所示,
……………………………………(6分)
g(x)=x2+2x-3x≤-3或x≥10-3x1…………………………………………………(12分)
11.解依题意,G(x)=x+2,设利润函数为f(x),则
f(x)=-0.4x2+3.2x-2.8,0≤x≤5,8.2-x,x5.………………………………………………(4分)
(1)要使工厂赢利,则有f(x)0.
当0≤x≤5时,有-0.4x2+3.2x-2.80,
得1x7,所以1x≤5.………………………………………………………………(8分)
当x5时,有8.2-x0,
得x8.2,所以5x8.2.
综上所述,要使工厂赢利,应满足1x8.2,即产品应控制在大于100台小于820台的范围内.……………………………………………………………………………………(10分)
(2)当0≤x≤5时,f(x)=-0.4(x-4)2+3.6.
故当x=4时,f(x)有最大值3.6.…………………………………………………………(12分)
而当x5时,f(x)8.2-5=3.2.
所以当工厂生产400台产品时,赢利最大,x=4时,每台产品售价为R44=2.4(万元/百台)=240(元/台).……………………………………………………………………………(14分)

高考数学(理科)一轮复习对数与对数函数学案带答案


俗话说,凡事预则立,不预则废。作为教师就需要提前准备好适合自己的教案。教案可以更好的帮助学生们打好基础,帮助教师有计划有步骤有质量的完成教学任务。教案的内容要写些什么更好呢?为满足您的需求,小编特地编辑了“高考数学(理科)一轮复习对数与对数函数学案带答案”,供大家借鉴和使用,希望大家分享!

学案8对数与对数函数
导学目标:1.理解对数的概念及其运算性质,知道用换底公式能将一般对数转化为自然对数或常用对数,了解对数在简化运算中的作用.2.理解对数函数的概念,理解对数函数的单调性与函数图象通过的特殊点,知道指数函数y=ax与对数函数y=logax互为反函数(a0,a≠1),体会对数函数是一类重要的函数模型.

自主梳理
1.对数的定义
如果________________,那么数x叫做以a为底N的对数,记作__________,其中____叫做对数的底数,______叫做真数.
2.对数的性质与运算法则
(1)对数的性质(a0且a≠1)
①=____;②=____;
③=____;④=____.
(2)对数的重要公式
①换底公式:logbN=________________(a,b均大于零且不等于1);
②=,推广=________.
(3)对数的运算法则
如果a0且a≠1,M0,N0,那么
①loga(MN)=___________________________;
②logaMN=______________________;
③logaMn=__________(n∈R);
④=nmlogaM.
3.对数函数的图象与性质
a10a1



质(1)定义域:______
(2)值域:______
(3)过点______,即x=____时,y=____
(4)当x1时,______
当0x1时,______(5)当x1时,______当0x1时,______
(6)是(0,+∞)上的______函数(7)是(0,+∞)上的______函数

4.反函数
指数函数y=ax与对数函数____________互为反函数,它们的图象关于直线______对称.
自我检测
1.(2010四川)2log510+log50.25的值为()
A.0B.1C.2D.4
2.(2010辽宁)设2a=5b=m,且1a+1b=2,则m的值为()
A.10B.10C.20D.100
3.(2009辽宁)已知函数f(x)满足:当x≥4时,f(x)=12x;当x4时,f(x)=f(x+1).则f(2+log23)的值为()
A.124B.112C.18D.38
4.(2010安庆模拟)定义在R上的偶函数f(x)在[0,+∞)上递增,f(13)=0,则满足0的x的取值范围是()
A.(0,+∞)B.(0,12)∪(2,+∞)
C.(0,18)∪(12,2)D.(0,12)
5.(2011台州期末)已知0ab1c,m=logac,n=logbc,则m与n的大小关系是______.
探究点一对数式的化简与求值
例1计算:(1);
(2)12lg3249-43lg8+lg245;
(3)已知2lgx-y2=lgx+lgy,求.

变式迁移1计算:
(1)log2748+log212-12log242-1;
(2)(lg2)2+lg2lg50+lg25.

探究点二含对数式的大小比较
例2(1)比较下列各组数的大小.
①log323与log565;
②log1.10.7与log1.20.7.
(2)已知log12blog12alog12c,比较2b,2a,2c的大小关系.

变式迁移2(1)(2009全国Ⅱ)设a=log3π,b=log23,c=log32,则()
A.abcB.acb
C.bacD.bca
(2)设a,b,c均为正数,且2a=,(12)b=,(12)c=log2c,则()
A.abcB.cba0
C.cabD.bac
探究点三对数函数的图象与性质
例3已知f(x)=logax(a0且a≠1),如果对于任意的x∈[13,2]都有|f(x)|≤1成立,试求a的取值范围.

变式迁移3(2010全国Ⅰ)已知函数f(x)=|lgx|,若0ab,且f(a)=f(b),则a+2b的取值范围是()
A.(22,+∞)B.[22,+∞)
C.(3,+∞)D.[3,+∞)
分类讨论思想的应用
例(12分)已知函数f(x)=loga(1-ax)(a0,a≠1).
(1)解关于x的不等式:loga(1-ax)f(1);
(2)设A(x1,y1),B(x2,y2)(x1≠x2)是f(x)图象上的两点,求证:直线AB的斜率小于0.
【答题模板】
(1)解∵f(x)=loga(1-ax),
∴f(1)=loga(1-a).∴1-a0.∴0a1.
∴不等式可化为loga(1-ax)loga(1-a).
∴1-ax0,1-ax1-a.,即ax1,axa.∴0x1.
∴不等式的解集为(0,1).[4分]
(2)证明设x1x2,则f(x2)-f(x1)=-=.
∵1-ax0,∴ax1.
∴a1时,f(x)的定义域为(-∞,0);[6分]
0a1时,f(x)的定义域为(0,+∞).
当0a1时,∵x2x10,∴.
∴1.∴0.
∴f(x2)f(x1),即y2y1.
同理可证,当a1时,也有y2y1.[10分]
综上:y2y1,即y2-y10.∴kAB=y2-y1x2-x10.
∴直线AB的斜率小于0.[12分]
【突破思维障碍】
解决含参数的对数问题,不可忽视对底数a的分类讨论,即a1或0a1,其次要看定义域,如果将函数变换,务必保证等价性.
1.求解与对数函数有关的复合函数的单调性的步骤:
(1)确定定义域;
(2)弄清函数是由哪些基本初等函数复合而成的,将复合函数分解成基本初等函数y=f(u),u=g(x);
(3)分别确定这两个函数的单调区间;
(4)若这两个函数同增或同减,则y=f(g(x))为增函数,若一增一减,则y=f(g(x))为减函数,即“同增异减”.
2.用对数函数的性质比较大小
(1)同底数的两个对数值的大小比较
例如,比较logaf(x)与logag(x)的大小,
其中a0且a≠1.
①若a1,则logaf(x)logag(x)f(x)g(x)0.
②若0a1,则logaf(x)logag(x)0f(x)g(x).
(2)同真数的对数值大小关系如图:
图象在x轴上方的部分自左向右底逐渐增大,即0cd1ab.
3.常见对数方程式或对数不等式的解法
(1)形如logaf(x)=logag(x)(a0且a≠1)等价于f(x)=g(x),但要注意验根.对于logaf(x)logag(x)等价于0a1时,a1时,
(2)形如F(logax)=0、F(logax)0或F(logax)0,一般采用换元法求解.

(满分:75分)
一、选择题(每小题5分,共25分)
1.(2010北京市丰台区高三一调)设M={y|y=(12)x,x∈[0,+∞)},N={y|y=log2x,x∈(0,1]},则集合M∪N等于()
A.(-∞,0)∪[1,+∞)B.[0,+∞)
C.(-∞,1]D.(-∞,0)∪(0,1)
2.(2010全国Ⅰ)设a=log32,b=ln2,c=5-12,则()
A.abcB.bca
C.cabD.cba
3.(2010天津)若函数f(x)=log2x,x0,log12(-x),x0,若f(a)f(-a),则实数a的取值范围是()
A.(-1,0)∪(0,1)B.(-∞,-1)∪(1,+∞)
C.(-1,0)∪(1,+∞)D.(-∞,-1)∪(0,1)
4.(2011济南模拟)设函数f(x)定义在实数集上,f(2-x)=f(x),且当x≥1时,f(x)=lnx,则有()
A.f(13)f(2)f(12)
B.f(12)f(2)f(13)
C.f(12)f(13)f(2)
D.f(2)f(12)f(13)
5.(2011青岛模拟)已知函数f(x)=ax+logax(a0,a≠1)在[1,2]上的最大值与最小值之和为loga2+6,则a的值为()
A.12B.14C.2D.4
题号12345
答案
二、填空题(每小题4分,共12分)
6.2lg5+23lg8+lg5lg20+lg22=________.
7.(2011湖南师大附中检测)已知函数f(x)=lgax+a-2x在区间[1,2]上是增函数,则实数a的取值范围是____________.
8.已知f(3x)=4xlog23+233,则f(2)+f(4)+f(8)+…+f(28)=________.
三、解答题(共38分)
9.(12分)已知f(x)=2+log3x,x∈[1,9],求y=[f(x)]2+f(x2)的最大值及y取最大值时x的值.

10.(12分)(2011北京东城1月检测)已知函数f(x)=loga(x+1)-loga(1-x),a0且a≠1.
(1)求f(x)的定义域;
(2)判断f(x)的奇偶性并予以证明;
(3)若a1时,求使f(x)0的x的解集.

11.(14分)(2011郑州模拟)已知函数f(x)=lg(ax-bx)(a1b0).
(1)求y=f(x)的定义域;
(2)在函数y=f(x)的图象上是否存在不同的两点,使得过这两点的直线平行于x轴;
(3)当a,b满足什么条件时,f(x)在(1,+∞)上恒取正值.

答案自主梳理
1.ax=N(a0,且a≠1)x=logaNaN2.(1)①N②0③N④1(2)①logaNlogab②logad(3)①logaM+logaN②logaM-logaN③nlogaM3.(1)(0,+∞)(2)R(3)(1,0)10(4)y0y0(5)y0y0(6)增(7)减4.y=logaxy=x
自我检测
1.C2.A
3.A[因为32+log234,故f(2+log23)=f(2+log23+1)=f(3+log23).又3+log234,故f(3+log23)=123+log23=12313=124.]
4.B[由题意可得:f(x)=f(-x)=f(|x|),f(|log18x|)f(13),f(x)在[0,+∞)上递增,于是|log18x|13,解得x的取值范围是(0,12)∪(2,+∞).]
5.mn
解析∵m0,n0,∵mn=logaclogcb=logablogaa=1,∴mn.
课堂活动区
例1解题导引在对数运算中,先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后再运用对数运算法则化简合并,在运算中要注意化同底和指数与对数互化.
解(1)方法一利用对数定义求值:
设=x,
则(2+3)x=2-3=12+3=(2+3)-1,
∴x=-1.
方法二利用对数的运算性质求解:

==-1.
(2)原式=12(lg32-lg49)-43lg812+
12lg245=12(5lg2-2lg7)-43×32lg2+12(2lg7+lg5)
=52lg2-lg7-2lg2+lg7+12lg5
=12lg2+12lg5
=12lg(2×5)=12lg10=12.
(3)由已知得lg(x-y2)2=lgxy,
∴(x-y2)2=xy,即x2-6xy+y2=0.
∴(xy)2-6(xy)+1=0.∴xy=3±22.
∵x-y0,x0,y0,∴xy1,∴xy=3+22,
∴log(3-22)xy=log(3-22)(3+22)
=log3-2213-22=-1.
变式迁移1解(1)原式=log2748+log212-log242-log22
=log27×1248×42×2=log2122=log22-32=-32.
(2)原式=lg2(lg2+lg50)+lg25
=21g2+lg25=lg100=2.
例2解题导引比较对数式的大小或证明等式问题是对数中常见题型,解决此类问题的方法很多,①当底数相同时,可直接利用对数函数的单调性比较;②若底数不同,真数相同,可转化为同底(利用换底公式)或利用对数函数图象,数形结合解得;③若不同底,不同真数,则可利用中间量进行比较.
解(1)①∵log323log31=0,
而log565log51=0,∴log323log565.
②方法一∵00.71,1.11.2,
∴0log0.71.1log0.71.2.
∴1log0.71.11log0.71.2,
由换底公式可得log1.10.7log1.20.7.
方法二作出y=log1.1x与y=log1.2x的图象,
如图所示,两图象与x=0.7相交可知log1.10.7log1.20.7.
(2)∵y=log12x为减函数,
且log12blog12alog12c,∴bac.
而y=2x是增函数,∴2b2a2c.
变式迁移2(1)A[a=log3π1,b=12log23,则12b1,c=12log3212,∴abc.]
(2)A[∵a,b,c均为正,
∴log12a=2a1,log12b=(12)b∈(0,1),
log2c=(12)c∈(0,1).
∴0a12,12b1,1c2.
故abc.]
例3解题导引本题属于函数恒成立问题,即对于x∈[13,2]时,|f(x)|恒小于等于1,恒成立问题一般有两种思路:一是利用图象转化为最值问题;二是利用单调性转化为最值问题.由于本题底数a为参数,需对a分类讨论.
解∵f(x)=logax,

则y=|f(x)|的图象如右图.
由图示,可使x∈[13,2]时恒有|f(x)|≤1,
只需|f(13)|≤1,即-1≤loga13≤1,
即logaa-1≤loga13≤logaa,
亦当a1时,得a-1≤13≤a,即a≥3;
当0a1时,得a-1≥13≥a,得0a≤13.
综上所述,a的取值范围是(0,13]∪[3,+∞).
变式迁移3C
[画出函数f(x)=|lgx|的图象如图所示.∵0ab,f(a)=f(b),∴0a1,b1,∴lga0,lgb0.由f(a)=f(b),
∴-lga=lgb,ab=1.
∴b=1a,∴a+2b=a+2a,
又0a1,函数t=a+2a在(0,1)上是减函数,
∴a+2a1+21=3,即a+2b3.]
课后练习区
1.C[∵x≥0,∴y=(12)x∈(0,1],∴M=(0,1].
当0x≤1时,y=log2x∈(-∞,0],即N=(-∞,0].∴M∪N=(-∞,1].]
2.C[∵1a=log231,1b=log2e1,log23log2e.
∴1a1b1,∴0ab1.
∵a=log32log33=12,∴a12.
b=ln2lne=12,∴b12.
c=5-12=1512,∴cab.]
3.C[①当a0时,f(a)=log2a,f(-a)=,
f(a)f(-a),即log2a=log21a,
∴a1a,解得a1.
②当a0时,f(a)=,f(-a)=log2(-a),
f(a)f(-a),即log2(-a)=,
∴-a1-a,解得-1a0,
由①②得-1a0或a1.]
4.C[由f(2-x)=f(x)知f(x)的图象关于直线x=2-x+x2=1对称,又当x≥1时,f(x)=lnx,所以离对称轴x=1距离大的x的函数值大,
∵|2-1||13-1||12-1|,
∴f(12)f(13)f(2).]
5.C[当x0时,函数ax,logax的单调性相同,因此函数f(x)=ax+logax是(0,+∞)上的单调函数,f(x)在[1,2]上的最大值与最小值之和为f(1)+f(2)=a2+a+loga2,由题意得a2+a+loga2=6+loga2.即a2+a-6=0,解得a=2或a=-3(舍去).]
6.3
7.(1,2)
解析因为f(x)=lga+a-2x在区间[1,2]上是增函数,所以g(x)=a+a-2x在区间[1,2]上是增函数,且g(1)0,于是a-20,且2a-20,即1a2.
8.2008
解析令3x=t,f(t)=4log2t+233,
∴f(2)+f(4)+f(8)+…+f(28)=4×(1+2+…+8)+8×233=4×36+1864=2008.
9.解∵f(x)=2+log3x,
∴y=[f(x)]2+f(x2)=(2+log3x)2+2+log3x2=log23x+6log3x+6=(log3x+3)2-3.……(4分)
∵函数f(x)的定义域为[1,9],
∴要使函数y=[f(x)]2+f(x2)有意义,必须1≤x2≤9,1≤x≤9,∴1≤x≤3,∴0≤log3x≤1,(8分)
∴6≤(log3x+3)2-3≤13.
当log3x=1,即x=3时,ymax=13.
∴当x=3时,函数y=[f(x)]2+f(x2)取最大值13.………………………………………(12分)
10.解(1)f(x)=loga(x+1)-loga(1-x),则x+10,1-x0,解得-1x1.
故所求函数f(x)的定义域为{x|-1x1}.………………………………………………(4分)
(2)由(1)知f(x)的定义域为{x|-1x1},
且f(-x)=loga(-x+1)-loga(1+x)
=-[loga(x+1)-loga(1-x)]
=-f(x),故f(x)为奇函数.………………………………………………………………(8分)
(3)因为当a1时,f(x)在定义域{x|-1x1}内是增函数,所以f(x)0x+11-x1.
解得0x1.所以使f(x)0的x的解集是{x|0x1}.…………………………………(12分)
11.解(1)由ax-bx0,得(ab)x1,且a1b0,得ab1,所以x0,即f(x)的定义域为(0,+∞).…………………………………………………………………………………………(4分)
(2)任取x1x20,a1b0,则0,,所以0,
即.故f(x1)f(x2).
所以f(x)在(0,+∞)上为增函数.………………………………………………………(8分)
假设函数y=f(x)的图象上存在不同的两点A(x1,y1)、B(x2,y2),使直线平行于x轴,则x1≠x2,y1=y2,这与f(x)是增函数矛盾.
故函数y=f(x)的图象上不存在不同的两点使过两点的直线平行于x轴.…………(10分)
(3)因为f(x)是增函数,所以当x∈(1,+∞)时,f(x)f(1).这样只需f(1)=lg(a-b)≥0,即当a≥b+1时,f(x)在(1,+∞)上恒取正值.……………………………………………(14分)

高考数学(理科)一轮复习空间的平行关系学案带答案


学案43空间的平行关系

导学目标:1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行的有关性质与判定定理.2.能运用公理、定理和已获得的结论证明一些空间图形的平行关系.
自主梳理
1.直线a和平面α的位置关系有________、________、__________,其中________与________统称直线在平面外.
2.直线和平面平行的判定:
(1)定义:直线和平面没有____________,则称直线和平面平行.
(2)判定定理:aα,bα,且a∥b________;
(3)其他判定方法:α∥β,aα________.
3.直线和平面平行的性质定理:a∥α,aβ,α∩β=l________.
4.两个平面的位置关系有________、________.
5.两个平面平行的判定:
(1)定义:两个平面没有________,称这两个平面平行;
(2)判定定理:aβ,bβ,a∩b=P,a∥α,b∥αβ∥α;
(3)推论:a∩b=P,a,bα,a′∩b′=P′,a′,b′β,a∥a′,b∥b′________.
6.两个平面平行的性质定理:
α∥β,aα________;
α∥β,γ∩α=a,γ∩β=b________.
7.与垂直相关的平行的判定:
(1)a⊥α,b⊥α________;(2)a⊥α,a⊥β________.
自我检测
1.(2011湖南四县调研)平面α∥平面β的一个充分条件是()
A.存在一条直线a,a∥α,a∥β
B.存在一条直线a,aα,a∥β
C.存在两条平行直线a,b,aα,a∥β,bβ,b∥α
D.存在两条异面直线a,b,aα,bβ,a∥β,b∥α
2.(2011烟台模拟)一条直线l上有相异三个点A、B、C到平面α的距离相等,那么直线l与平面α的位置关系是()
A.l∥αB.l⊥α
C.l与α相交但不垂直D.l∥α或lα
3.下列各命题中:
①平行于同一直线的两个平面平行;
②平行于同一平面的两个平面平行;
③一条直线与两个平行平面中的一个相交,那么这条直线必和另一个相交;
④垂直于同一直线的两个平面平行.
不正确的命题个数是()
A.1B.2C.3D.4
4.经过平面外的两点作该平面的平行平面,可以作()
A.0个B.1个
C.0个或1个D.1个或2个
5.(2011南京模拟)在四面体ABCD中,M、N分别是△ACD、△BCD的重心,则四面体的四个面中与MN平行的是________________.
探究点一线面平行的判定
例1已知有公共边AB的两个全等的矩形ABCD和ABEF不在同一平面内,P、Q分别是对角线AE、BD上的点,且AP=DQ.求证:PQ∥平面CBE.

变式迁移1(2011长沙调研)在四棱锥P—ABCD中,四边形ABCD是平行四边形,M、N分别是AB、PC的中点,求证:MN∥平面PAD.

探究点二面面平行的判定
例2在正方体ABCD—A1B1C1D1中,M、N、P分别是C1C、B1C1、C1D1的中点,求证:平面MNP∥平面A1BD.

变式迁移2已知P为△ABC所在平面外一点,G1、G2、G3分别是△PAB、△PCB、△PAC的重心.
(1)求证:平面G1G2G3∥平面ABC;
(2)求S△G1G2G3∶S△ABC.

探究点三平行中的探索性问题
例3(2011惠州月考)如图所示,在四棱锥P—ABCD中,CD∥AB,AD⊥AB,
AD=DC=12AB,BC⊥PC.
(1)求证:PA⊥BC;
(2)试在线段PB上找一点M,使CM∥平面PAD,并说明理由.

变式迁移3
如图所示,在正方体ABCD—A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的点,问:当点Q在什么位置时,平面D1BQ∥平面PAO?

转化与化归思想综合应用
例(12分)一个多面体的三视图和直观图如图所示,其中M、N分别是AB、SC的中点,P是SD上的一动点.
(1)求证:BP⊥AC;
(2)当点P落在什么位置时,AP∥平面SMC?
(3)求三棱锥B—NMC的体积.
多角度审题第(1)问的关键是根据三视图得到SD⊥平面ABCD,第(2)问是一个开放型问题,可有两种思维方式:一是猜想P是SD的中点,二是从结论“AP平行于平面SMC”出发找P满足的条件.
【答题模板】
(1)证明连接BD,∵ABCD为正方形,
∴BD⊥AC,又SD⊥底面ABCD,
∴SD⊥AC,∵BD∩SD=D,∴AC⊥平面SDB,∵BP平面SDB,
∴AC⊥BP,即BP⊥AC.[4分]
(2)解取SD的中点P,连接PN,AP,MN.
则PN∥DC且PN=12DC.[6分]
∵底面ABCD为正方形,∴AM∥DC且AM=12DC,
∴四边形AMNP为平行四边形,∴AP∥MN.
又AP平面SMC,MN平面SMC,∴AP∥平面SMC.[8分]
(3)解VB—NMC=VN—MBC=13S△MBC12SD=1312BCMB12SD=16×1×12×12×2=112.[12分]
【突破思维障碍】
1.本题综合考查三视图、体积计算及线面平行、垂直等位置关系,首先要根据三视图想象直观图,尤其是其中的平行、垂直及长度关系,第(1)问的关键是根据三视图得到SD⊥平面ABCD,第(2)问是一个开放型问题,开放型问题能充分考查学生的思维能力和创新精神,近年来在高考试题中频繁出现这类题目.结合空间平行关系,利用平行的性质,设计开放型试题是新课标高考命题的一个动向.
2.线线平行与线面平行之间的转化体现了化归的思想方法.
1.直线与平面平行的重要判定方法:(1)定义法;(2)判定定理;(3)面与面平行的性质定理.
2.平面与平面平行的重要判定方法:(1)定义法;(2)判定定理;(3)利用结论:a⊥α,a⊥βα∥β.
3.线线平行、线面平行、面面平行间的相互转化:
(满分:75分)
一、选择题(每小题5分,共25分)
1.(2011开封月考)下列命题中真命题的个数为()
①直线l平行于平面α内的无数条直线,则l∥α;
②若直线a在平面α外,则a∥α;
③若直线a∥b,直线bα,则a∥α;
④若直线a∥b,bα,那么直线a就平行于平面α内的无数条直线.
A.1B.2C.3D.4
2.已知直线a、b、c和平面m,则直线a∥直线b的一个必要不充分的条件是()
A.a⊥m且b⊥mB.a∥m且b∥m
C.a∥c且b∥cD.a,b与m所成的角相等
3.在空间中,下列命题正确的是()
A.若a∥α,b∥a,则b∥α
B.若a∥α,b∥α,aβ,bβ,则β∥α
C.若α∥β,b∥α,则b∥β
D.若α∥β,aα,则a∥β
4.设l1、l2是两条直线,α、β是两个平面,A为一点,有下列四个命题,其中正确命题的个数是()
①若l1α,l2∩α=A,则l1与l2必为异面直线;
②若l1∥α,l2∥l1,则l2∥α;
③若l1α,l2β,l1∥β,l2∥α,则α∥β;
④若α⊥β,l1α,则l1⊥β.
A.0B.1C.2D.3
5.若直线a,b为异面直线,则分别经过直线a,b的平面中,相互平行的有()
A.1对B.2对
C.无数对D.1或2对
二、填空题(每小题4分,共12分)
6.(2011秦皇岛月考)下列四个正方体图形中,A、B为正方体的两个顶点,M、N、P分别为其所在棱的中点,能得出AB∥面MNP的图形的序号是________(写出所有符合要求的图形序号).
,
7.(2011大连模拟)过三棱柱ABC—A1B1C1的任意两条棱的中点作直线,其中与平面ABB1A1平行的有______条.
8.
如图所示,ABCD—A1B1C1D1是棱长为a的正方体,M,N分别是下底面的棱A1B1,B1C1的中点,P是上底面的棱AD上的一点,AP=a3,过P,M,N的平面交上底面于PQ,Q在CD上,则PQ=________.
三、解答题(共38分)
9.(12分)
如图所示,在三棱柱ABC—A1B1C1中,M、N分别是BC和A1B1的中点.
求证:MN∥平面AA1C1C.

10.(12分)(2010湖南改编)
如图所示,在正方体ABCD-A1B1C1D1中,E是棱DD1的中点.
在棱C1D1上是否存在一点F,使B1F∥平面A1BE?证明你的结论.

11.(14分)
(2011济宁模拟)如图,四边形ABCD为矩形,DA⊥平面ABE,AE=EB=BC=2,BF⊥平面ACE,且点F在CE上.
(1)求证:AE⊥BE;
(2)求三棱锥D—AEC的体积;
(3)设点M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.

学案43空间的平行关系
自主梳理
1.平行相交在平面内平行相交2.(1)公共点(2)a∥α(3)a∥β3.a∥l4.平行相交5.(1)公共点
(3)α∥β6.a∥βa∥b7.(1)a∥b(2)α∥β
自我检测
1.D2.D3.A4.C
5.面ABC和面ABD
课堂活动区
例1解题导引证明线面平行问题一般可考虑证线线平行或证面面平行,要充分利用线线平行、线面平行、面面平行的相互转化.
证明
如图所示,作PM∥AB交BE于M,作QN∥AB交BC于N,连接MN.
∵矩形ABCD和矩形ABEF全等且有公共边AB,∴AE=BD.
又∵AP=DQ,∴PE=QB,
又∵PM∥AB∥QN,
∴PMAB=EPEA,QNDC=BQBD,∴PMAB=QNDC.
∴PM綊QN,∴四边形PQNM为平行四边形,
∴PQ∥MN
又MN平面BCE,PQ平面BCE,
∴PQ∥平面BCE.
变式迁移1证明取PD中点F,连接AF、NF、NM.
∵M、N分别为AB、PC的中点,
∴NF綊12CD,AM綊12CD,∴AM綊NF.
∴四边形AMNF为平行四边形,∴MN∥AF.
又AF平面PAD,MN平面PAD,
∴MN∥平面PAD.
例2解题导引面面平行的常用判断方法有:
(1)面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行;
(2)利用垂直于同一条直线的两个平面平行;关键是利用“线线平行”、“线面平行”、“面面平行”的相互转化.
证明方法一
如图所示,连接B1D1、B1C.
∵P、N分别是D1C1、B1C1的中点,
∴PN∥B1D1.
又B1D1∥BD,
∴PN∥BD.
又PN面A1BD,
∴PN∥平面A1BD.
同理MN∥平面A1BD.又PN∩MN=N,
∴平面MNP∥平面A1BD.
方法二
如图所示,连接AC1、AC.
∵ABCD—A1B1C1D1为正方体,
∴AC⊥BD.
又CC1⊥面ABCD,
BD面ABCD,
∴CC1⊥BD,∴BD⊥面ACC1,
又∵AC1面ACC1,∴AC1⊥BD.
同理可证AC1⊥A1B,
∴AC1⊥平面A1BD.
同理可证AC1⊥平面PMN,
∴平面PMN∥平面A1BD.
变式迁移2
(1)证明如图所示,连接PG1、PG2、PG3并延长分别与边AB、BC、AC交于点D、E、F,连接DE、EF、FD,则有PG1∶PD=2∶3,
PG2∶PE=2∶3,∴G1G2∥DE.
又G1G2不在平面ABC内,DE在平面ABC内,
∴G1G2∥平面ABC.
同理G2G3∥平面ABC.
又因为G1G2∩G2G3=G2,
∴平面G1G2G3∥平面ABC.
(2)解由(1)知PG1PD=PG2PE=23,∴G1G2=23DE.
又DE=12AC,∴G1G2=13AC.
同理G2G3=13AB,G1G3=13BC.
∴△G1G2G3∽△CAB,其相似比为1∶3,
∴S△G1G2G3∶S△ABC=1∶9.
例3解题导引近几年探索性问题在高考中时有出现,解答此类问题时先以特殊位置尝试探究,找到符合要求的点后再给出严格证明.
(1)证明连接AC,过点C作CE⊥AB,垂足为E.
在四边形ABCD中,AD⊥AB,CD∥AB,AD=DC,
∴四边形ADCE为正方形.
∴∠ACD=∠ACE=45°.
∵AE=CD=12AB,∴BE=AE=CE.∴∠BCE=45°.
∴∠ACB=∠ACE+∠BCE=45°+45°=90°.
∴AC⊥BC.
又∵BC⊥PC,AC平面PAC,PC平面PAC,AC∩PC=C,
∴BC⊥平面PAC.∵PA平面PAC,∴PA⊥BC.
(2)解当M为PB的中点时,CM∥平面PAD.
取AP的中点F,连接CM,FM,DF.
则FM綊12AB.
∵CD∥AB,CD=12AB,
∴FM綊CD.
∴四边形CDFM为平行四边形.∴CM∥DF.
∵DF平面PAD,CM平面PAD,
∴CM∥平面PAD.
变式迁移3解当Q为CC1的中点时,平面D1BQ∥平面PAO.
∵Q为CC1的中点,P为DD1的中点,∴QB∥PA.
∵P、O为DD1、DB的中点,
∴D1B∥PO.
又PO∩PA=P,D1B∩QB=B,D1B∥平面PAO,QB∥平面PAO,
∴平面D1BQ∥平面PAO.
课后练习区
1.A[①、②、③错,④对.]
2.D[注意命题之间的相互推出关系;易知选项D中,若两直线平行,则其与m所成的角相等,反之却不一定成立,故a、b与m所成的角相等是两直线平行的必要不充分条件.]
3.D[A不正确,由直线与平面平行的判定定理的条件知缺少条件bα;B不正确,由两个平面平行的判定定理的条件,因a、b未必相交,而可能为两条平行直线,则α、β未必平行;C不正确,因有可能bβ;D正确,由两个平面平行的定义及直线与平面平行的定义知正确.]
4.A[①错,l1α,l2∩α=A,l1与l2可能相交.
②错,l2有可能在平面α内.
③错,α有可能与β相交.
④错,l1有可能与平面β相交或平行或在平面内.]
5.A
[如图,a,b为异面直线,过b上一点作a′∥a,直线a′,b确定一个平面β,过a上一点作b′∥b,b与b′确定一个平面α,则α∥β.因为α,β是惟一的,所以相互平行的平面仅有一对.]
6.①③
解析①∵面AB∥面MNP,∴AB∥面MNP,
②过N作AB的平行线交于底面正方形的中心O,
NO面MNP,
∴AB与面MNP不平行.
③易知AB∥MP,
∴AB∥面MNP;
④过点P作PC∥AB,
∵PC面MNP,
∴AB与面MNP不平行.
7.
6
解析如图,EF∥E1F1∥AB,
EE1∥FF1∥BB1,F1E∥A1D,
E1F∥B1D,
∴EF、E1F1、EE1、FF1、F1E、E1F都平行于平面ABB1A1,共6条.
8.223a
解析
如图所示,连接AC,
易知MN∥平面ABCD,
又∵PQ为平面ABCD与平面MNQP的交线,
∴MN∥PQ.
又∵MN∥AC,∴PQ∥AC,
又∵AP=a3,
∴DPAD=DQCD=PQAC=23,∴PQ=23AC=223a.
9.证明设A1C1中点为F,连接NF,FC,
∵N为A1B1中点,
∴NF∥B1C1,且NF=12B1C1,
又由棱柱性质知B1C1綊BC,(4分)
又M是BC的中点,
∴NF綊MC,
∴四边形NFCM为平行四边形.
∴MN∥CF,(8分)
又CF平面AA1C1C,
MN平面AA1C1C,
∴MN∥平面AA1C1C.(12分)
10.解在棱C1D1上存在点F,使B1F∥平面A1BE.证明如下:
如图所示,分别取C1D1和CD的中点F,G,连接B1F,EG,BG,CD1,FG.因为A1D1∥B1C1∥BC,且A1D1=BC,所以四边形A1BCD1是平行四
边形,因此D1C∥A1B.又E,G分别为D1D,CD的中点,所以EG∥D1C,从而EG∥A1B.这说明A1,B,G,E四点共面,所以BG平面A1BE.(6分)
因为四边形C1CDD1与B1BCC1都是正方形,F,G分别为C1D1和CD的中点,所以FG∥C1C∥B1B,且FG=C1C=B1B,因此四边形B1BGF是平行四边形,所以B1F∥BG.而B1F平面A1BE,BG平面A1BE,故B1F∥平面A1BE.(12分)
11.(1)证明由AD⊥平面ABE及AD∥BC,
得BC⊥平面ABE,BC⊥AE,(1分)
而BF⊥平面ACE,所以BF⊥AE,(2分)
又BC∩BF=B,所以AE⊥平面BCE,
又BE平面BCE,故AE⊥BE.(4分)
(2)解在△ABE中,过点E作EH⊥AB于点H,
则EH⊥平面ACD.
由已知及(1)得EH=12AB=2,S△ADC=22.
(6分)
故VD—AEC=VE—ADC=13×22×2=43.(8分)
(3)解在△ABE中,过点M作MG∥AE交BE于点G,在△BEC中过点G作GN∥BC交EC于点N,
连接MN,则由CNCE=BGBE=MBAB=13,得CN=13CE.
由MG∥AE,AE平面ADE,
MG平面ADE,则MG∥平面ADE.(10分)
再由GN∥BC,BC∥AD,AD平面ADE,GN平面ADE,
得GN∥平面ADE,所以平面MGN∥平面ADE.
又MN平面MGN,则MN∥平面ADE.(12分)
故当点N为线段CE上靠近点C的一个三等分点时,
MN∥平面ADE.(14分)