高中素质练习教案
发表时间:2020-10-31极大值与极小值学案练习题。
§1.3.2极大值与极小值(1)
一、知识点
1.通过几何直观得到极大(小)值与导数的关系,了解极值和极值点是函数的局部性态,仅考虑该点与附近的点之间的比较,而不是在所给的整个区间或定义域范围。
2.一般地,求函数的极值的方法是:
⑴如果在附近的左侧,右侧,那么是极大值;
⑵如果在附近的左侧,右侧,那么是极小值;
⑶如果在附近的左侧及右侧不变号,那么一定不是极值。
二、典型例题
例1.求下列函数的极值:
⑴⑵
例2.求函数在区间内的极值。
三、巩固练习
1.求下列函数的极值
⑴;
2.如果函数有极小值,极大值,那么一定小于吗?试作图说明.
3.根据下列条件大致作出函数的图象:
⑴,,当时;当时,;
⑵,当时,.
四、课堂小结
五、课后反思
六、课后作业
1.已知函数的导数则当=时,函数取得极大值;
2.函数的极大值是,极小值是;
3.函数,当=时取得极大值为;当=时,取得极小值为;
4.函数在区间上是单调递减的,在区间上是单调递增的,当=时,取极小值,则极小值为;
5.求下列函数的极值:
⑴⑵
⑶⑷
6.求函数的极值。
7.已知函数的图象如图所示,试作出的草图.
订正栏:
相关阅读
最大值和最小值问题
作为优秀的教学工作者,在教学时能够胸有成竹,作为高中教师就要精心准备好合适的教案。教案可以让学生能够在教学期间跟着互动起来,帮助高中教师提高自己的教学质量。你知道如何去写好一份优秀的高中教案呢?下面是小编帮大家编辑的《最大值和最小值问题》,供您参考,希望能够帮助到大家。
3.2.2最大值、最小值问题
教学过程:
一、复习引入:
1.极大值:一般地,设函数f(x)在点x0附近有定义,如果对x0附近的所有的点,都有f(x)<f(x0),就说f(x0)是函数f(x)的一个极大值,记作y极大值=f(x0),x0是极大值点
2.极小值:一般地,设函数f(x)在x0附近有定义,如果对x0附近的所有的点,都有f(x)>f(x0).就说f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0),x0是极小值点
3.极大值与极小值统称为极值注意以下几点:
(ⅰ)极值是一个局部概念由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小并不意味着它在函数的整个的定义域内最大或最小
(ⅱ)函数的极值不是唯一的即一个函数在某区间上或定义域内极大值或极小值可以不止一个
(ⅲ)极大值与极小值之间无确定的大小关系即一个函数的极大值未必大于极小值,如下图所示,是极大值点,是极小值点,而
(ⅳ)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点
而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点
二、讲解新课:
1.函数的最大值和最小值
观察图中一个定义在闭区间上的函数的图象.图中与是极小值,是极大值.函数在上的最大值是,最小值是.
一般地,在闭区间上连续的函数在上必有最大值与最小值.
说明:⑴在开区间内连续的函数不一定有最大值与最小值.如函数在内连续,但没有最大值与最小值;
⑵函数的最值是比较整个定义域内的函数值得出的;函数的极值是比较极值点附近函数值得出的.
⑶函数在闭区间上连续,是在闭区间上有最大值与最小值的充分条件而非必要条件.
(4)函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个
⒉利用导数求函数的最值步骤:
由上面函数的图象可以看出,只要把连续函数所有的极值与定义区间端点的函数值进行比较,就可以得出函数的最值了.
设函数在上连续,在内可导,则求在上的最大值与最小值的步骤如下:⑴求在内的极值;
⑵将的各极值与、比较得出函数在上的最值
三、讲解范例:
例1求函数在区间上的最大值与最小值
例2已知x,y为正实数,且满足,求的取值范围
例3.设,函数的最大值为1,最小值为,求常数a,b
例4已知,∈(0,+∞).是否存在实数,使同时满足下列两个条件:(1))在(0,1)上是减函数,在[1,+∞)上是增函数;(2)的最小值是1,若存在,求出,若不存在,说明理由.
四、课堂练习:
1.下列说法正确的是()
A.函数的极大值就是函数的最大值B.函数的极小值就是函数的最小值
C.函数的最值一定是极值D.在闭区间上的连续函数一定存在最值
2.函数y=f(x)在区间[a,b]上的最大值是M,最小值是m,若M=m,则f′(x)()
A.等于0B.大于0C.小于0D.以上都有可能
3.函数y=,在[-1,1]上的最小值为()
A.0B.-2C.-1D.
4.函数y=的最大值为()。A.B.1C.D.
5.设y=|x|3,那么y在区间[-3,-1]上的最小值是()
A.27B.-3C.-1D.1
6.设f(x)=ax3-6ax2+b在区间[-1,2]上的最大值为3,最小值为-29,且ab,则()
A.a=2,b=29B.a=2,b=3C.a=3,b=2D.a=-2,b=-3
五、小结:
⑴函数在闭区间上的最值点必在下列各种点之中:导数等于零的点,导数不存在的点,区间端点;
⑵函数在闭区间上连续,是在闭区间上有最大值与最小值的充分条件而非必要条件;
⑶闭区间上的连续函数一定有最值;开区间内的可导函数不一定有最值,若有唯一的极值,则此极值必是函数的最值.
函数的极值与最值
23.函数的极值与最值
一、课前准备:
【自主梳理】
1.若函数f(x)在点x0的附近恒有(或),则称函数f(x)在点x0处取得极大值(或极小值),称点x0为极大值点(或极小值点).
2.求可导函数极值的步骤:
①求导数;
②求方程的根;
③检验在方程根的左右的符号,如果左正右负,那么函数y=f(x)在这个根处取得极值;如果左负右正,那么函数y=f(x)在这个根处取得极值.
3.求可导函数最大值与最小值的步骤:
①求y=f(x)在[a,b]内的极值;
②将y=f(x)在各极值点的极值与f(a)、f(b)比较,其中最大的一个为最大值,最小的一个是最小值。
【自我检测】
1.函数的极大值为.
2.函数在上的最大值为.
3.若函数既有极大值又有极小值,则的取值范围为.
4.已知函数,若对任意都有,则的取值范围是.
(说明:以上内容学生自主完成,原则上教师课堂不讲)
二、课堂活动:
【例1】填空题:
(1)函数的极小值是__________.
(2)函数在区间上的最小值是________;最大值是__________.
(3)若函数在处取极值,则实数=_.
(4)已知函数在时有极值0,则=_.
【例2】设函数.
(Ⅰ)求的最小值;
(Ⅱ)若对恒成立,求实数的取值范围.
【例3】如图6所示,等腰的底边,高,点是线段上异于点的动点,点在边上,且,现沿将折起到的位置,使,记,表示四棱锥的体积.
(1)求的表达式;
(2)当为何值时,取得最大值?
课堂小结
三、课后作业
1.若没有极值,则的取值范围为.?
2.如图是导数的图象,对于下列四个判断:?
①在[-2,-1]上是增函数;?
②是的极小值点;?
③在[-1,2]上是增函数,在[2,4]上是减函数;?
④是的极小值点.?
其中判断正确的是.?
3.若函数在(0,1)内有极小值,则的取值范围为.
4.函数,在x=1时有极值10,则的值为.
5.下列关于函数的判断正确的是.
①f(x)0的解集是{x|0x2};?
②f(-)是极小值,f()是极大值;?
③f(x)没有最小值,也没有最大值.?
6.设函数在处取得极值,则的值为.
7.已知函数(为常数且)有极值9,则的值为.
8.若函数在上的最大值为,则的值为.
9.设函数在及时取得极值.
(Ⅰ)求a、b的值;
(Ⅱ)若对于任意的,都有成立,求c的取值范围.
10.已知函数,求函数在[1,2]上的最大值.
四、纠错分析
错题卡题号错题原因分析
参考答案:
【自我检测】
1.72.3.4.
例1:(1)0(2)1,(3)3(4)11
例2:解:(Ⅰ),
当时,取最小值,
即.
(Ⅱ)令,
由得,(不合题意,舍去).
当变化时,的变化情况如下表:
递增极大值
递减
在内有最大值.
在内恒成立等价于在内恒成立,
即等价于,
所以的取值范围为.
例3:解:(1)由折起的过程可知,PE⊥平面ABC,,
V(x)=()
(2),所以时,,V(x)单调递增;时,V(x)单调递减;因此x=6时,V(x)取得最大值;
课后作业
1.[-1,2]2.②③3.0b14.a=-4,b=11
5.?①②6.17.28.
9.解:(Ⅰ),
因为函数在及取得极值,则有,.
即
解得,.
(Ⅱ)由(Ⅰ)可知,,
.
当时,;
当时,;
当时,.
所以,当时,取得极大值,又,.
则当时,的最大值为.
因为对于任意的,有恒成立,
所以,
解得或,
因此的取值范围为.
10.解:∵,∴
令,即,得.?
∴f(x)在(-∞,0),上是减函数,在上是增函数.?
①当,即时,在(1,2)上是减函数,?∴.
②当,即时,在上是减函数,
?∴.
③当,即时,在上是增函数,?
∴.
综上所述,当时,的最大值为,?
当时,的最大值为,
当时,的最大值为.
变化率与导数导学案及练习题
3.1.1函数的平均变化率3.1.2瞬时速度与导数
【学习要求】1.了解导数概念的实际背景.2.会求函数在某一点附近的平均变化率.
3.会利用导数的定义求函数在某点处的导数.
【学法指导】导数是研究函数的有力工具,要认真理解平均变化率、瞬时变化率的概念,可以从物理和几何两种角度理解导数的意义,深刻体会无限逼近的思想.
1.函数的变化率
定义实例
平均变化率函数y=f(x)从x1到x2的平均变化率为,简记作:ΔyΔx
①平均速度;②曲线割线的斜率
瞬时变化率函数y=f(x)在x=x0处的瞬时变化率是函数f(x)从x0到x0+Δx的平均变化率在Δx→0时的极限,即
=limΔx→0ΔyΔx
①瞬时速度:物体在某一时刻的速度;②切线斜率
2.函数f(x)在x=x0处的导数
函数y=f(x)在x=x0处的称为函数y=f(x)在x=x0处的导数,
记作,即f′(x0)=limΔx→0ΔyΔx=.
引言那么在数学中怎样来刻画变量变化得快与慢呢?
探究点一平均变化率的概念
问题1气球膨胀率我们都吹过气球,回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加得越来越慢.从数学的角度,如何描述这种现象呢?
问题2高台跳水在高台跳水运动中,运动员相对于水面的高度h(单位:m)与起跳后的时间t(单位:s)存在函数关系h(t)=-4.9t2+6.5t+10.计算运动员在下列时间段内的平均速度v,并思考平均速度有什么作用?(1)0≤t≤0.5,(2)1≤t≤2.
问题3什么是平均变化率,平均变化率有何作用?
问题4平均变化率也可以用式子ΔyΔx表示,其中Δy、Δx的意义是什么?ΔyΔx有什么几何意义?
例1已知函数f(x)=2x2+3x-5.
(1)求当x1=4,且Δx=1时,函数增量Δy和平均变化率ΔyΔx;
(2)求当x1=4,且Δx=0.1时,函数增量Δy和平均变化率ΔyΔx;
(3)若设x2=x1+Δx.分析(1)(2)题中的平均变化率的几何意义.
跟踪1(1)计算函数f(x)=x2从x=1到x=1+Δx的平均变化率,其中Δx的值为
①2;②1;③0.1;④0.01.
(2)思考:当|Δx|越来越小时,函数f(x)在区间[1,1+Δx]上的平均变化率有怎样的变化趋势?
探究点二函数在某点处的导数
问题1物体的平均速度能否精确反映它的运动状态?
问题2如何描述物体在某一时刻的运动状态?
问题3导数和瞬时变化率是什么关系?导数有什么作用?
例2利用导数的定义求函数f(x)=-x2+3x在x=2处的导数.
跟踪2求函数f(x)=3x2-2x在x=1处的导数.
例3将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热.如果第xh时,原油的温度(单位:℃)为y=f(x)=x2-7x+15(0≤x≤8).计算第2h和第6h时,原油温度的瞬时变化率,并说明它们的意义.
跟踪3高台跳水运动中,运动员相对于水面的高度h(单位:m)与起跳后的时间t(单位:s)之间的关系式为h(t)=-4.9t2+6.5t+10,求运动员在t=6598s时的瞬时速度,并解释此时的运动状况.
【达标检测】
1.在导数的定义中,自变量的增量Δx满足()
A.Δx0B.Δx0C.Δx=0D.Δx≠0
2.函数f(x)在x0处可导,则limh→0fx0+h-fx0h()
A.与x0、h都有关B.仅与x0有关,而与h无关
C.仅与h有关,而与x0无关D.与x0、h均无关
3.已知函数f(x)=2x2-1的图象上一点(1,1)及邻近一点(1+Δx,1+Δy),则ΔyΔx等于()
A.4B.4xC.4+2ΔxD.4+2(Δx)2
变化率与倒数导学案及练习题
一、基础过关
1.一物体的运动方程是s=3+t2,则在一小段时间[2,2.1]内相应的平均速度为()
A.0.41B.3
C.4D.4.1
2.函数y=1在[2,2+Δx]上的平均变化率是()
A.0B.1
C.2D.Δx
3.设函数f(x)可导,则limΔx→0f1+Δx-f13Δx等于()
A.f′(1)B.3f′(1)
C.f′(1)D.f′(3)
4.一质点按规律s(t)=2t3运动,则t=1时的瞬时速度为()
A.4B.6
C.24D.48
5.函数y=3x2在x=1处的导数为()
A.12B.6
C.3D.2
6.甲、乙两厂污水的排放量W与时间t的关系如图所示,治污效果较好的是()
A.甲B.乙
C.相同D.不确定
7.函数f(x)=5-3x2在区间[1,2]上的平均变化率为______.
二、能力提升
8.过曲线y=f(x)=x2+1上两点P(1,2)和Q(1+Δx,2+Δy)作曲线的割线,当Δx=0.1时,割线的斜率k=________.
9.函数f(x)=1x2+2在x=1处的导数f′(1)=__________.
10.求函数y=-2x2+5在区间[2,2+Δx]内的平均变化率.
11.求函数y=f(x)=2x2+4x在x=3处的导数.
12.若函数f(x)=ax2+c,且f′(1)=2,求a的值.