88教案网

你的位置: 教案 > 高中教案 > 导航 > 第4讲专题带电粒子在复合场中的运动

观察中的发现教案

发表时间:2021-04-06

第4讲专题带电粒子在复合场中的运动。

一名优秀负责的教师就要对每一位学生尽职尽责,高中教师要准备好教案,这是老师职责的一部分。教案可以让学生更好地进入课堂环境中来,减轻高中教师们在教学时的教学压力。关于好的高中教案要怎么样去写呢?经过搜索和整理,小编为大家呈现“第4讲专题带电粒子在复合场中的运动”,欢迎阅读,希望您能够喜欢并分享!

第4讲专题带电粒子在复合场中的运动

图8-4-9

1.如图8-4-9所示,空间存在一匀强磁场B(方向垂直纸面向里)和一电荷量为+Q的点电荷的电场,一带电粒子-q(不计重力)以初速度v0从某处垂直于电场、磁场入射,初位置到点电荷+Q的距离为r,则粒子在电、磁场中的运动轨迹可能是()

A.沿初速度v0方向的直线

B.以点电荷+Q为圆心,以r为半径,在纸面内的圆

C.初阶段在纸面内向右偏的曲线

D.初阶段在纸面内向左偏的曲线

解析:当带电粒子所受库仑力和洛伦兹力的合力正好能提供其所需的向心力时,粒子便以点电荷+Q为圆心,以r为半径,在纸面内做匀速圆周运动;因为点电荷+Q周围的电场是非匀强电场,所以粒子不可能做直线运动.综上所述粒子的运动轨迹可能为B、C、D.

答案:BCD

图8-4-10

2.如图8-4-10所示,界面PQ与水平地面之间有一个正交的匀强磁场B和匀强电场E,在PQ上方有一个带正电的小球A自O静止开始下落,穿过电场和磁场到达地面.设空气阻力不计,下列说法中正确的是()

A.在复合场中,小球做匀变速曲线运动

B.在复合场中,小球下落过程中的电势能减小

C.小球从静止开始下落到水平地面时的动能等于其电势能和重力势能的减少量总和

D.若其他条件不变,仅增大磁感应强度,小球从原来位置下落到水平地面时的动能不变

解析:小球受到磁场力,不可能做匀变速曲线运动.电场力做正功,电势能减小,由能量守恒知,C项正确.增大磁感应强度,会改变洛伦兹力,进而改变落地点,电场力做功会不同,D项错.

答案:BC

图8-4-11

3.如图8-4-11所示,竖直平面xOy内存在水平向右的匀强电场,场强大小E=10N/C,在y≥0的区域内还存在垂直于坐标平面向里的匀强磁场,磁感应强度大小B=0.5T.一带电量q=+0.2C、质量m=0.4kg的小球由长l=0.4m的细线悬挂于P点,小球可视为质点,现将小球拉至水平位置A无初速释放,小球运动到悬点P正下方的坐标原点O时,悬线突然断裂,此后小球又恰好能通过O点正下方的N点.(g=10m/s2)求:

(1)小球运动到O点时的速度大小;

(2)悬线断裂前瞬间拉力的大小;

(3)ON间的距离.

解析:(1)小球从A运动O的过程中,根据动能定理:12mv2=mgl-qEl①

则得小球在O点速度为:v=2lg-qEm=2m/s.②

(2)小球运动到O点绳子断裂前瞬间,对小球应用牛顿第二定律:

F向=FT-mg-F洛=mv2l③

F洛=Bvq④

由③、④得:FT=mg+Bvq+mv2l=8.2N.⑤

(3)绳断后,小球水平方向加速度ax=F电m=Eqm=5m/s2⑥

小球从O点运动至N点所用时间t=Δvax=0.8s⑦

ON间距离h=12gt2=3.2m.⑧

答案:(1)2m/s(2)8.2N(3)3.2m

图8-4-12

4.如图8-4-12所示,平行于直角坐标系y轴的PQ是用特殊材料制成的,只能让垂直打到PQ界面上的电子通过.其左侧有一直角三角形区域,分布着方向垂直纸面向里、磁感应强度为B的匀强磁场,其右侧有竖直向上场强为E的匀强电场.现有速率不同的电子在纸面上从坐标原点O沿不同方向射到三角形区域,不考虑电子间的相互作用.已知电子的电量为e,质量为m,在△OAC中,OA=a,θ=60°.求:

(1)能通过PQ界面的电子所具有的最大速度是多少;

(2)在PQ右侧x轴上什么范围内能接收到电子.

解析:(1)要使电子能通过PQ界面,电子飞出磁场的速度方向必须水平向右,由Bev=mv2r可知,r越大v越大,从C点水平飞出的电子,运动半径最大,对应的速度最大,即r=2a时,电子的速度最大

由Bevm=m,得:vm=2Beam.①

(2)粒子在电场中做类平抛运动,据

a=12eEmt2②

x=vt

得:xmax=2Ba2aemE③

由此可知:PQ界面的右侧x轴上能接收电子的范围是3a,3a+2Ba2aemE

本题属于复合场问题,考查带电粒子在有界磁场中的运动和带电粒子在匀强电场中的运动,需要同学们解题时能够正确地画出带电粒子在磁场和电场中的运动轨迹.

答案:(1)2Beam(2)3a,3a+2Ba2aemE

5.

图8-4-13

(2009重庆,25)如图8-4-13所示,离子源A产生的初速度为零、带电荷量均为e、质量不同的正离子被电压为U0的加速电场加速后匀速通过准直管,垂直射入匀强偏转电场,偏转后通过极板HM上的小孔S离开电场,经过一段匀速直线运动,垂直于边界MN进入磁感应强度为B的匀强磁场.已知HO=d,HS=2d,∠MNQ=90°.(忽略离子所受重力)

(1)求偏转电场场强E0的大小以及HM与MN的夹角φ;

(2)求质量为4m的离子在磁场中做圆周运动的半径;

(3)若质量为4m的离子垂直打在NQ的中点S1处,质量为16m的离子打在S2处,S1和S2之间的距离以及能打在NQ上的正离子的质量范围.

解析:(1)由eU0=12mv21-0F=eE0=ma2d=v1td=12at2

得E0=U0/d,由tanφ=v1at,得φ=45°.

(2)由v=v21+v2⊥=v21+(at)2evB=mv2R

得R=2mU0eB2.

(3)将4m和16m代入R,得R1、R2,

由ΔS=R22-(R2-R1)2-R1,

将R1、R2代入得ΔS=4(3-1)mU0eB2

由R′2=(2R1)2+(R′-R1)2,得R′=52R1

由12R1R52R1,得mmx25m.

答案:(1)45°(2)2mU0eB2(3)4(3-1)mU0eB2mmx25m

图8-4-14

1.如图8-4-14所示,实线表示在竖直平面内匀强电场的电场线,电场线与水平方向成α角,水平方向的匀强磁场与电场正交,有一带电液滴沿斜向上的虚线l做直线运动,l与水平方向成β角,且αβ,则下列说法中错误的是()

A.液滴一定做匀变速直线运动B.液滴一定带正电

C.电场线方向一定斜向上D.液滴一定做匀速直线运动

解析:在电磁场复合区域粒子一般不会做匀变速直线运动,因速度变化洛伦兹力变化,合外力一般变化.

答案:A

图8-4-15

2.如图8-4-15所示,光滑绝缘杆固定在水平位置上,使其两端分别带上等量同种正电荷Q1、Q2,杆上套着一带正电小球,整个装置处在一个匀强磁场中,磁感应强度方向垂直纸面向里,将靠近右端的小球从静止开始释放,在小球从右到左的运动过程中,下列说法中正确的是()

A.小球受到的洛伦兹力大小变化,但方向不变

B.小球受到的洛伦兹力将不断增大

C.小球的加速度先减小后增大

D.小球的电势能一直减小

解析:Q1、Q2连线上中点处电场强度为零,从中点向两侧电场强度增大且方向都指向中点,故小球所受电场力指向中点.小球从右向左运动过程中,小球的加速度先减小后增大,C正确.速度先增大后减小,洛伦兹力大小变化,由左手定则知,洛伦兹力方向不变,故A正确,B错误.小球的电势能先减小后增大,D错误.

答案:AC

图8-4-16

3.如图8-4-16所示.有一混合正离子束先后通过正交电场、磁场区域Ⅰ和匀强磁场区域Ⅱ,如果这束正离子束在区域Ⅰ中不偏转,进入区域Ⅱ后偏转半径又相同,则说明这些正离子具有相同的()

A.速度B.质量C.电荷D.比荷

解析:设电场的场强为E,由于粒子在区域Ⅰ里不发生偏转,则Eq=B1qv,得v=EB1;当粒子进入区域Ⅱ时,偏转半径又相同,所以R=mvB2q=mEB1B2q=EmB1B2q,故选项A、D正确.

答案:AD

图8-4-17

4.(2009辽宁、宁夏理综,16)医生做某些特殊手术时,利用电磁血流计来监测通过动脉的血流速度.电磁血流计由一对电极a和b以及一对磁极N和S构成,磁极间的磁场是均匀的.使用时,两电极a、b均与血管壁接触,两触点的连线、磁场方向和血流速度方向两两垂直,如图8-4-17所示.由于血液中的正负离子随血流一起在磁场中运动,电极a、b之间会有微小电势差.在达到平衡时,血管内部的电场可看作是匀强电场,血液中的离子所受的电场力和磁场力的合力为零.在某次监测中,两触点间的距离为3.0mm,血管壁的厚度可忽略,两触点间的电势差为160μV,磁感应强度的大小为0.040T.则血流速度的近似值和电极a、b的正负为()

A.1.3m/s,a正、b负B.2.7m/s,a正、b负

C.1.3m/s,a负、b正D.2.7m/s,a负、b正

解析:根据左手定则,可知a正b负,所以C、D两项错;因为离子在场中所受合力为零,Bqv=Udq,所以v=UBd=1.3m/s,A项对B项错.

答案:A

5.如图8-4-18所示,一个带正电荷的物块m,由静止开始从斜面上A点下滑,滑到水平面BC上的D点停下来.已知物块与斜面及水平面间的动摩擦因数相同,且不计物块经过B处时的机械能损失.先在ABC所在空间加竖直向下的匀强电场,第二次让物块m从A点由静止开始下滑,结果物块在水平面上的D′点停下来.后又撤去电场,在ABC所在空间加水平向里的匀强磁场,再次让物块m从A点由静止开始下滑,结果物块沿斜面滑下并在水平面上的D″点停下来.则以下说法中正确的是()

图8-4-18

A.D′点一定在D点左侧B.D′点一定与D点重合

C.D″点一定在D点右侧D.D″点一定与D点重合

解析:仅在重力场中时,物块由A点至D点的过程中,由动能定理得mgh-μmgcosαs1-μmgs2=0,即h-μcosαs1-μs2=0,由题意知A点距水平面的高度h、物块与斜面及水平面间的动摩擦因数μ、斜面倾角α、斜面长度s1为定值,所以s2与重力的大小无关,而在ABC所在空间加竖直向下的匀强电场后,相当于把重力增大了,s2不变,D′点一定与D点重合,B项正确;在ABC所在空间加水平向里的匀强磁场后,洛伦兹力垂直于接触面向上,正压力变小,摩擦力变小,重力做的功不变,所以D″点一定在D点右侧,C项正确.

答案:BC

图8-4-19

6.如图8-4-19所示,电源电动势为E,内阻为r,滑动变阻器电阻为R,开关K闭合.两平行极板间有匀强磁场,一带电粒子(不计重力)正好以速度v匀速穿过两板.以下说法正确的是()

A.保持开关闭合,将滑片P向上滑动一点,粒子将可能从下极板边缘射出

B.保持开关闭合,将滑片P向下滑动一点,粒子将可能从下极板边缘射出

C.保持开关闭合,将a极板向下移动一点,粒子将一定向下偏转

D.如果将开关断开,粒子将继续沿直线穿出

解析:本题考查电路、电容器、带电粒子在复合场中的运动等知识.开关闭合,滑片未滑动时,带电粒子所受洛伦兹力等于电场力.当滑片向上滑动时,带电粒子受到的电场力减小,由于不知道带电粒子的电性,所以电场力方向可能向上也可能向下,带电粒子刚进入磁场时洛伦兹力大小不变,与电场力的方向相反,所以带电粒子可能向上运动,也可能向下运动,A、B项正确,C项错误;开关断开,带电粒子在匀强磁场中做圆周运动,D项错误.

答案:AB

图8-4-20

7.在某地上空同时存在着匀强的电场与磁场,一质量为m的带正电小球,在该区域内沿水平方向向右做直线运动,如图8-4-20所示,关于场的分布情况可能的是()

A.该处电场方向和磁场方向重合

B.电场竖直向上,磁场垂直纸面向里

C.电场斜向里侧上方,磁场斜向外侧上方,均与v垂直

D.电场水平向右,磁场垂直纸面向里

解析:带电小球在复合场中运动一定受重力和电场力,是否受洛伦兹力需具体分析.A选项中若电场、磁场方向与速度方向垂直,则洛伦兹力与电场力垂直,如果与重力的合力为0就会做直线运动.B选项中电场力、洛伦兹力都向上,若与重力合力为0,也会做直线运动.C选项中电场力斜向里侧上方,洛伦兹力向外侧下方,若与重力的合力为0,就会做直线运动.D选项三个力的合力不可能为0,因此选项A、B、C正确.

答案:ABC

8.

图8-4-21

如图8-4-21所示,有位于竖直平面上的半径为R的圆形光滑绝缘轨道,其上半部分处于竖直向下、场强为E的匀强电场中,下半部分处于垂直水平面向里的匀强磁场中;质量为m,带正电,电荷量为q的小球,从轨道的水平直径的M端由静止释放,若小球在某一次通过最低点时对轨道的压力为零,求:

(1)磁感应强度B的大小;

(2)小球对轨道最低点的最大压力;

(3)若要小球在圆形轨道内做完整的圆周运动,求小球从轨道的水平直径的M端下滑的最小速度.

解析:(1)设小球向右通过最低点时的速率为v,由题意得:

mgR=12mv2,qBv-mg=mv2R,B=3mgq2gR.

(2)小球向左通过最低点时对轨道的压力最大.FN-mg-qBv=mv2R.FN=6mg.

(3)要小球完成圆周运动的条件是在最高点满足:mg+qE=mv21R

从M点到最高点由动能定理得:-mgR-qER=12mv21-12mv20

由以上可得v0=3R(mg+qE)m.

答案:(1)3mgq2gR(2)6mg(3)3R(mg+qE)m

图8-4-22

9.在坐标系xOy中,有三个靠在一起的等大的圆形区域,分别存在着方向如图8-4-22所示的匀强磁场,磁感应强度大小都为B=0.10T,磁场区域半径r=233m,三个圆心A、B、C构成一个等边三角形,B、C点都在x轴上,且y轴与圆形圆域C相切,圆形区域A内磁场垂直纸面向里,圆形区域B、C内磁场垂直纸面向外.在直角坐标系的第Ⅰ、Ⅳ象限内分布着场强E=1.0×105N/C的竖直方向的匀强电场,现有质量m=3.2×10-26kg,带电荷量q=-1.6×10-19C的某种负离子,从圆形磁场区域A的左侧边缘以水平速度v=106m/s沿正对圆心A的方向垂直磁场射入,求:

(1)该离子通过磁场区域所用的时间.

(2)离子离开磁场区域的出射点偏离最初入射方向的侧移为多大?(侧移指垂直初速度方向上移动的距离)

(3)若在匀强电场区域内竖直放置一挡板MN,欲使离子打到挡板MN上时偏离最初入射方向的侧移为零,则挡板MN应放在何处?匀强电场的方向如何?

解析:(1)离子在磁场中做匀速圆周运动,在A、C两区域的运动轨迹是对称的,如图所示,

设离子做圆周运动的半径为R,圆周运动的周期为T,由牛顿第二定律得:qvB=mv2R

又T=2πRv,解得:R=mvqB,T=2πmqB

将已知量代入得:R=2m

设θ为离子在区域A中的运动轨迹所对应圆心角的一半,由几何关系可知离子在区域A中运动轨迹的圆心恰好在B点,则:tanθ=rR=33,θ=30°

则离子通过磁场区域所用的时间为:t=T3=4.19×10-6s.

(2)由对称性可知:离子从原点O处水平射出磁场区域,由图可知侧移为d=2rsin2θ=2m.

(3)欲使离子打到挡板MN上时偏离最初入射方向的侧移为零,则离子在电场中运动时受到的电场力方向应向上,所以匀强电场的方向向下

离子在电场中做类平抛运动,加速度大小为:

a=Eq/m=5.0×1011m/s2,

沿y方向的位移为:y=12at2=d

沿x方向的位移为:x=vt,解得:x=22m

所以MN应放在距y轴22m的位置.

答案:(1)4.19×10-6s(2)2m(3)距y轴22m处方向向下

10.

图8-4-23

如图8-4-23所示,竖直平面坐标系xOy的第一象限,有垂直xOy面向外的水平匀强磁场和竖直向上的匀强电场,大小分别为B和E;第四象限有垂直xOy面向里的水平匀强电场,大小也为E;第三象限内有一绝缘光滑竖直放置的半径为R的半圆轨道,轨道最高点与坐标原点O相切,最低点与绝缘光滑水平面相切于N.一质量为m的带电小球从y轴上(y0)的P点沿x轴正方向进入第一象限后做圆周运动,恰好通过坐标原点O,且水平切入半圆轨道并沿轨道内侧运动,过N点水平进入第四象限,并在电场中运动(已知重力加速度为g).

(1)判断小球的带电性质并求出其所带电荷量;

(2)P点距坐标原点O至少多高;

(3)若该小球以满足(2)中OP最小值的位置和对应速度进入第一象限,通过N点开始计时,经时间t=2Rg小球距坐标原点O的距离s为多远?

解析:(1)小球进入第一象限正交的电场和磁场后,在垂直磁场的平面内做圆周运动,说明重力与电场力平衡,qE=mg①

得q=mgE②

小球带正电.

(2)小球在洛伦兹力作用下做匀速圆周运动,设匀速圆周运动的速度为v、轨道半径为r.

有:qvB=mv2r③

小球恰能通过半圆轨道的最高点并沿轨道运动,有:mg=mv2R④

由③④得:r=mRgqB⑤

PO的最小距离为:y=2r=2mRgqB.⑥

(3)小球由O运动到N的过程中机械能守恒:mg2R+12mv2=12mv2N⑦

由④⑦得:vN=4Rg+v2=5Rg⑧

根据运动的独立性可知,小球从N点进入电场区域后,在x轴方向以速度vN做匀速直线运动,沿电场方向做初速度为零的匀加速直线运动,则沿x轴方向有:x=vNt⑨

沿电场方向有:z=12at2⑩

a=qEm=g

t时刻小球距O点:s=x2+z2+(2R)2=27R.

答案:(1)正电mgE(2)2mRgqB(3)27R

扩展阅读

高考物理基础知识归纳:带电粒子在复合场中的运动


第4课时带电粒子在复合场中的运动

基础知识归纳
1.复合场
复合场是指电场、磁场和重力场并存,或其中两场并存,或分区域存在,分析方法和力学问题的分析方法基本相同,不同之处是多了电场力和磁场力,分析方法除了力学三大观点(动力学、动量、能量)外,还应注意:
(1)洛伦兹力永不做功.
(2)重力和电场力做功与路径无关,只由初末位置决定.还有因洛伦兹力随速度而变化,洛伦兹力的变化导致粒子所受合力变化,从而加速度变化,使粒子做变加速运动.
2.带电粒子在复合场中无约束情况下的运动性质
(1)当带电粒子所受合外力为零时,将做匀速直线运动或处于静止,合外力恒定且与初速度同向时做匀变速直线运动,常见情况有:
①洛伦兹力为零(v与B平行),重力与电场力平衡,做匀速直线运动,或重力与电场力合力恒定,做匀变速直线运动.
②洛伦兹力与速度垂直,且与重力和电场力的合力平衡,做匀速直线运动.
(2)当带电粒子所受合外力充当向心力,带电粒子做匀速圆周运动时,由于通常情况下,重力和电场力为恒力,故不能充当向心力,所以一般情况下是重力恰好与电场力相平衡,洛伦兹力充当向心力.
(3)当带电粒子所受合外力的大小、方向均不断变化时,粒子将做非匀变速的曲线运动.
3.带电粒子在复合场中有约束情况下的运动
带电粒子所受约束,通常有面、杆、绳、圆轨道等,常见的运动形式有直线运动和圆周运动,此类问题应注意分析洛伦兹力所起的作用.
4.带电粒子在交变场中的运动
带电粒子在不同场中的运动性质可能不同,可分别进行讨论.粒子在不同场中的运动的联系点是速度,因为速度不能突变,在前一个场中运动的末速度,就是后一个场中运动的初速度.
5.带电粒子在复合场中运动的实际应用
(1)质谱仪
①用途:质谱仪是一种测量带电粒子质量和分离同位素的仪器.
②原理:如图所示,离子源S产生质量为m,电荷量为q的正离子(重力不计),离子出来时速度很小(可忽略不计),经过电压为U的电场加速后进入磁感应强度为B的匀强磁场中做匀速圆周运动,经过半个周期而达到记录它的照相底片P上,测得它在P上的位置到入口处的距离为L,则
qU=mv2-0;qBv=m;L=2r
联立求解得m=,因此,只要知道q、B、L与U,就可计算出带电粒子的质量m,若q也未知,则
又因m∝L2,不同质量的同位素从不同处可得到分离,故质谱仪又是分离同位素的重要仪器.
(2)回旋加速器
①组成:两个D形盒、大型电磁铁、高频振荡交变电压,D型盒间可形成电压U.
②作用:加速微观带电粒子.
③原理:a.电场加速qU=ΔEk
b.磁场约束偏转qBv=m,r=∝v
c.加速条件,高频电源的周期与带电粒子在D形盒中运动的周期相同,即T电场=T回旋=
带电粒子在D形盒内沿螺旋线轨道逐渐趋于盒的边缘,达到预期的速率后,用特殊装置把它们引出.
④要点深化
a.将带电粒子在两盒狭缝之间的运动首尾相连起来可等效为一个初速度为零的匀加速直线运动.
b.带电粒子每经电场加速一次,回旋半径就增大一次,所以各回旋半径之比为1∶∶∶…
c.对于同一回旋加速器,其粒子回旋的最大半径是相同的.
d.若已知最大能量为Ekm,则回旋次数n=
e.最大动能:Ekm=
f.粒子在回旋加速器内的运动时间:t=
(3)速度选择器
①原理:如图所示,由于所受重力可忽略不计,运动方向相同而速率不同的正粒子组成的粒子束射入相互正交的匀强电场和匀强磁场所组成的场区中,已知电场强度为B,方向垂直于纸面向里,若粒子运动轨迹不发生偏转(重力不计),必须满足平衡条件:qBv=qE,故v=,这样就把满足v=的粒子从速度选择器中选择出来了.
②特点:a.速度选择器只选择速度(大小、方向)而不选择粒子的质量和电荷量,如上图中若从右侧入射则不能穿过场区.
b.速度选择器B、E、v三个物理量的大小、方向互相约束,以保证粒子受到的电场力和洛伦兹力等大、反向,如上图中只改变磁场B的方向,粒子将向下偏转.
c.v′v=时,则qBv′qE,粒子向上偏转;当v′v=时,qBv′qE,粒子向下偏转.
③要点深化
a.从力的角度看,电场力和洛伦兹力平衡qE=qvB;
b.从速度角度看,v=;
c.从功能角度看,洛伦兹力永不做功.
(4)电磁流量计
①如图所示,一圆形导管直径为d,用非磁性材料制成,其中有可以导电的液体流过导管.
②原理:导电液体中的自由电荷(正、负离子)在洛伦兹力作用下横向偏转,a、b间出现电势差,形成电场.当自由电荷所受电场力和洛伦兹力平衡时,a、b间的电势差就保持稳定.由Bqv=Eq=q,可得v=
液体流量Q=Sv==
(5)霍尔效应
如图所示,高为h、宽为d的导体置于匀强磁场B中,当电流通过导体时,在导体板的上表面A和下表面A′之间产生电势差,这种现象称为霍尔效应,此电压称为霍尔电压.
设霍尔导体中自由电荷(载流子)是自由电子.图中电流方向向右,则电子受洛伦兹力向上,在上表面A积聚电子,则qvB=qE,
E=Bv,电势差U=Eh=Bhv.又I=nqSv
导体的横截面积S=hd
得v=
所以U=Bhv=
k=,称霍尔系数.
重点难点突破
一、解决复合场类问题的基本思路
1.正确的受力分析.除重力、弹力、摩擦力外,要特别注意电场力和磁场力的分析.
2.正确分析物体的运动状态.找出物体的速度、位置及其变化特点,分析运动过程,如果出现临界状态,要分析临界条件.
3.恰当灵活地运用动力学三大方法解决问题.
(1)用动力学观点分析,包括牛顿运动定律与运动学公式.
(2)用动量观点分析,包括动量定理与动量守恒定律.
(3)用能量观点分析,包括动能定理和机械能(或能量)守恒定律.针对不同的问题灵活地选用,但必须弄清各种规律的成立条件与适用范围.
二、复合场类问题中重力考虑与否分三种情况
1.对于微观粒子,如电子、质子、离子等一般不做特殊交待就可以不计其重力,因为其重力一般情况下与电场力或磁场力相比太小,可以忽略;而对于一些实际物体,如带电小球、液滴、金属块等不做特殊交待时就应考虑其重力.
2.在题目中有明确交待是否要考虑重力的,这种情况比较正规,也比较简单.
3.直接看不出是否要考虑重力的,在进行受力分析与运动分析时,要由分析结果,先进行定性确定是否要考虑重力.
典例精析
1.带电粒子在复合场中做直线运动的处理方法
【例1】如图所示,足够长的光滑绝缘斜面与水平面间的夹角为α(sinα=0.6),放在水平方向的匀强电场和匀强磁场中,电场强度E=50V/m,方向水平向左,磁场方向垂直纸面向外.一个电荷量q=+4.0×10-2C、质量m=0.40kg的光滑小球,以初速度v0=20m/s从斜面底端向上滑,然后又下滑,共经过3s脱离斜面.求磁场的磁感应强度(g取10m/s2).
【解析】小球沿斜面向上运动的过程中受力分析如图所示.
由牛顿第二定律,得qEcosα+mgsinα=ma1,故a1=gsinα+=10×0.6m/s2+m/s2=10m/s2,向上运动时间t1==2s
小球在下滑过程中的受力分析如图所示.
小球在离开斜面前做匀加速直线运动,a2=10m/s2
运动时间t2=t-t1=1s
脱离斜面时的速度v=a2t2=10m/s
在垂直于斜面方向上有:
qvB+qEsinα=mgcosα
故B==5T
【思维提升】(1)知道洛伦兹力是变力,其大小随速度变化而变化,其方向随运动方向的反向而反向.能从运动过程及受力分析入手,分析可能存在的最大速度、最大加速度、最大位移等.(2)明确小球脱离斜面的条件是FN=0.
【拓展1】如图所示,套在足够长的绝缘粗糙直棒上的带正电小球,其质量为m,带电荷量为q,小球可在棒上滑动,现将此棒竖直放入沿水平方向且互相垂直的匀强磁场和匀强电场中.设小球电荷量不变,小球由静止下滑的过程中(BD)
A.小球加速度一直增大B.小球速度一直增大,直到最后匀速
C.杆对小球的弹力一直减小D.小球所受洛伦兹力一直增大,直到最后不变
【解析】小球由静止加速下滑,f洛=Bqv在不断增大,开始一段,如图(a):f洛F电,水平方向有f洛+FN=F电,加速度a=,其中f=μFN,随着速度的增大,f洛增大,FN减小,加速度也增大,当f洛=F电时,a达到最大;以后如图(b):f洛F电,水平方向有f洛=F电+FN,随着速度的增大,FN也增大,f也增大,a=减小,当f=mg时,a=0,此后做匀速运动,故a先增大后减小,A错,B对,弹力先减小后增大,C错,由f洛=Bqv知D对.
2.灵活运用动力学方法解决带电粒子在复合场中的运动问题
【例2】如图所示,水平放置的M、N两金属板之间,有水平向里的匀强磁场,磁感应强度B=0.5T.质量为m1=9.995×10-7kg、电荷量为q=-1.0×10-8C的带电微粒,静止在N板附近.在M、N两板间突然加上电压(M板电势高于N板电势)时,微粒开始运动,经一段时间后,该微粒水平匀速地碰撞原来静止的质量为m2的中性微粒,并粘合在一起,然后共同沿一段圆弧做匀速圆周运动,最终落在N板上.若两板间的电场强度E=1.0×103V/m,求:
(1)两微粒碰撞前,质量为m1的微粒的速度大小;
(2)被碰撞微粒的质量m2;
(3)两微粒粘合后沿圆弧运动的轨道半径.
【解析】(1)碰撞前,质量为m1的微粒已沿水平方向做匀速运动,根据平衡条件有
m1g+qvB=qE
解得碰撞前质量m1的微粒的速度大小为
v=m/s=1m/s
(2)由于两微粒碰撞后一起做匀速圆周运动,说明两微粒所受的电场力与它们的重力相平衡,洛伦兹力提供做匀速圆周运动的向心力,故有(m1+m2)g=qE
解得m2==kg=5×10-10kg
(3)设两微粒一起做匀速圆周运动的速度大小为v′,轨道半径为R,根据牛顿第二定律有qv′B=(m1+m2)
研究两微粒的碰撞过程,根据动量守恒定律有m1v=(m1+m2)v′
以上两式联立解得
R=m≈200m
【思维提升】(1)全面正确地进行受力分析和运动状态分析,f洛随速度的变化而变化导致运动状态发生新的变化.
(2)若mg、f洛、F电三力合力为零,粒子做匀速直线运动.
(3)若F电与重力平衡,则f洛提供向心力,粒子做匀速圆周运动.
(4)根据受力特点与运动特点,选择牛顿第二定律、动量定理、动能定理及动量守恒定律列方程求解.
【拓展2】如图所示,在相互垂直的匀强磁场和匀强电场中,有一倾角为θ的足够长的光滑绝缘斜面.磁感应强度为B,方向水平向外;电场强度为E,方向竖直向上.有一质量为m、带电荷量为+q的小滑块静止在斜面顶端时对斜面的正压力恰好为零.
(1)如果迅速把电场方向转为竖直向下,求小滑块能在斜面上连续滑行的最远距离L和所用时间t;
(2)如果在距A端L/4处的C点放入一个质量与滑块相同但不带电的小物体,当滑块从A点静止下滑到C点时两物体相碰并黏在一起.求此黏合体在斜面上还能再滑行多长时间和距离?
【解析】(1)由题意知qE=mg
场强转为竖直向下时,设滑块要离开斜面时的速度为v,由动能定理有
(mg+qE)Lsinθ=,即2mgLsinθ=
当滑块刚要离开斜面时由平衡条件有
qvB=(mg+qE)cosθ,即v=
由以上两式解得L=
根据动量定理有t=
(2)两物体先后运动,设在C点处碰撞前滑块的速度为vC,则2mgsinθ=mv2
设碰后两物体速度为u,碰撞前后由动量守恒有mvC=2mu
设黏合体将要离开斜面时的速度为v′,由平衡条件有
qv′B=(2mg+qE)cosθ=3mgcosθ
由动能定理知,碰后两物体共同下滑的过程中有
3mgsinθs=2mv′2-2mu2
联立以上几式解得s=
将L结果代入上式得s=
碰后两物体在斜面上还能滑行的时间可由动量定理求得t′=cotθ
【例3】在平面直角坐标系xOy中,第Ⅰ象限存在沿y轴负方向的匀强电场,第Ⅳ象限存在垂直于坐标平面向外的匀强磁场,磁感应强度为B.一质量为m、电荷量为q的带正电粒子从y轴正半轴上的M点以速度v0垂直于y轴射入电场,经x轴上的N点与x轴正方向成θ=60°角射入磁场,最后从y轴负半轴上的P点垂直于y轴射出磁场,如图所示.不计重力,求:
(1)M、N两点间的电势差UMN;
(2)粒子在磁场中运动的轨道半径r;
(3)粒子从M点运动到P点的总时间t.
【解析】(1)设粒子过N点时的速度为v,有=cosθ①
v=2v0②
粒子从M点运动到N点的过程,有qUMN=③
UMN=3mv/2q④
(2)粒子在磁场中以O′为圆心做匀速圆周运动,半径为O′N,有
qvB=⑤
r=⑥
(3)由几何关系得ON=rsinθ⑦
设粒子在电场中运动的时间为t1,有ON=v0t1⑧
t1=⑨
粒子在磁场中做匀速圆周运动的周期T=⑩
设粒子在磁场中运动的时间为t2,有t2=T
t2=
t=t1+t2=
【思维提升】注重受力分析,尤其是运动过程分析以及圆心的确定,画好示意图,根据运动学规律及动能观点求解.
【拓展3】如图所示,真空室内存在宽度为s=8cm的匀强磁场区域,磁感应强度B=0.332T,磁场方向垂直于纸面向里.紧靠边界ab放一点状α粒子放射源S,可沿纸面向各个方向放射速率相同的α粒子.α粒子质量为m=6.64×10-27kg,电荷量为q=+3.2×10-19C,速率为v=3.2×106m/s.磁场边界ab、cd足够长,cd为厚度不计的金箔,金箔右侧cd与MN之间有一宽度为L=12.8cm的无场区域.MN右侧为固定在O点的电荷量为Q=-2.0×10-6C的点电荷形成的电场区域(点电荷左侧的电场分布以MN为边界).不计α粒子的重力,静电力常量k=9.0×109Nm2/C2,(取sin37°=0.6,cos37°=0.8)求:
(1)金箔cd被α粒子射中区域的长度y;
(2)打在金箔d端离cd中心最远的粒子沿直线穿出金箔,经过无场区进入电场就开始以O点为圆心做匀速圆周运动,垂直打在放置于中心线上的荧光屏FH上的E点(未画出),计算OE的长度;
(3)计算此α粒子从金箔上穿出时损失的动能.
【解析】(1)粒子在匀强磁场中做匀速圆周运动,洛伦兹力提供向心力,有qvB=m,得R==0.2m
如图所示,当α粒子运动的圆轨迹与cd相切时,上端偏离O′最远,由几何关系得O′P==0.16m
当α粒子沿Sb方向射入时,下端偏离O′最远,由几何关系得O′Q==0.16m
故金箔cd被α粒子射中区域的长度为
y=O′Q+O′P=0.32m
(2)如上图所示,OE即为α粒子绕O点做圆周运动的半径r.α粒子在无场区域做匀速直线运动与MN相交,下偏距离为y′,则
tan37°=,y′=Ltan37°=0.096m
所以,圆周运动的半径为r==0.32m
(3)设α粒子穿出金箔时的速度为v′,由牛顿第二定律有k
α粒子从金箔上穿出时损失的动能为
ΔEk=mv2-mv′2=2.5×10-14J
易错门诊
3.带电体在变力作用下的运动
【例4】竖直的平行金属平板A、B相距为d,板长为L,板间的电压为U,垂直于纸面向里、磁感应强度为B的磁场只分布在两板之间,如图所示.带电荷量为+q、质量为m的油滴从正上方下落并在两板中央进入板内空间.已知刚进入时电场力大小等于磁场力大小,最后油滴从板的下端点离开,求油滴离开场区时速度的大小.
【错解】由题设条件有Bqv=qE=q,v=;油滴离开场区时,水平方向有Bqv+qE=ma,v=2a
竖直方向有v=v2+2gL
离开时的速度v′=
【错因】洛伦兹力会随速度的改变而改变,对全程而言,带电体是在变力作用下的一个较为复杂的运动,对这样的运动不能用牛顿第二定律求解,只能用其他方法求解.
【正解】由动能定理有mgL+qEmv2
由题设条件油滴进入磁场区域时有Bqv=qE,E=U/d
由此可以得到离开磁场区域时的速度v′=
【思维提升】解题时应该注意物理过程和物理情景的把握,时刻注意情况的变化,然后结合物理过程中的受力特点和运动特点,利用适当的解题规律解决问题,遇到变力问题,特别要注意与能量有关规律的运用.

高三物理教案:《带电粒子在复合场中的运动》教学设计


教案课件是每个老师工作中上课需要准备的东西,是认真规划好自己教案课件的时候了。此时就可以对教案课件的工作做个简单的计划,新的工作才会如鱼得水!适合教案课件的范文有多少呢?小编特地为大家精心收集和整理了“高三物理教案:《带电粒子在复合场中的运动》教学设计”,供您参考,希望能够帮助到大家。

一、带点粒子在复合场中的运动本质是力学问题

1、带电粒子在电场、磁场和重力场等共存的复合场中的运动,其受力情况和运动图景都比较复杂,但其本质是力学问题,应按力学的基本思路,运用力学的基本规律研究和解决此类问题。

2、分析带电粒子在复合场中的受力时,要注意各力的特点。如带电粒子无论运动与否,在重力场中所受重力及在匀强电场中所受的电场力均为恒力,它们的做功只与始末位置在重力场中的高度差或在电场中的电势差有关,而与运动路径无关。而带电粒子在磁场中只有运动 (且速度不与磁场平行)时才会受到洛仑兹力,力的大小随速度大小而变,方向始终与速度垂直,故洛仑兹力对运动电荷不做功.

二、带电微粒在重力、电场力、磁场力共同作用下的运动(电场、磁场均为匀强场)

1、带电微粒在三个场共同作用下做匀速圆周运动:必然是电场力和重力平衡,而洛伦兹力充当向心力.

2、带电微粒在三个场共同作用下做直线运动:重力和电场力是恒力,它们的合力也是恒力。

当带电微粒的速度平行于磁场时,不受洛伦兹力,因此可能做匀速运动也可能做匀变速运动;

当带电微粒的速度垂直于磁场时,一定做匀速运动。

3、与力学紧密结合的综合题,要认真分析受力情况和运动情况(包括速度和加速度)。必要时加以讨论。

三、带电粒子在重力场、匀强电场、匀强磁场的复合场中的运动的基本模型有:

1、匀速直线运动。自由的带点粒子在复合场中作的直线运动通常都是匀速直线运动,除非粒子沿磁场方向飞入不受洛仑兹力作用。因为重力、电场力均为恒力,若两者的合力不能与洛仑兹力平衡,则带点粒子速度的大小和方向将会改变,不能维持直线运动了。

2、匀速圆周运动。自由的带电粒子在复合场中作匀速圆周运动时,必定满足电场力和重力平衡,则当粒子速度方向与磁场方向垂直时,洛仑兹力提供向心力,使带电粒子作匀速圆周运动。

3、较复杂的曲线运动。在复合场中,若带电粒子所受合外力不断变化且与粒子速度不在一直线上时,带电粒子作非匀变速曲线运动。此类问题,通常用能量观点分析解决,带电粒子在复合场中若有轨道约束,或匀强电场或匀速磁场随时间发生周期性变化等原因,使粒子的运动更复杂,则应视具体情况进行分析。

正确分析带电粒子在复合场中的受力并判断其运动的性质及轨迹是解题的关键,在分析其受力及描述其轨迹时,要有较强的空间想象能力并善于把空间图形转化为最佳平面视图。当带电粒子在电磁场中作多过程运动时,关键是掌握基本运动的特点和寻找过程的边界条件.

第3讲专题带电粒子在磁场中运动问题特例


一名优秀负责的教师就要对每一位学生尽职尽责,作为教师就要精心准备好合适的教案。教案可以让讲的知识能够轻松被学生吸收,帮助教师掌握上课时的教学节奏。那么如何写好我们的教案呢?小编收集并整理了“第3讲专题带电粒子在磁场中运动问题特例”,欢迎阅读,希望您能阅读并收藏。

第3讲专题带电粒子在磁场中运动问题特例

图8-3-8

1.如图8-3-8所示,ABC为与匀强磁场垂直的边长为a的等边三角形,磁场垂直纸面向外,比荷为e/m的电子以速度v0从A点沿AB方向射入,现欲使电子能经过BC边,则磁感应强度B的取值应为()

A.B3mv0aeB.B2mv0aeC.B3mv0aeD.B2mv0ae

解析:当电子从C点离开时,电子做圆周运动对应的轨道半径最小,有Ra2cos30°=a3,而R=mv0eB,所以B3mv0ae,C项正确.

答案:C

图8-3-9

2.在xOy平面内有许多电子(质量为m,电荷量为e)从坐标原点O不断以相同大小的速度v0沿不同的方向射入第一象限,如图8-3-9所示.现加上一个垂直于xOy平面向里的磁感应强度为B的匀强磁场,要求这些电子穿过该磁场后都能平行于x轴向x轴正方向运动,试求出符合条件的磁场的最小面积.

解析:所有电子在所求的匀强磁场中均做匀速圆周运动,由ev0B=mv20R,得半径为R=mv0eB.

设与x轴正向成α角入射的电子从坐标为(x,y)的P点射出磁场,

则有x2+(R-y)2=R2①

①式即为电子离开磁场的下边界b的表达式,当α=90°时,电子的运动轨迹为磁场的上边界a,其表达式为:(R-x)2+y2=R2②

由①②式所确定的面积就是磁场的最小范围,如图所示,其面积为

S=2πR24-R22=π-22mv0eB2.

答案:π-22mv0eB2

图8-3-10

3.(2009全国Ⅰ,21)如图8-3-10所示,在x轴下方有匀强磁场,磁感应强度大小为B,方向垂直于xOy平面向外.P是y轴上距原点为h的一点,N0为x轴上距原点为a的一点.A是一块平行于x轴的挡板,与x轴的距离为h2,A的中点在y轴上,长度略小于a2.带电粒子与挡板碰撞前后,x方向的分速度不变,y方向的分速度反向、大小不变.质量为m,电荷量为q(q0)的粒子从P点瞄准N0点入射,最后又通过P点.不计重力.求粒子入射速度的所有可能值.

解析:设粒子的入射速度为v,第一次射出磁场的点为N0′,与板碰撞后再次进入磁场的位置为N1.粒子在磁场中运动的半径为R,有R=mvqB①

粒子速率不变,每次进入磁场与射出磁场位置间距离x1保持不变

x1=N0′N0=2Rsinθ②

粒子射出磁场与下一次进入磁场位置间的距离x2始终不变,与N0′N1相等.由图可以看出

x2=a③

设粒子最终离开磁场时,与挡板相碰n次(n=0,1,2,…).若粒子能回到P点,由对称性,出射点的x坐标应为-a,即(n+1)x1-nx2=2a④

由③④式得x1=n+2n+1a⑤

若粒子与挡板发生碰撞,有x1-x2a4⑥

联立③④⑥式得n3⑦

联立①②⑤式得v=qB2msinθn+2n+1a⑧

式中sinθ=ha2+h2,代入⑧式得v0=qBaa2+h2mh,n=0⑨

v1=3qBaa2+h24mh,n=1⑩

v2=2qBaa2+h23mh,n=2.

答案:qBaa2+h2mh3qBaa2+h24mh2qBaa2+h23mh

20xx高考物理重要考点整理:带电粒子在复合场中的运动


20xx高考物理重要考点整理:带电粒子在复合场中的运动

考点34带电粒子在复合场中的运动
考点名片
考点细研究:(1)带电粒子在复合场中的运动;(2)质谱仪和回旋加速器等。其中考查到的如:20xx年全国卷第15题、20xx年天津高考第11题、20xx年浙江高考第25题、20xx年江苏高考第15题、20xx年重庆高考第9题、20xx年福建高考第22题、20xx年天津高考第12题、20xx年山东高考第24题、20xx年浙江高考第25题、20xx年江苏高考第15题、20xx年四川高考第10题、20xx年大纲卷第25题、20xx年重庆高考第9题等。
备考正能量:本部分内容综合性较强,经常以压轴题的形式出现。试题综合考查力与运动以及运用数学解决物理问题的能力,尤其是对高新科技仪器物理原理的考查,对考生物理建模及信息迁移的能力要求较高。今后本部分知识仍为出题的热点和难点,需要着重关注带电粒子在电磁交变场中的运动。

一、基础与经典
1.如图所示,某空间存在正交的匀强电场和匀强磁场,电场方向水平向右,磁场方向垂直纸面向里,一带电微粒由a点进入电磁场并刚好沿虚线ab向上运动。下列说法中正确的是()

A.该微粒一定带负电
B.该微粒的动能一定减少
C.该微粒的电势能一定增加
D.该微粒的机械能不一定增加
答案A
解析微粒受到的重力和电场力是恒力,沿直线运动,则可以判断出微粒受到的洛伦兹力也是恒定的,即该微粒做匀速直线运动,所以B错误;如果该微粒带正电,则受到向右的电场力和向左下方的洛伦兹力,所以不会沿直线运动,故该微粒一定带负电,电场力做正功,电势能一定减少,机械能增加,A正确,C、D错误。
2.质量为m的带电小球在正交的匀强电场、匀强磁场中做匀速圆周运动,轨道平面在竖直平面内,电场方向竖直向下,磁场方向垂直圆周所在平面向里,如图所示,由此可知()

A.小球带正电,沿顺时针方向运动
B.小球带负电,沿顺时针方向运动
C.小球带正电,沿逆时针方向运动
D.小球带负电,沿逆时针方向运动
答案B
解析根据题意,可知小球受到的电场力方向向上,大小等于重力,又电场方向竖直向下,可知小球带负电;已知磁场方向垂直圆周所在平面向里,带负电的小球受到的洛伦兹力指向圆心,小球一定沿顺时针方向运动。B正确。
3.如图,在两水平极板间存在匀强电场和匀强磁场,电场方向竖直向下,磁场方向垂直于纸面向里。一带电粒子以某一速度沿水平直线通过两极板。若不计重力,下列四个物理量中哪一个改变时,粒子运动轨迹不会改变()

A.粒子速度的大小B.粒子所带的电荷量
C.电场强度D.磁感应强度
答案B
解析粒子受到电场力和洛伦兹力作用而平衡,即qE=qvB,所以只要当粒子速度v=时,粒子运动轨迹就是一条直线,与粒子所带的电荷量q无关,选项B正确;当粒子速度的大小、电场强度、磁感应强度三个量中任何一个改变时,运动轨迹都会改变,选项A、C、D不符合题意。
4.如图所示,无磁场时,一带负电滑块以一定初速度冲上绝缘粗糙斜面,滑块刚好能到达A点。若加上一个垂直纸面向里的匀强磁场,则滑块以相同初速度冲上斜面时,下列说法正确的是()

A.刚好能滑到A点
B.能冲过A点
C.不能滑到A点
D.因不知磁感应强度大小,所以不能确定能否滑到A点
答案C
解析滑块冲上斜面时,由左手定则可知滑块受到垂直斜面向下的洛伦兹力作用,滑块对斜面的正压力增大,斜面对滑块的滑动摩擦力增大,所以滑块不能滑到A点,选项C正确。

5.质量为m,带电荷量为+q的小球套在水平固定且足够长的绝缘杆上,如图所示,整个装置处于磁感应强度为B,方向垂直纸面向里的匀强磁场中,现给球一个水平向右的初速度v0使其开始运动,不计空气阻力,则球运动克服摩擦力做的功不可能的是()
A.mvB.0
C.mvD.
答案C
解析(1)当qv0B=mg时,圆环不受支持力和摩擦力,摩擦力做功为零。
(2)当qv0Bmg时,圆环先做减速运动,当qvB=mg,即当qvB=mg,v=时,不受摩擦力,做匀速直线运动。根据动能定理得:-W=mv2-mv,代入解得:W=m。所以只有选项C不可能。
6.(多选)质谱仪的构造原理如图所示。从粒子源S出来时的粒子速度很小,可以看作初速为零,粒子经过电场加速后进入有界的垂直纸面向里的匀强磁场区域,并沿着半圆周运动而达到照相底片上的P点,测得P点到入口的距离为x,则以下说法正确的是()

A.粒子一定带正电
B.粒子一定带负电
C.x越大,则粒子的质量与电量之比一定越大
D.x越大,则粒子的质量与电量之比一定越小
答案AC
解析根据左手定则,知粒子带正电,故A正确,B错误;根据半径公式r=知,x=2r=,又qU=mv2,联立解得x=,知x越大,质量与电量的比值越大,故C正确,D错误。
7.(多选)如图所示,长均为d的两正对平行金属板MN、PQ水平放置,板间距离为2d,板间有正交的匀强电场和匀强磁场,一带电粒子从MP的中点O垂直于电场和磁场方向以v0射入,恰沿直线从NQ的中点A射出;若撤去电场,则粒子从M点射出(粒子重力不计)。以下说法正确的是()

A.该粒子带正电
B.该粒子带正电、负电均可
C.若撤去磁场,则粒子射出时的速度大小为2v0
D.若撤去磁场,则粒子射出时的速度大小为v0
答案AD
解析若撤去电场,则粒子从M点射出,根据左手定则知粒子应带正电荷,故A正确,B错误;设粒子的质量为m,带电荷量为q,粒子射入电磁场时的速度为v0,则粒子沿直线通过场区时:Bqv0=Eq。撤去电场后,在洛伦兹力的作用下,粒子做圆周运动,由几何知识知r=,由洛伦兹力提供向心力得,qv0B=m=。撤去磁场,粒子做类平抛运动,设粒子的加速度为a,穿越电场所用时间为t,则有:Eq=ma,y=at2,d=v0t,联立解得:y=d。设末速度为v,由动能定理得,qEd=mv2-mv,解得:v=v0,故C错误,D正确。
8.(多选)粒子回旋加速器的工作原理如图甲、乙所示,置于真空中的D形金属盒的半径为R,两金属盒间的狭缝很小,磁感应强度为B的匀强磁场与金属盒盒面垂直,高频交流电的频率为f,加速电压为U,若中心粒子源处产生的质子质量为m,电荷量为+e,在加速器中被加速。不考虑相对论效应,则下列说法正确的是()

A.不改变磁感应强度B和交流电的频率f,该加速器也可以加速α粒子
B.加速的粒子获得的最大动能随加速电压U增大而增大
C.质子被加速后的最大速度不能超过2πRf
D.质子第二次和第一次经过D形盒间狭缝后轨道半径之比为1
答案CD
解析质子被加速后获得的最大速度受到D形盒最大半径制约,vm=2πR/T=2πRf,C正确;粒子旋转频率为f=Bq/2πm,与被加速粒子的比荷有关,所以A错误;粒子被加速的最大动能Ekm=mv=2mπ2R2f2,与电压U无关,B错误;由运动半径R=mv/Bq,nUq=mv2/2知半径之比为1,D正确。
9.(多选)如图所示,一块长度为a、宽度为b、厚度为d的金属导体,当加有与侧面垂直的匀强磁场B,且通以图示方向的电流I时,用电压表测得导体上、下表面M、N间电压为U,已知自由电子的电量为e。下列说法中正确的是()

A.导体的M面比N面电势高
B.导体单位体积内自由电子数越多,电压表的示数越大
C.导体中自由电子定向移动的速度为v=
D.导体单位体积内的自由电子数为
答案CD
解析由于自由电子带负电,根据左手定则可知,M板电势比N板电势低,选项A错误;当上、下表面电压稳定时,有q=qvB,得U=Bdv,与单位体积内自由电子数无关,选项B错误,C正确;再根据I=neSv,可知选项D正确。
二、真题与模拟
10.20xx·全国卷]现代质谱仪可用来分析比质子重很多倍的离子,其示意图如图所示,其中加速电压恒定。质子在入口处从静止开始被加速电场加速,经匀强磁场偏转后从出口离开磁场。若某种一价正离子在入口处从静止开始被同一加速电场加速,为使它经匀强磁场偏转后仍从同一出口离开磁场,需将磁感应强度增加到原来的12倍。此离子和质子的质量比约为()

A.11B.12C.121D.144
答案D
解析设质子和离子的质量分别为m1和m2,原磁感应强度为B1,改变后的磁感应强度为B2。在加速电场中qU=mv2,在磁场中qvB=m,联立两式得m=,故有==144,选项D正确。
11.20xx·山东高考](多选)如图甲所示,两水平金属板间距为d,板间电场强度的变化规律如图乙所示。t=0时刻,质量为m的带电微粒以初速度v0沿中线射入两板间,0~时间内微粒匀速运动,T时刻微粒恰好经金属板边缘飞出。微粒运动过程中未与金属板接触。重力加速度的大小为g。关于微粒在0~T时间内运动的描述,正确的是()

A.末速度大小为v0B.末速度沿水平方向
C.重力势能减少了mgdD.克服电场力做功为mgd
答案BC
解析0~微粒做匀速直线运动,则E0q=mg。~没有电场作用,微粒做平抛运动,竖直方向上a=g。~T,由于电场作用,F=2E0q-mg=mg=ma′,a′=g,方向竖直向上。由于两段时间相等,故到达金属板边缘时,微粒速度为v0,方向水平,选项A错误,选项B正确;从微粒进入金属板间到离开,重力做功mg,重力势能减少mgd,选项C正确;由动能定理知WG-W电=0,W电=mgd,选项D错误。
12.20xx·江苏高考](多选)如图所示,导电物质为电子的霍尔元件位于两串联线圈之间,线圈中电流为I,线圈间产生匀强磁场,磁感应强度大小B与I成正比,方向垂直于霍尔元件的两侧面,此时通过霍尔元件的电流为IH,与其前后表面相连的电压表测出的霍尔电压UH满足:UH=k,式中k为霍尔系数,d为霍尔元件两侧面间的距离。电阻R远大于RL,霍尔元件的电阻可以忽略,则()

A.霍尔元件前表面的电势低于后表面
B.若电源的正负极对调,电压表将反偏
C.IH与I成正比
D.电压表的示数与RL消耗的电功率成正比
答案CD
解析根据霍尔元件中的电流方向及左手定则判断,霍尔元件中电子受到的洛伦兹力指向后侧面,因此后侧面带负电,电势低,A错误。若电源正负极对调,磁场方向反向,电流方向反向,根据左手定则判断,霍尔元件定向移动的电子受到的洛伦兹力的方向不变,霍尔元件前后面的电势高低不变,电压表的指针不会发生反偏,B错误。霍尔元件与R串联再与RL并联,由于霍尔元件的电阻不计,因此IHR=(I-IH)RL,得IH=·I,C正确。R远大于RL,因此RL中的电流近似等于I,因此RL消耗的功率P=I2RL,霍尔电压UH=k,B与I成正比,IH与I成正比,因此UHI2,可见P与霍尔电压(即电压表示数)成正比,D正确。
13.20xx·河北百校联考](多选)在半导体离子注入工艺中,初速度可忽略的磷离子P+和P3+,经电压为U的电场加速后,垂直进入磁感应强度大小为B、方向垂直纸面向里、有一定宽度的匀强磁场区域,如图所示。已知离子P+在磁场中转过θ=30°后从磁场右边界射出。在电场和磁场中运动时,离子P+和P3+()

A.在电场中的加速度之比为1∶1
B.在磁场中运动的半径之比为∶1
C.在磁场中转过的角度之比为1∶2
D.离开电场区域时的动能之比为1∶3
答案BCD
解析两离子所带电荷量之比为13,在电场中时由qE=ma知aq,故加速度之比为13,A错误;离开电场区域时的动能由Ek=qU知Ekq,故D正确;在磁场中运动的半径由Bqv=m、Ek=mv2知R=,故B正确;设磁场区域的宽度为d,则有sinθ=,即=,故θ′=60°=2θ,C正确。
14.20xx·武汉摸底](多选)图甲是回旋加速器的工作原理图。D1和D2是两个中空的半圆金属盒,它们之间有一定的电势差,A处的粒子源产生的带电粒子,在两盒之间被电场加速。两半圆盒处于与盒面垂直的匀强磁场中,所以粒子在半圆盒中做匀速圆周运动。若带电粒子在磁场中运动的动能Ek随时间t的变化规律如图乙所示,不计带电粒子在电场中的加速时间,不考虑由相对论效应带来的影响,下列判断正确的是()

A.在Ekt图中应该有tn+1-tn=tn-tn-1
B.在Ekt图中应该有tn+1-tnh2,所以D错误。第4个图:因小球电性不知,则电场力方向不清,则高度可能大于h1,也可能小于h1,故C正确,B错误。
17.20xx·怀化二模](多选)磁流体发电机可以把气体的内能直接转化为电能,是一种低碳环保发电机,有着广泛的发展前景,其发电原理示意图如图所示。将一束等离子体(即高温下电离的气体,含有大量带正电和负电的微粒,整体上呈电中性)喷射入磁感应强度为B的匀强磁场中,磁场区域有两块面积为S、相距为d的平行金属板与外电阻R相连构成一电路,设气流的速度为v,气体的电导率(电阻率的倒数)为g。则以下说法正确的是()

A.上板是电源的正极,下板是电源的负极
B.两板间电势差为U=Bdv
C.流经R的电流为I=
D.流经R的电流为I=
答案AD
解析等离子体射入匀强磁场,由左手定则,正粒子向上偏转,负粒子向下偏转,产生竖直向下的电场,正离子受向下的电场力和向上的洛伦兹力,当电场力和洛伦兹力平衡时,电场最强,即Eq=Bqv,E=Bv,两板间的电动势为Bvd,则通过R的电流为I=,两极板间电势差为:U=IR=;作为电源对外供电时,I=而R气=,二式结合,I=。故A、D正确。
18.20xx·浙江三校模拟](多选)如图所示,空间中存在正交的匀强电场E和匀强磁场B(匀强电场水平向右),在竖直平面内从a点沿ab、ac方向抛出两带电小球(不考虑两带电球的相互作用,两球电荷量始终不变),关于小球的运动,下列说法正确的是()

A.沿ab、ac方向抛出的带电小球都可能做直线运动
B.只有沿ab抛出的带电小球才可能做直线运动
C.若有小球能做直线运动,则它一定是匀速运动
D.两小球在运动过程中机械能均守恒
答案AC
解析沿ab方向抛出的带正电小球,或沿ac方向抛出的带负电的小球,在重力、电场力、洛伦兹力作用下,都可能做匀速直线运动,A正确,B错误。在重力、电场力、洛伦兹力三力都存在时的直线运动一定是匀速直线运动,C正确。两小球在运动过程中除重力做功外还有电场力做功,故机械能不守恒,D错误。
19.20xx·吉林模拟]如图所示,一带电塑料小球质量为m,用丝线悬挂于O点,并在竖直平面内摆动,最大摆角为60°,水平磁场垂直于小球摆动的平面。当小球自左方摆到最低点时,悬线上的张力恰为零,则小球自右方最大摆角处摆到最低点时悬线上的张力为()

A.0B.2mgC.4mgD.6mg
答案C
解析设小球自左方摆到最低点时速度为v,则mv2=mgL(1-cos60°),此时qvB-mg=m,当小球自右方摆到最低点时,v大小不变,洛伦兹力方向发生变化,FT-mg-qvB=m,得FT=4mg,故C正确。

一、基础与经典
20.如图所示,带电荷量为+q、质量为m的物块从倾角为θ=37°的光滑绝缘斜面顶端由静止开始下滑,磁感应强度为B的匀强磁场垂直纸面向外,求物块在斜面上滑行的最大速度和在斜面上运动的最大位移。(斜面足够长,取sin37°=0.6,cos37°=0.8)

答案vm=s=
解析经分析,物块沿斜面运动过程中加速度不变,但随速度增大,物块所受支持力逐渐减小,最后离开斜面。所以,当物块对斜面的压力刚好为零时,物块沿斜面的速度达到最大,同时位移达到最大,即qvmB=mgcosθ
物块沿斜面下滑过程中,由动能定理得:
mgssinθ=mv-0
由得:vm==。
s==。
21.如图所示,坐标系xOy在竖直平面内。x轴下方有匀强电场和匀强磁场,电场强度为E、方向竖直向下,磁感应强度为B、方向垂直纸面向里。将一个带电小球从y轴上P(0,h)点以初速度v0竖直向下抛出,小球穿过x轴后,恰好做匀速圆周运动。不计空气阻力,已知重力加速度为g。求:

(1)小球到达O点时速度的大小;
(2)小球做圆周运动的半径;
(3)小球从P点到第二次经过x轴所用的时间。
答案(1)(2)
(3)+
解析(1)设小球经过O点时的速度为v,从P到O
v2-v=2gh,解得v=。

(2)小球穿过x轴后恰好做匀速圆周运动,画出小球运动的轨迹示意图,如图所示,有qE=mg,
从O到A,根据牛顿第二定律
qvB=m,
求出r=。
(3)从P到O,小球第一次经过x轴,所用时间为t1,v=v0+gt1,从O到A,小球第二次经过x轴,所用时间为t2,T==,t2==,求出t=t1+t2=+。
二、真题与模拟
22.20xx·天津高考]如图所示,空间中存在着水平向右的匀强电场,电场强度大小E=5N/C,同时存在着水平方向的匀强磁场,其方向与电场方向垂直,磁感应强度大小B=0.5T。有一带正电的小球,质量m=1×10-6kg,电荷量q=2×10-6C,正以速度v在图示的竖直面内做匀速直线运动,当经过P点时撤掉磁场(不考虑磁场消失引起的电磁感应现象),取g=10m/s2,求:

(1)小球做匀速直线运动的速度v的大小和方向;
(2)从撤掉磁场到小球再次穿过P点所在的这条电场线经历的时间t。
答案(1)20m/s,与电场E夹角为60°(2)3.5s

解析(1)小球做匀速直线运动时受力如图,其所受的三个力在同一平面内,合力为零,有
qvB=
代入数据解得
v=20m/s
速度v的方向与电场E的方向之间的夹角θ满足
tanθ=
代入数据解得
tanθ=,θ=60°。
(2)解法一:撤去磁场,小球在重力与电场力的合力作用下做类平抛运动,设其加速度为a,有
a=
设撤掉磁场后小球在初速度方向上的分位移为x,有
x=vt
设小球的重力与电场力的合力方向上分位移为y,有
y=at2
a与mg的夹角和v与E的夹角相同,均为θ,又
tanθ=
联立式,代入数据解得
t=2s≈3.5s
解法二:撤去磁场后,由于电场力垂直于竖直方向,它对竖直方向的分运动没有影响,以P点为坐标原点,竖直向上为正方向,小球在竖直方向上做匀减速运动,其初速度vy=vsinθ
若使小球再次穿过P点所在的电场线,仅需小球的竖直方向上分位移为零,则有
vyt-gt2=0
联立式,代入数据解得t=2s≈3.5s。

23.20xx·浙江高考]为了进一步提高回旋加速器的能量,科学家建造了“扇形聚焦回旋加速器”。在扇形聚焦过程中,离子能以不变的速率在闭合平衡轨道上周期性旋转。扇形聚焦磁场分布的简化图如图所示,圆心为O的圆形区域等分成六个扇形区域,其中三个为峰区,三个为谷区,峰区和谷区相间分布。峰区内存在方向垂直纸面向里的匀强磁场,磁感应强度为B,谷区内没有磁场。质量为m、电荷量为q的正离子,以不变的速率v旋转,其闭合平衡轨道如图中虚线所示。
(1)求闭合平衡轨道在峰区内圆弧的半径r,并判断离子旋转的方向是顺时针还是逆时针;
(2)求轨道在一个峰区内圆弧的圆心角θ,及离子绕闭合平衡轨道旋转的周期T;
(3)在谷区也施加垂直纸面向里的匀强磁场,磁感应强度为B′,新的闭合平衡轨道在一个峰区内的圆心角θ变为90°,求B′和B的关系。已知:sin(α±β)=sinαcosβ±cosαsinβ,cosα=1-2sin2。
答案(1)逆时针方向(2)(3)B′=B
解析(1)峰区内圆弧半径r=,
旋转方向为逆时针方向。
(2)由对称性,峰区内圆弧的圆心角θ=,
每个圆弧的长度l==,
每段直线长度L=2rcos=r=,
周期T=,
代入得T=。

(3)谷区内的圆心角θ′=120°-90°=30°,
谷区内的轨道圆弧半径r′=,
由几何关系rsin=r′sin,
由三角关系sin=sin15°=,
代入得B′=B。