88教案网

你的位置: 教案 > 高中教案 > 导航 > 极大值与极小值学案练习题

高中素质练习教案

发表时间:2020-10-31

极大值与极小值学案练习题。

一名优秀的教师就要对每一课堂负责,作为高中教师就要精心准备好合适的教案。教案可以更好的帮助学生们打好基础,帮助高中教师缓解教学的压力,提高教学质量。您知道高中教案应该要怎么下笔吗?为满足您的需求,小编特地编辑了“极大值与极小值学案练习题”,欢迎阅读,希望您能阅读并收藏。

§1.3.2极大值与极小值(1)
一、知识点
1.通过几何直观得到极大(小)值与导数的关系,了解极值和极值点是函数的局部性态,仅考虑该点与附近的点之间的比较,而不是在所给的整个区间或定义域范围。
2.一般地,求函数的极值的方法是:
⑴如果在附近的左侧,右侧,那么是极大值;
⑵如果在附近的左侧,右侧,那么是极小值;
⑶如果在附近的左侧及右侧不变号,那么一定不是极值。
二、典型例题
例1.求下列函数的极值:
⑴⑵

例2.求函数在区间内的极值。

三、巩固练习
1.求下列函数的极值
⑴;

2.如果函数有极小值,极大值,那么一定小于吗?试作图说明.

3.根据下列条件大致作出函数的图象:
⑴,,当时;当时,;
⑵,当时,.
四、课堂小结
五、课后反思
六、课后作业
1.已知函数的导数则当=时,函数取得极大值;
2.函数的极大值是,极小值是;
3.函数,当=时取得极大值为;当=时,取得极小值为;
4.函数在区间上是单调递减的,在区间上是单调递增的,当=时,取极小值,则极小值为;
5.求下列函数的极值:
⑴⑵
⑶⑷

6.求函数的极值。

7.已知函数的图象如图所示,试作出的草图.
订正栏:JAb88.COM

相关知识

最大值和最小值问题


作为优秀的教学工作者,在教学时能够胸有成竹,作为高中教师就要精心准备好合适的教案。教案可以让学生能够在教学期间跟着互动起来,帮助高中教师提高自己的教学质量。你知道如何去写好一份优秀的高中教案呢?下面是小编帮大家编辑的《最大值和最小值问题》,供您参考,希望能够帮助到大家。

3.2.2最大值、最小值问题
教学过程:
一、复习引入:
1.极大值:一般地,设函数f(x)在点x0附近有定义,如果对x0附近的所有的点,都有f(x)<f(x0),就说f(x0)是函数f(x)的一个极大值,记作y极大值=f(x0),x0是极大值点
2.极小值:一般地,设函数f(x)在x0附近有定义,如果对x0附近的所有的点,都有f(x)>f(x0).就说f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0),x0是极小值点
3.极大值与极小值统称为极值注意以下几点:
(ⅰ)极值是一个局部概念由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小并不意味着它在函数的整个的定义域内最大或最小
(ⅱ)函数的极值不是唯一的即一个函数在某区间上或定义域内极大值或极小值可以不止一个
(ⅲ)极大值与极小值之间无确定的大小关系即一个函数的极大值未必大于极小值,如下图所示,是极大值点,是极小值点,而
(ⅳ)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点
而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点
二、讲解新课:
1.函数的最大值和最小值
观察图中一个定义在闭区间上的函数的图象.图中与是极小值,是极大值.函数在上的最大值是,最小值是.
一般地,在闭区间上连续的函数在上必有最大值与最小值.
说明:⑴在开区间内连续的函数不一定有最大值与最小值.如函数在内连续,但没有最大值与最小值;
⑵函数的最值是比较整个定义域内的函数值得出的;函数的极值是比较极值点附近函数值得出的.
⑶函数在闭区间上连续,是在闭区间上有最大值与最小值的充分条件而非必要条件.
(4)函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个
⒉利用导数求函数的最值步骤:
由上面函数的图象可以看出,只要把连续函数所有的极值与定义区间端点的函数值进行比较,就可以得出函数的最值了.
设函数在上连续,在内可导,则求在上的最大值与最小值的步骤如下:⑴求在内的极值;
⑵将的各极值与、比较得出函数在上的最值
三、讲解范例:
例1求函数在区间上的最大值与最小值
例2已知x,y为正实数,且满足,求的取值范围
例3.设,函数的最大值为1,最小值为,求常数a,b
例4已知,∈(0,+∞).是否存在实数,使同时满足下列两个条件:(1))在(0,1)上是减函数,在[1,+∞)上是增函数;(2)的最小值是1,若存在,求出,若不存在,说明理由.
四、课堂练习:
1.下列说法正确的是()
A.函数的极大值就是函数的最大值B.函数的极小值就是函数的最小值
C.函数的最值一定是极值D.在闭区间上的连续函数一定存在最值
2.函数y=f(x)在区间[a,b]上的最大值是M,最小值是m,若M=m,则f′(x)()
A.等于0B.大于0C.小于0D.以上都有可能
3.函数y=,在[-1,1]上的最小值为()
A.0B.-2C.-1D.
4.函数y=的最大值为()。A.B.1C.D.
5.设y=|x|3,那么y在区间[-3,-1]上的最小值是()
A.27B.-3C.-1D.1
6.设f(x)=ax3-6ax2+b在区间[-1,2]上的最大值为3,最小值为-29,且ab,则()
A.a=2,b=29B.a=2,b=3C.a=3,b=2D.a=-2,b=-3

五、小结:
⑴函数在闭区间上的最值点必在下列各种点之中:导数等于零的点,导数不存在的点,区间端点;
⑵函数在闭区间上连续,是在闭区间上有最大值与最小值的充分条件而非必要条件;
⑶闭区间上的连续函数一定有最值;开区间内的可导函数不一定有最值,若有唯一的极值,则此极值必是函数的最值.

函数的最大值和最小值教案


1.本节教材的地位与作用
本节主要研究闭区间上的连续函数最大值和最小值的求法和实际应用,分两课时,这里是第一课时,它是在学生已经会求某些函数的最值,并且已经掌握了性质:“如果f(x)是闭区间[a,b]上的连续函数,那么f(x)在闭区间[a,b]上有最大值和最小值”,以及会求可导函数的极值之后进行学习的,学好这一节,学生将会求更多的函数的最值,运用本节知识可以解决科技、经济、社会中的一些如何使成本最低、产量最高、效益最大等实际问题.这节课集中体现了数形结合、理论联系实际等重要的数学思想方法,学好本节,对于进一步完善学生的知识结构,培养学生用数学的意识都具有极为重要的意义.
2.教学重点
会求闭区间上连续开区间上可导的函数的最值.
3.教学难点
高三年级学生虽然已经具有一定的知识基础,但由于对求函数极值还不熟练,特别是对优化解题过程依据的理解会有较大的困难,所以这节课的难点是理解确定函数最值的方法.
4.教学关键
本节课突破难点的关键是:理解方程f′(x)=0的解,包含有指定区间内全部可能的极值点.
【教学目标】
根据本节教材在高中数学知识体系中的地位和作用,结合学生已有的认知水平,制定本节如下的教学目标:
1.知识和技能目标
(1)理解函数的最值与极值的区别和联系.
(2)进一步明确闭区间[a,b]上的连续函数f(x),在[a,b]上必有最大、最小值.
(3)掌握用导数法求上述函数的最大值与最小值的方法和步骤.
2.过程和方法目标
(1)了解开区间内的连续函数或闭区间上的不连续函数不一定有最大、最小值.
(2)理解闭区间上的连续函数最值存在的可能位置:极值点处或区间端点处.
(3)会求闭区间上连续,开区间内可导的函数的最大、最小值.
3.情感和价值目标
(1)认识事物之间的的区别和联系.
(2)培养学生观察事物的能力,能够自己发现问题,分析问题并最终解决问题.
(3)提高学生的数学能力,培养学生的创新精神、实践能力和理性精神.
【教法选择】
根据皮亚杰的建构主义认识论,知识是个体在与环境相互作用的过程中逐渐建构的结果,而认识则是起源于主客体之间的相互作用.
本节课在帮助学生回顾肯定了闭区间上的连续函数一定存在最大值和最小值之后,引导学生通过观察闭区间内的连续函数的几个图象,自己归纳、总结出函数最大值、最小值存在的可能位置,进而探索出函数最大值、最小值求解的方法与步骤,并优化解题过程,让学生主动地获得知识,老师只是进行适当的引导,而不进行全部的灌输.为突出重点,突破难点,这节课主要选择以合作探究式教学法组织教学.
【学法指导】
对于求函数的最值,高三学生已经具备了良好的知识基础,剩下的问题就是有没有一种更一般的方法,能运用于更多更复杂函数的求最值问题?教学设计中注意激发起学生强烈的求知欲望,使得他们能积极主动地观察、分析、归纳,以形成认识,参与到课堂活动中,充分发挥他们作为认知主体的作用.

单调性学案练习题


作为优秀的教学工作者,在教学时能够胸有成竹,作为教师就要在上课前做好适合自己的教案。教案可以让学生更好的吸收课堂上所讲的知识点,帮助教师掌握上课时的教学节奏。教案的内容具体要怎样写呢?下面是小编精心收集整理,为您带来的《单调性学案练习题》,欢迎您参考,希望对您有所助益!

§1.3.1单调性
一、知识点
1.导数与函数的单调性有什么关系?
设函数,如果在某个区间上,那么为该区间上的增函数;
如果在某个区间上,那么为该区间上的减函数.

2.思考:试结合思考:如果在某区间上单调递增,那么在该区间上必有吗?

二、典型例题
例1.确定函数在哪个区间上的增函数,哪个区间上是减函数.

例2.确定函数在哪些区间上是增函数.

例3.确定函数的单调减区间.

例4.确定函数的单调区间.

三、巩固练习
1.函数的单调减区间是.
2.函数在上单调递增,则的取值范围是.
3.函数,在是单调的.(填“递增”、“递减”)
4.讨论函数的单调性:
⑴⑵⑶

四、课堂小结
五、课后反思
六、课后作业
1.已知,且,则函数在上单调递.
2.函数的单调递增区间是.
3.函数的递增区间是,递减区间是.
4.函数的递增区间是.
5.已知,证明:
⑴在上是增函数;⑵当时,.

6.已知,证明:.

7.求函数单调区间.

8.已知函数在其定义域内是增函数,求的取值范围.

变化率与导数导学案及练习题


3.1.1函数的平均变化率3.1.2瞬时速度与导数
【学习要求】1.了解导数概念的实际背景.2.会求函数在某一点附近的平均变化率.
3.会利用导数的定义求函数在某点处的导数.
【学法指导】导数是研究函数的有力工具,要认真理解平均变化率、瞬时变化率的概念,可以从物理和几何两种角度理解导数的意义,深刻体会无限逼近的思想.
1.函数的变化率
定义实例
平均变化率函数y=f(x)从x1到x2的平均变化率为,简记作:ΔyΔx
①平均速度;②曲线割线的斜率
瞬时变化率函数y=f(x)在x=x0处的瞬时变化率是函数f(x)从x0到x0+Δx的平均变化率在Δx→0时的极限,即
=limΔx→0ΔyΔx
①瞬时速度:物体在某一时刻的速度;②切线斜率
2.函数f(x)在x=x0处的导数
函数y=f(x)在x=x0处的称为函数y=f(x)在x=x0处的导数,
记作,即f′(x0)=limΔx→0ΔyΔx=.
引言那么在数学中怎样来刻画变量变化得快与慢呢?
探究点一平均变化率的概念
问题1气球膨胀率我们都吹过气球,回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加得越来越慢.从数学的角度,如何描述这种现象呢?
问题2高台跳水在高台跳水运动中,运动员相对于水面的高度h(单位:m)与起跳后的时间t(单位:s)存在函数关系h(t)=-4.9t2+6.5t+10.计算运动员在下列时间段内的平均速度v,并思考平均速度有什么作用?(1)0≤t≤0.5,(2)1≤t≤2.
问题3什么是平均变化率,平均变化率有何作用?
问题4平均变化率也可以用式子ΔyΔx表示,其中Δy、Δx的意义是什么?ΔyΔx有什么几何意义?
例1已知函数f(x)=2x2+3x-5.
(1)求当x1=4,且Δx=1时,函数增量Δy和平均变化率ΔyΔx;
(2)求当x1=4,且Δx=0.1时,函数增量Δy和平均变化率ΔyΔx;
(3)若设x2=x1+Δx.分析(1)(2)题中的平均变化率的几何意义.
跟踪1(1)计算函数f(x)=x2从x=1到x=1+Δx的平均变化率,其中Δx的值为
①2;②1;③0.1;④0.01.
(2)思考:当|Δx|越来越小时,函数f(x)在区间[1,1+Δx]上的平均变化率有怎样的变化趋势?

探究点二函数在某点处的导数
问题1物体的平均速度能否精确反映它的运动状态?
问题2如何描述物体在某一时刻的运动状态?
问题3导数和瞬时变化率是什么关系?导数有什么作用?
例2利用导数的定义求函数f(x)=-x2+3x在x=2处的导数.

跟踪2求函数f(x)=3x2-2x在x=1处的导数.

例3将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热.如果第xh时,原油的温度(单位:℃)为y=f(x)=x2-7x+15(0≤x≤8).计算第2h和第6h时,原油温度的瞬时变化率,并说明它们的意义.

跟踪3高台跳水运动中,运动员相对于水面的高度h(单位:m)与起跳后的时间t(单位:s)之间的关系式为h(t)=-4.9t2+6.5t+10,求运动员在t=6598s时的瞬时速度,并解释此时的运动状况.

【达标检测】
1.在导数的定义中,自变量的增量Δx满足()
A.Δx0B.Δx0C.Δx=0D.Δx≠0
2.函数f(x)在x0处可导,则limh→0fx0+h-fx0h()
A.与x0、h都有关B.仅与x0有关,而与h无关
C.仅与h有关,而与x0无关D.与x0、h均无关
3.已知函数f(x)=2x2-1的图象上一点(1,1)及邻近一点(1+Δx,1+Δy),则ΔyΔx等于()
A.4B.4xC.4+2ΔxD.4+2(Δx)2