88教案网

你的位置: 教案 > 高中教案 > 导航 > 高考物理基础知识归纳:带电粒子在复合场中的运动

高中地球的运动教案

发表时间:2021-02-18

高考物理基础知识归纳:带电粒子在复合场中的运动。

作为杰出的教学工作者,能够保证教课的顺利开展,作为高中教师就要根据教学内容制定合适的教案。教案可以让讲的知识能够轻松被学生吸收,帮助高中教师提前熟悉所教学的内容。你知道怎么写具体的高中教案内容吗?小编经过搜集和处理,为您提供高考物理基础知识归纳:带电粒子在复合场中的运动,相信您能找到对自己有用的内容。

第4课时带电粒子在复合场中的运动

基础知识归纳
1.复合场
复合场是指电场、磁场和重力场并存,或其中两场并存,或分区域存在,分析方法和力学问题的分析方法基本相同,不同之处是多了电场力和磁场力,分析方法除了力学三大观点(动力学、动量、能量)外,还应注意:
(1)洛伦兹力永不做功.
(2)重力和电场力做功与路径无关,只由初末位置决定.还有因洛伦兹力随速度而变化,洛伦兹力的变化导致粒子所受合力变化,从而加速度变化,使粒子做变加速运动.
2.带电粒子在复合场中无约束情况下的运动性质
(1)当带电粒子所受合外力为零时,将做匀速直线运动或处于静止,合外力恒定且与初速度同向时做匀变速直线运动,常见情况有:
①洛伦兹力为零(v与B平行),重力与电场力平衡,做匀速直线运动,或重力与电场力合力恒定,做匀变速直线运动.
②洛伦兹力与速度垂直,且与重力和电场力的合力平衡,做匀速直线运动.
(2)当带电粒子所受合外力充当向心力,带电粒子做匀速圆周运动时,由于通常情况下,重力和电场力为恒力,故不能充当向心力,所以一般情况下是重力恰好与电场力相平衡,洛伦兹力充当向心力.
(3)当带电粒子所受合外力的大小、方向均不断变化时,粒子将做非匀变速的曲线运动.
3.带电粒子在复合场中有约束情况下的运动
带电粒子所受约束,通常有面、杆、绳、圆轨道等,常见的运动形式有直线运动和圆周运动,此类问题应注意分析洛伦兹力所起的作用.
4.带电粒子在交变场中的运动
带电粒子在不同场中的运动性质可能不同,可分别进行讨论.粒子在不同场中的运动的联系点是速度,因为速度不能突变,在前一个场中运动的末速度,就是后一个场中运动的初速度.
5.带电粒子在复合场中运动的实际应用
(1)质谱仪
①用途:质谱仪是一种测量带电粒子质量和分离同位素的仪器.
②原理:如图所示,离子源S产生质量为m,电荷量为q的正离子(重力不计),离子出来时速度很小(可忽略不计),经过电压为U的电场加速后进入磁感应强度为B的匀强磁场中做匀速圆周运动,经过半个周期而达到记录它的照相底片P上,测得它在P上的位置到入口处的距离为L,则
qU=mv2-0;qBv=m;L=2r
联立求解得m=,因此,只要知道q、B、L与U,就可计算出带电粒子的质量m,若q也未知,则
又因m∝L2,不同质量的同位素从不同处可得到分离,故质谱仪又是分离同位素的重要仪器.
(2)回旋加速器
①组成:两个D形盒、大型电磁铁、高频振荡交变电压,D型盒间可形成电压U.
②作用:加速微观带电粒子.
③原理:a.电场加速qU=ΔEk
b.磁场约束偏转qBv=m,r=∝v
c.加速条件,高频电源的周期与带电粒子在D形盒中运动的周期相同,即T电场=T回旋=
带电粒子在D形盒内沿螺旋线轨道逐渐趋于盒的边缘,达到预期的速率后,用特殊装置把它们引出.
④要点深化
a.将带电粒子在两盒狭缝之间的运动首尾相连起来可等效为一个初速度为零的匀加速直线运动.
b.带电粒子每经电场加速一次,回旋半径就增大一次,所以各回旋半径之比为1∶∶∶…
c.对于同一回旋加速器,其粒子回旋的最大半径是相同的.
d.若已知最大能量为Ekm,则回旋次数n=
e.最大动能:Ekm=
f.粒子在回旋加速器内的运动时间:t=
(3)速度选择器
①原理:如图所示,由于所受重力可忽略不计,运动方向相同而速率不同的正粒子组成的粒子束射入相互正交的匀强电场和匀强磁场所组成的场区中,已知电场强度为B,方向垂直于纸面向里,若粒子运动轨迹不发生偏转(重力不计),必须满足平衡条件:qBv=qE,故v=,这样就把满足v=的粒子从速度选择器中选择出来了.
②特点:a.速度选择器只选择速度(大小、方向)而不选择粒子的质量和电荷量,如上图中若从右侧入射则不能穿过场区.
b.速度选择器B、E、v三个物理量的大小、方向互相约束,以保证粒子受到的电场力和洛伦兹力等大、反向,如上图中只改变磁场B的方向,粒子将向下偏转.
c.v′v=时,则qBv′qE,粒子向上偏转;当v′v=时,qBv′qE,粒子向下偏转.
③要点深化
a.从力的角度看,电场力和洛伦兹力平衡qE=qvB;
b.从速度角度看,v=;
c.从功能角度看,洛伦兹力永不做功.
(4)电磁流量计
①如图所示,一圆形导管直径为d,用非磁性材料制成,其中有可以导电的液体流过导管.
②原理:导电液体中的自由电荷(正、负离子)在洛伦兹力作用下横向偏转,a、b间出现电势差,形成电场.当自由电荷所受电场力和洛伦兹力平衡时,a、b间的电势差就保持稳定.由Bqv=Eq=q,可得v=
液体流量Q=Sv==
(5)霍尔效应
如图所示,高为h、宽为d的导体置于匀强磁场B中,当电流通过导体时,在导体板的上表面A和下表面A′之间产生电势差,这种现象称为霍尔效应,此电压称为霍尔电压.
设霍尔导体中自由电荷(载流子)是自由电子.图中电流方向向右,则电子受洛伦兹力向上,在上表面A积聚电子,则qvB=qE,
E=Bv,电势差U=Eh=Bhv.又I=nqSv
导体的横截面积S=hd
得v=
所以U=Bhv=
k=,称霍尔系数.
重点难点突破
一、解决复合场类问题的基本思路
1.正确的受力分析.除重力、弹力、摩擦力外,要特别注意电场力和磁场力的分析.
2.正确分析物体的运动状态.找出物体的速度、位置及其变化特点,分析运动过程,如果出现临界状态,要分析临界条件.
3.恰当灵活地运用动力学三大方法解决问题.
(1)用动力学观点分析,包括牛顿运动定律与运动学公式.
(2)用动量观点分析,包括动量定理与动量守恒定律.
(3)用能量观点分析,包括动能定理和机械能(或能量)守恒定律.针对不同的问题灵活地选用,但必须弄清各种规律的成立条件与适用范围.
二、复合场类问题中重力考虑与否分三种情况
1.对于微观粒子,如电子、质子、离子等一般不做特殊交待就可以不计其重力,因为其重力一般情况下与电场力或磁场力相比太小,可以忽略;而对于一些实际物体,如带电小球、液滴、金属块等不做特殊交待时就应考虑其重力.
2.在题目中有明确交待是否要考虑重力的,这种情况比较正规,也比较简单.
3.直接看不出是否要考虑重力的,在进行受力分析与运动分析时,要由分析结果,先进行定性确定是否要考虑重力.
典例精析
1.带电粒子在复合场中做直线运动的处理方法
【例1】如图所示,足够长的光滑绝缘斜面与水平面间的夹角为α(sinα=0.6),放在水平方向的匀强电场和匀强磁场中,电场强度E=50V/m,方向水平向左,磁场方向垂直纸面向外.一个电荷量q=+4.0×10-2C、质量m=0.40kg的光滑小球,以初速度v0=20m/s从斜面底端向上滑,然后又下滑,共经过3s脱离斜面.求磁场的磁感应强度(g取10m/s2).
【解析】小球沿斜面向上运动的过程中受力分析如图所示.
由牛顿第二定律,得qEcosα+mgsinα=ma1,故a1=gsinα+=10×0.6m/s2+m/s2=10m/s2,向上运动时间t1==2s
小球在下滑过程中的受力分析如图所示.
小球在离开斜面前做匀加速直线运动,a2=10m/s2
运动时间t2=t-t1=1s
脱离斜面时的速度v=a2t2=10m/s
在垂直于斜面方向上有:
qvB+qEsinα=mgcosα
故B==5T
【思维提升】(1)知道洛伦兹力是变力,其大小随速度变化而变化,其方向随运动方向的反向而反向.能从运动过程及受力分析入手,分析可能存在的最大速度、最大加速度、最大位移等.(2)明确小球脱离斜面的条件是FN=0.
【拓展1】如图所示,套在足够长的绝缘粗糙直棒上的带正电小球,其质量为m,带电荷量为q,小球可在棒上滑动,现将此棒竖直放入沿水平方向且互相垂直的匀强磁场和匀强电场中.设小球电荷量不变,小球由静止下滑的过程中(BD)
A.小球加速度一直增大B.小球速度一直增大,直到最后匀速
C.杆对小球的弹力一直减小D.小球所受洛伦兹力一直增大,直到最后不变
【解析】小球由静止加速下滑,f洛=Bqv在不断增大,开始一段,如图(a):f洛F电,水平方向有f洛+FN=F电,加速度a=,其中f=μFN,随着速度的增大,f洛增大,FN减小,加速度也增大,当f洛=F电时,a达到最大;以后如图(b):f洛F电,水平方向有f洛=F电+FN,随着速度的增大,FN也增大,f也增大,a=减小,当f=mg时,a=0,此后做匀速运动,故a先增大后减小,A错,B对,弹力先减小后增大,C错,由f洛=Bqv知D对.
2.灵活运用动力学方法解决带电粒子在复合场中的运动问题
【例2】如图所示,水平放置的M、N两金属板之间,有水平向里的匀强磁场,磁感应强度B=0.5T.质量为m1=9.995×10-7kg、电荷量为q=-1.0×10-8C的带电微粒,静止在N板附近.在M、N两板间突然加上电压(M板电势高于N板电势)时,微粒开始运动,经一段时间后,该微粒水平匀速地碰撞原来静止的质量为m2的中性微粒,并粘合在一起,然后共同沿一段圆弧做匀速圆周运动,最终落在N板上.若两板间的电场强度E=1.0×103V/m,求:
(1)两微粒碰撞前,质量为m1的微粒的速度大小;
(2)被碰撞微粒的质量m2;
(3)两微粒粘合后沿圆弧运动的轨道半径.
【解析】(1)碰撞前,质量为m1的微粒已沿水平方向做匀速运动,根据平衡条件有
m1g+qvB=qE
解得碰撞前质量m1的微粒的速度大小为
v=m/s=1m/s
(2)由于两微粒碰撞后一起做匀速圆周运动,说明两微粒所受的电场力与它们的重力相平衡,洛伦兹力提供做匀速圆周运动的向心力,故有(m1+m2)g=qE
解得m2==kg=5×10-10kg
(3)设两微粒一起做匀速圆周运动的速度大小为v′,轨道半径为R,根据牛顿第二定律有qv′B=(m1+m2)
研究两微粒的碰撞过程,根据动量守恒定律有m1v=(m1+m2)v′
以上两式联立解得
R=m≈200m
【思维提升】(1)全面正确地进行受力分析和运动状态分析,f洛随速度的变化而变化导致运动状态发生新的变化.
(2)若mg、f洛、F电三力合力为零,粒子做匀速直线运动.
(3)若F电与重力平衡,则f洛提供向心力,粒子做匀速圆周运动.
(4)根据受力特点与运动特点,选择牛顿第二定律、动量定理、动能定理及动量守恒定律列方程求解.
【拓展2】如图所示,在相互垂直的匀强磁场和匀强电场中,有一倾角为θ的足够长的光滑绝缘斜面.磁感应强度为B,方向水平向外;电场强度为E,方向竖直向上.有一质量为m、带电荷量为+q的小滑块静止在斜面顶端时对斜面的正压力恰好为零.
(1)如果迅速把电场方向转为竖直向下,求小滑块能在斜面上连续滑行的最远距离L和所用时间t;
(2)如果在距A端L/4处的C点放入一个质量与滑块相同但不带电的小物体,当滑块从A点静止下滑到C点时两物体相碰并黏在一起.求此黏合体在斜面上还能再滑行多长时间和距离?
【解析】(1)由题意知qE=mg
场强转为竖直向下时,设滑块要离开斜面时的速度为v,由动能定理有
(mg+qE)Lsinθ=,即2mgLsinθ=
当滑块刚要离开斜面时由平衡条件有
qvB=(mg+qE)cosθ,即v=
由以上两式解得L=
根据动量定理有t=
(2)两物体先后运动,设在C点处碰撞前滑块的速度为vC,则2mgsinθ=mv2
设碰后两物体速度为u,碰撞前后由动量守恒有mvC=2mu
设黏合体将要离开斜面时的速度为v′,由平衡条件有
qv′B=(2mg+qE)cosθ=3mgcosθ
由动能定理知,碰后两物体共同下滑的过程中有
3mgsinθs=2mv′2-2mu2
联立以上几式解得s=
将L结果代入上式得s=
碰后两物体在斜面上还能滑行的时间可由动量定理求得t′=cotθ
【例3】在平面直角坐标系xOy中,第Ⅰ象限存在沿y轴负方向的匀强电场,第Ⅳ象限存在垂直于坐标平面向外的匀强磁场,磁感应强度为B.一质量为m、电荷量为q的带正电粒子从y轴正半轴上的M点以速度v0垂直于y轴射入电场,经x轴上的N点与x轴正方向成θ=60°角射入磁场,最后从y轴负半轴上的P点垂直于y轴射出磁场,如图所示.不计重力,求:
(1)M、N两点间的电势差UMN;
(2)粒子在磁场中运动的轨道半径r;
(3)粒子从M点运动到P点的总时间t.
【解析】(1)设粒子过N点时的速度为v,有=cosθ①
v=2v0②
粒子从M点运动到N点的过程,有qUMN=③
UMN=3mv/2q④
(2)粒子在磁场中以O′为圆心做匀速圆周运动,半径为O′N,有
qvB=⑤
r=⑥
(3)由几何关系得ON=rsinθ⑦
设粒子在电场中运动的时间为t1,有ON=v0t1⑧
t1=⑨
粒子在磁场中做匀速圆周运动的周期T=⑩
设粒子在磁场中运动的时间为t2,有t2=T
t2=
t=t1+t2=
【思维提升】注重受力分析,尤其是运动过程分析以及圆心的确定,画好示意图,根据运动学规律及动能观点求解.
【拓展3】如图所示,真空室内存在宽度为s=8cm的匀强磁场区域,磁感应强度B=0.332T,磁场方向垂直于纸面向里.紧靠边界ab放一点状α粒子放射源S,可沿纸面向各个方向放射速率相同的α粒子.α粒子质量为m=6.64×10-27kg,电荷量为q=+3.2×10-19C,速率为v=3.2×106m/s.磁场边界ab、cd足够长,cd为厚度不计的金箔,金箔右侧cd与MN之间有一宽度为L=12.8cm的无场区域.MN右侧为固定在O点的电荷量为Q=-2.0×10-6C的点电荷形成的电场区域(点电荷左侧的电场分布以MN为边界).不计α粒子的重力,静电力常量k=9.0×109Nm2/C2,(取sin37°=0.6,cos37°=0.8)求:
(1)金箔cd被α粒子射中区域的长度y;
(2)打在金箔d端离cd中心最远的粒子沿直线穿出金箔,经过无场区进入电场就开始以O点为圆心做匀速圆周运动,垂直打在放置于中心线上的荧光屏FH上的E点(未画出),计算OE的长度;
(3)计算此α粒子从金箔上穿出时损失的动能.
【解析】(1)粒子在匀强磁场中做匀速圆周运动,洛伦兹力提供向心力,有qvB=m,得R==0.2m
如图所示,当α粒子运动的圆轨迹与cd相切时,上端偏离O′最远,由几何关系得O′P==0.16m
当α粒子沿Sb方向射入时,下端偏离O′最远,由几何关系得O′Q==0.16m
故金箔cd被α粒子射中区域的长度为
y=O′Q+O′P=0.32m
(2)如上图所示,OE即为α粒子绕O点做圆周运动的半径r.α粒子在无场区域做匀速直线运动与MN相交,下偏距离为y′,则
tan37°=,y′=Ltan37°=0.096m
所以,圆周运动的半径为r==0.32m
(3)设α粒子穿出金箔时的速度为v′,由牛顿第二定律有k
α粒子从金箔上穿出时损失的动能为
ΔEk=mv2-mv′2=2.5×10-14J
易错门诊
3.带电体在变力作用下的运动
【例4】竖直的平行金属平板A、B相距为d,板长为L,板间的电压为U,垂直于纸面向里、磁感应强度为B的磁场只分布在两板之间,如图所示.带电荷量为+q、质量为m的油滴从正上方下落并在两板中央进入板内空间.已知刚进入时电场力大小等于磁场力大小,最后油滴从板的下端点离开,求油滴离开场区时速度的大小.
【错解】由题设条件有Bqv=qE=q,v=;油滴离开场区时,水平方向有Bqv+qE=ma,v=2a
竖直方向有v=v2+2gL
离开时的速度v′=
【错因】洛伦兹力会随速度的改变而改变,对全程而言,带电体是在变力作用下的一个较为复杂的运动,对这样的运动不能用牛顿第二定律求解,只能用其他方法求解.
【正解】由动能定理有mgL+qEmv2
由题设条件油滴进入磁场区域时有Bqv=qE,E=U/d
由此可以得到离开磁场区域时的速度v′=
【思维提升】解题时应该注意物理过程和物理情景的把握,时刻注意情况的变化,然后结合物理过程中的受力特点和运动特点,利用适当的解题规律解决问题,遇到变力问题,特别要注意与能量有关规律的运用.

相关阅读

高考物理基础知识归纳:带电粒子在磁场中的运动


第3课时带电粒子在磁场中的运动

基础知识归纳
1.洛伦兹力
运动电荷在磁场中受到的力叫洛伦兹力.通电导线在磁场中受到的安培力是在导线中定向移动的电荷受到的洛伦兹力的合力的表现.
(1)大小:当v∥B时,F=0;当v⊥B时,F=qvB.
(2)方向:用左手定则判定,其中四指指向正电荷运动方向(或负电荷运动的反方向),拇指所指的方向是正电荷受力的方向.洛伦兹力垂直于磁感应强度与速度所决定的平面.
2.带电粒子在磁场中的运动(不计粒子的重力)
(1)若v∥B,带电粒子做平行于磁感线的匀速直线运动.
(2)若v⊥B,带电粒子在垂直于磁场方向的平面内以入射速度v做匀速圆周运动.洛伦兹力提供带电粒子做圆周运动所需的向心力,由牛顿第二定律qvB=得带电粒子运动的轨道半径R=,运动的周期T=.
3.电场力与洛伦兹力的比较
电场力洛伦兹力
存在条件作用于电场中所有电荷仅对运动着的且速度不与磁场平行的电荷有洛伦兹力的作用
大小F=qE与电荷运动速度无关f=Bqv与电荷的运动速度有关
方向力的方向与电场方向相同或相反,但总在同一直线上力的方向始终和磁场方向垂直
对速度的改变可以改变电荷运动速度大小和方向只改变电荷速度的方向,不改变速度的大小
做功可以对电荷做功,能改变电荷动能不能对电荷做功,不能改变电荷的动能
偏转轨迹静电偏转,轨迹为抛物线磁偏转,轨迹为圆弧
重点难点突破
一、对带电体在洛伦兹力作用下运动问题的分析思路
1.确定对象,并对其进行受力分析.
2.根据物体受力情况和运动情况确定每一个运动过程所适用的规律(力学规律均适用).
总之解决这类问题的方法与纯力学问题一样,无非多了一个洛伦兹力,要注意:
(1)洛伦兹力不做功,在应用动能定理、机械能守恒定律时要特别注意这一点;
(2)洛伦兹力可能是恒力也可能是变力.
二、带电粒子做匀速圆周运动的圆心、半径及运动时间的确定
1.圆心的确定一般有以下四种情况:
(1)已知粒子运动轨迹上两点的速度方向,作这两速度的垂线,交点即为圆心.
(2)已知粒子入射点、入射方向及运动轨迹上的一条弦,作速度方向的垂线及弦的垂直平分线,交点即为圆心.
(3)已知粒子运动轨迹上的两条弦,作出两弦垂直平分线,交点即为圆心.
(4)已知粒子在磁场中的入射点、入射方向和出射方向(不一定在磁场中),延长(或反向延长)两速度方向所在直线使之成一夹角,作出这一夹角的角平分线,角平分线上到两直线距离等于半径的点即为圆心.
2.半径的确定和计算.圆心找到以后,自然就有了半径,半径的计算一般是利用几何知识,常用到解三角形的方法及圆心角等于弦切角的两倍等知识.
3.在磁场中运动时间的确定,利用圆心角与弦切角的关系,或者是四边形内角和等于360°计算出圆心角θ的大小,由公式t=T可求出运动时间,有时也用弧长与线速度的比t=.
三、两类典型问题
1.极值问题:常借助半径R和速度v(或磁场B)之间的约束关系进行动态运动轨迹分析,确定轨迹圆和边界的关系,求出临界点,然后利用数学方法求解极值.
注意:(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切;
(2)当速度v一定时,弧长(或弦长)越长,圆周角越大,则带电粒子在有界磁场中运动的时间越长.
2.多解问题:多解形成的原因一般包含以下几个方面:
(1)粒子电性不确定;(2)磁场方向不确定;(3)临界状态不唯一;(4)粒子运动的往复性等.
典例精析
1.在洛伦兹力作用下物体的运动
【例1】一个质量m=0.1g的小滑块,带有q=5×10-4C的电荷,放置在倾角α=30°的光滑斜面上(斜面绝缘),斜面置于B=0.5T的匀强磁场中,磁场方向垂直纸面向里,如图所示.小滑块由静止开始沿斜面下滑,其斜面足够长,小滑块滑至某一位置时,要离开斜面.问:
(1)小滑块带何种电荷?
(2)小滑块离开斜面时的瞬时速度多大?
(3)该斜面的长度至少多长?
【解析】(1)小滑块沿斜面下滑过程中,受到重力mg、斜面支持力FN和洛伦兹力F.若要小滑块离开斜面,洛伦兹力F方向应垂直斜面向上,根据左手定则可知,小滑块应带负电荷.
(2)小滑块沿斜面下滑时,垂直斜面方向的加速度为零,有qvB+FN-mgcosα=0
当FN=0时,小滑块开始脱离斜面,此时qvB=mgcosα
得v=m/s=2m/s
(3)下滑过程中,只有重力做功,由动能定理得mgxsinα=mv2
斜面的长度至少应是x=m=1.2m
【思维提升】(1)在解决带电粒子在磁场中运动的力学问题时,对粒子进行受力分析、运动情况分析是关键;(2)根据力学特征,选用相应的力学规律求解,但由于洛伦兹力与速度有关,要注意动态分析.
【拓展1】如图所示,质量为m的带正电小球,电荷量为q,小球中间有一孔套在足够长的绝缘细杆上,杆与水平方向成θ角,与球的动摩擦因数为μ,此装置放在沿水平方向、磁感应强度为B的匀强磁场中,若从高处将小球无初速度释放,小球在下滑过程中加速度的最大值为gsinθ,运动速度的最大值为.
【解析】分析带电小球受力如图,在释放处a,由于v0=0,无洛伦兹力,随着小球加速,产生垂直杆向上且逐渐增大的洛伦兹力F,在b处,F=mgcosθ,Ff=0
此时加速度最大,am=gsinθ,随着小球继续加速,F继续增大,小球将受到垂直杆向下的弹力FN′,从而恢复了摩擦力,且逐渐增大,加速度逐渐减小,当Ff′与mgsinθ平衡时,小球加速结束,将做匀速直线运动,速度也达到最大值vm.
在图中c位置:FN′+mgcosθ=Bqvm①
mgsinθ=Ff′②
Ff′=μFN′③
由①②③式解得vm=
2.带电粒子在有界磁场中的运动
【例2】两平面荧光屏互相垂直放置,在两屏内分别取垂直于两屏交线的直线为x轴和y轴,交点O为原点,如图所示.在y0、0xa的区域有垂直于纸面向里的匀强磁场,在y0、xa的区域有垂直纸面向外的匀强磁场,两区域内的磁感应强度大小均为B.在O点处有一小孔,一束质量为m、带电荷量为q(q0)的粒子沿x轴经小孔射入磁场,最后打在竖直和水平的荧光屏上,使荧光屏发亮.入射粒子的速度可取从零到某一最大值之间的各数值.已知速度最大的粒子在0xa的区域中运动的时间与在xa的区域中运动的时间之比为2∶5,在磁场中运动的总时间为7T/12,其中T为该粒子在磁感应强度为B的匀强磁场中做圆周运动的周期.试求两个荧光屏上亮线的范围(不计重力的影响).
【解析】如右图所示,粒子在磁感应强度为B的匀强磁场中运动的半径为r=
速度小的粒子将在xa的区域走完半圆,射到竖直屏上.半圆的直径在y轴上,半径的范围从0到a,屏上发亮的范围从0到2a.
轨道半径大于a的粒子开始进入右侧磁场,考虑r=a的极限情况,这种粒子在右侧的圆轨迹与x轴在D点相切(图中虚线),OD=2a,这是水平屏上发亮范围的左边界.
速度最大的粒子的轨迹如图中实线所示,它由两段圆弧组成,圆心分别为C和C′,C在y轴上,由对称性可知C′在x=2a的直线上.
设t1为粒子在0xa的区域中运动的时间,t2为在xa的区域中运动的时间,由题意可知
,t1+t2=
由此解得t1=,t2=
再由对称性可得
∠OCM=60°,∠MC′N=60°
∠MC′P=360°×=150°
所以∠NC′P=150°-60°=90°
即为1/4圆周.因此圆心C′在x轴上.
设速度为最大值时粒子的轨道半径为R,由直角△COC′可得2Rsin60°=2a,R=
由图可知OP=2a+R,因此水平荧光屏发亮范围的右边界坐标x=2(1+)a
【思维提升】带电粒子在不同的有界磁场中的连续运动问题,一是要分别根据进入和离开磁场的点速度方向确定带电粒子做匀速圆周运动的圆心,进而画出带电粒子在有界磁场中的运动轨迹;二是找准由一个磁场进入另一个磁场这一关键点,确定出这一关键点上速度的方向;三是要注意磁场方向和大小变化引起带电粒子的运动轨迹的变化.
【拓展2】下图是某装置的垂直截面图,虚线A1A2是垂直截面与磁场区边界面的交线,匀强磁场分布在A1A2的右侧区域,磁感应强度B=0.4T,方向垂直纸面向外,A1A2与垂直截面上的水平线夹角为45°.在A1A2左侧,固定的薄板和等大的挡板均水平放置,它们与垂直截面交线分别为S1、S2,相距L=0.2m,在薄板上P处开一小孔,P与A1A2线上点D的水平距离为L.在小孔处装一个电子快门.起初快门开启,一旦有带正电微粒刚通过小孔,快门立即关闭,此后每隔T=3.0×10-3s开启一次并瞬间关闭,从S1S2之间的某一位置水平发射的一速度为v0的带正电微粒,它经过磁场区域后入射到P处小孔.通过小孔的微粒与挡板发生碰撞而反弹,反弹速度大小是碰前的0.5倍.
(1)经过一次反弹直接从小孔射出的微粒,其初速度v0应为多少?
(2)求上述微粒从最初水平射入磁场到第二次离开磁场的时间.(忽略微粒所受重力影响,碰撞过程中无电荷转移.已知微粒的荷质比=1.0×103C/kg.只考虑纸面上带电微粒的运动)
【解析】(1)如下图所示,设带正电微粒在S1、S2之间任意点Q以水平速度v0进入磁场,微粒受到的洛伦兹力为f,在磁场中做圆周运动的半径为r,有:
f=qv0B①
f=②
由①②式解得r=,欲使微粒能进入小孔,半径r的取值范围为
Lr2L③
代入数据得80m/sv0160m/s
欲使进入小孔的微粒与挡板一次相碰返回后能通过小孔,还必须满足条件:
=nT,其中n=1,2,3…④
由①②③④式可知,只有n=2满足条件,即有
v0=100m/s⑤
(2)设微粒在磁场中做圆周运动的周期为T0,从水平进入磁场到第二次离开磁场的总时间为t,设t1、t4分别为带电微粒第一次、第二次在磁场中运动的时间,第一次离开磁场运动到挡板的时间为t2,碰撞后再返回磁场的时间为t3,运动轨迹如图所示,则有
T0=⑥
t1=T0⑦
t2=⑧
t3=⑨
t4=T0⑩
解得t=t1+t2+t3+t4=2.8×10-2s
3.带电粒子在有界磁场运动的临界问题
【例3】如图所示,一个质量为m,电荷量大小为q的带电微粒(忽略重力),与水平方向成45°射入宽度为d、磁感应强度为B、方向垂直纸面向内的匀强磁场中,若使粒子不从磁场MN边界射出,粒子的初速度大小应为多少?
【解析】带电粒子垂直B进入匀强磁场做匀速圆周运动,若不从边界MN射出,粒子运动偏转至MN边界时v与边界平行即可.由左手定则可知:若粒子带正电荷,圆周轨迹由A→B;若粒子带负电荷,圆周轨迹由A→C,如图所示,圆周轨迹的圆心位置可根据粒子线速度方向垂直半径的特点,作初速度v0的垂线与边界MN的垂线的交点即为圆轨迹的圆心O1与O2.
粒子带正电荷情况:粒子沿圆轨迹A→B运动方向改变了45°,由几何关系可知∠AO1B=45°,那么
d=R1-R1cos45°①
R1=②
将②式代入①式得
v0=
即粒子若带正电荷,初速度满足0v0≤时将不从磁场边界MN射出.
粒子带负电荷情况:粒子沿圆轨迹A→C运动,方向改变了135°,由几何关系知∠AO2C=135°,∠O2AF=45°,那么
d=R2+R2sin45°③
R2=④
将④式代入③式得
v0′=
即粒子若带负电荷,初速度满足0v0′≤时,将不从磁场边界MN射出.
【思维提升】(1)充分理解临界条件;(2)题中没说明电荷的电性,应分正、负两种电性加以分析.
【拓展3】未来人类要通过可控热核反应取得能源,要持续发生热核反应必须把温度高达几百万摄氏度以上的核材料约束在一定的空间内.约束的办法有多种,其中技术上相对成熟的是用磁场约束,称为“托卡马克”装置.如图所示为这种装置的模型图:垂直纸面的有环形边界的匀强磁场(b区域)围着磁感应强度为零的圆形a区域,a区域内的离子向各个方向运动,离子的速度只要不超过某值,就不能穿过环形磁场的外边界而逃逸,从而被约束.设环形磁场的内半径R1=0.5m,外半径R2=1.0m,磁场的磁感应强度B0=1.0T,被约束的离子比荷q/m=4.0×107C/kg.
(1)若a区域中沿半径OM方向射入磁场的离子不能穿过磁场,则离子的速度不能超过多大?
(2)若要使从a区域沿任何方向射入磁场的速率为2.0×107m/s的离子都不能越出磁场的外边界,则b区域磁场的磁感应强度B至少要有多大?
【解析】(1)速度越大轨迹圆半径越大,要使沿OM方向运动的离子不能穿越磁场,则其在环形磁场内的运动轨迹圆中半径最大者与磁场外边界圆相切,如图所示.设轨迹圆的半径为r1,则r+R=(R2-r1)2
代入数据解得r1=0.375m
设沿该圆运动的离子速度为v1,由牛顿运动定律有qv1B0=
解得v1==1.5×107m/s
(2)当离子以v2的速度沿与内边界圆相切的方向射入磁场,且轨迹与磁场外边界圆相切时,以该速度沿各个方向射入磁场区的离子都不能穿出磁场边界,如图所示.
设轨迹圆的半径为r2,则r2==0.25m
解得B==2.0T
易错门诊
4.带电粒子在磁场中的运动及功能关系
【例4】如图所示,匀强磁场中放置一与磁感线平行的薄铅板,一个带电粒子垂直进入匀强磁场,以半径R1=20cm做匀速圆周运动,第一次垂直穿过铅板后以半径R2=19cm做匀速圆周运动,则带电粒子能够穿过铅板的次数是多少?(每次穿过铅板时阻力大小相同)
【错解】因为R1=,所以v1=
同理:v2=
设粒子每穿过铅板一次,速度减少Δv,
则Δv=v1-v2=(R1-R2)
故粒子能够穿过铅板的次数为n==20次
【错因】粒子每穿过一次铅板应该是损失的动能相同,故粒子每穿过一次铅板减少的速度不同.速度大时,其速度变化量小,速度小时,速度变化量大.
【正解】粒子每穿过铅板一次损失的动能为
ΔE=
穿过铅板的次数
N==10.26次,取n=10次
【思维提升】对于物理问题必须弄清问题的本质,此题中每次穿过铅板后,应该是损失的动能相同,而不是速度的变化相同.

20xx高考物理知识点归纳:带电粒子在复合场中的运动


20xx高考物理知识点归纳:带电粒子在复合场中的运动

复习精要
一、带点粒子在复合场中的运动本质是力学问题
1、带电粒子在电场、磁场和重力场等共存的复合场中的运动,其受力情况和运动图景都比较复杂,但其本质是力学问题,应按力学的基本思路,运用力学的基本规律研究和解决此类问题。
2、分析带电粒子在复合场中的受力时,要注意各力的特点。如带电粒子无论运动与否,在重力场中所受重力及在匀强电场中所受的电场力均为恒力,它们的做功只与始末位置在重力场中的高度差或在电场中的电势差有关,而与运动路径无关。而带电粒子在磁场中只有运动(且速度不与磁场平行)时才会受到洛仑兹力,力的大小随速度大小而变,方向始终与速度垂直,故洛仑兹力对运动电荷不做功.
二、带电微粒在重力、电场力、磁场力共同作用下的运动(电场、磁场均为匀强场)
1、带电微粒在三个场共同作用下做匀速圆周运动:必然是电场力和重力平衡,而洛伦兹力充当向心力.
2、带电微粒在三个场共同作用下做直线运动:重力和电场力是恒力,它们的合力也是恒力。
当带电微粒的速度平行于磁场时,不受洛伦兹力,因此可能做匀速运动也可能做匀变速运动;
当带电微粒的速度垂直于磁场时,一定做匀速运动。
3、与力学紧密结合的综合题,要认真分析受力情况和运动情况(包括速度和加速度)。必要时加以讨论。
三、带电粒子在重力场、匀强电场、匀强磁场的复合场中的运动的基本模型有:
1、匀速直线运动。自由的带点粒子在复合场中作的直线运动通常都是匀速直线运动,除非粒子沿磁场方向飞入不受洛仑兹力作用。因为重力、电场力均为恒力,若两者的合力不能与洛仑兹力平衡,则带点粒子速度的大小和方向将会改变,不能维持直线运动了。
2、匀速圆周运动。自由的带电粒子在复合场中作匀速圆周运动时,必定满足电场力和重力平衡,则当粒子速度方向与磁场方向垂直时,洛仑兹力提供向心力,使带电粒子作匀速圆周运动。
3、较复杂的曲线运动。在复合场中,若带电粒子所受合外力不断变化且与粒子速度不在一直线上时,带电粒子作非匀变速曲线运动。此类问题,通常用能量观点分析解决,带电粒子在复合场中若有轨道约束,或匀强电场或匀速磁场随时间发生周期性变化等原因,使粒子的运动更复杂,则应视具体情况进行分析。
正确分析带电粒子在复合场中的受力并判断其运动的性质及轨迹是解题的关键,在分析其受力及描述其轨迹时,要有较强的空间想象能力并善于把空间图形转化为最佳平面视图。当带电粒子在电磁场中作多过程运动时,关键是掌握基本运动的特点和寻找过程的边界条件.

第4讲专题带电粒子在复合场中的运动


一名优秀负责的教师就要对每一位学生尽职尽责,高中教师要准备好教案,这是老师职责的一部分。教案可以让学生更好地进入课堂环境中来,减轻高中教师们在教学时的教学压力。关于好的高中教案要怎么样去写呢?经过搜索和整理,小编为大家呈现“第4讲专题带电粒子在复合场中的运动”,欢迎阅读,希望您能够喜欢并分享!

第4讲专题带电粒子在复合场中的运动

图8-4-9

1.如图8-4-9所示,空间存在一匀强磁场B(方向垂直纸面向里)和一电荷量为+Q的点电荷的电场,一带电粒子-q(不计重力)以初速度v0从某处垂直于电场、磁场入射,初位置到点电荷+Q的距离为r,则粒子在电、磁场中的运动轨迹可能是()

A.沿初速度v0方向的直线

B.以点电荷+Q为圆心,以r为半径,在纸面内的圆

C.初阶段在纸面内向右偏的曲线

D.初阶段在纸面内向左偏的曲线

解析:当带电粒子所受库仑力和洛伦兹力的合力正好能提供其所需的向心力时,粒子便以点电荷+Q为圆心,以r为半径,在纸面内做匀速圆周运动;因为点电荷+Q周围的电场是非匀强电场,所以粒子不可能做直线运动.综上所述粒子的运动轨迹可能为B、C、D.

答案:BCD

图8-4-10

2.如图8-4-10所示,界面PQ与水平地面之间有一个正交的匀强磁场B和匀强电场E,在PQ上方有一个带正电的小球A自O静止开始下落,穿过电场和磁场到达地面.设空气阻力不计,下列说法中正确的是()

A.在复合场中,小球做匀变速曲线运动

B.在复合场中,小球下落过程中的电势能减小

C.小球从静止开始下落到水平地面时的动能等于其电势能和重力势能的减少量总和

D.若其他条件不变,仅增大磁感应强度,小球从原来位置下落到水平地面时的动能不变

解析:小球受到磁场力,不可能做匀变速曲线运动.电场力做正功,电势能减小,由能量守恒知,C项正确.增大磁感应强度,会改变洛伦兹力,进而改变落地点,电场力做功会不同,D项错.

答案:BC

图8-4-11

3.如图8-4-11所示,竖直平面xOy内存在水平向右的匀强电场,场强大小E=10N/C,在y≥0的区域内还存在垂直于坐标平面向里的匀强磁场,磁感应强度大小B=0.5T.一带电量q=+0.2C、质量m=0.4kg的小球由长l=0.4m的细线悬挂于P点,小球可视为质点,现将小球拉至水平位置A无初速释放,小球运动到悬点P正下方的坐标原点O时,悬线突然断裂,此后小球又恰好能通过O点正下方的N点.(g=10m/s2)求:

(1)小球运动到O点时的速度大小;

(2)悬线断裂前瞬间拉力的大小;

(3)ON间的距离.

解析:(1)小球从A运动O的过程中,根据动能定理:12mv2=mgl-qEl①

则得小球在O点速度为:v=2lg-qEm=2m/s.②

(2)小球运动到O点绳子断裂前瞬间,对小球应用牛顿第二定律:

F向=FT-mg-F洛=mv2l③

F洛=Bvq④

由③、④得:FT=mg+Bvq+mv2l=8.2N.⑤

(3)绳断后,小球水平方向加速度ax=F电m=Eqm=5m/s2⑥

小球从O点运动至N点所用时间t=Δvax=0.8s⑦

ON间距离h=12gt2=3.2m.⑧

答案:(1)2m/s(2)8.2N(3)3.2m

图8-4-12

4.如图8-4-12所示,平行于直角坐标系y轴的PQ是用特殊材料制成的,只能让垂直打到PQ界面上的电子通过.其左侧有一直角三角形区域,分布着方向垂直纸面向里、磁感应强度为B的匀强磁场,其右侧有竖直向上场强为E的匀强电场.现有速率不同的电子在纸面上从坐标原点O沿不同方向射到三角形区域,不考虑电子间的相互作用.已知电子的电量为e,质量为m,在△OAC中,OA=a,θ=60°.求:

(1)能通过PQ界面的电子所具有的最大速度是多少;

(2)在PQ右侧x轴上什么范围内能接收到电子.

解析:(1)要使电子能通过PQ界面,电子飞出磁场的速度方向必须水平向右,由Bev=mv2r可知,r越大v越大,从C点水平飞出的电子,运动半径最大,对应的速度最大,即r=2a时,电子的速度最大

由Bevm=m,得:vm=2Beam.①

(2)粒子在电场中做类平抛运动,据

a=12eEmt2②

x=vt

得:xmax=2Ba2aemE③

由此可知:PQ界面的右侧x轴上能接收电子的范围是3a,3a+2Ba2aemE

本题属于复合场问题,考查带电粒子在有界磁场中的运动和带电粒子在匀强电场中的运动,需要同学们解题时能够正确地画出带电粒子在磁场和电场中的运动轨迹.

答案:(1)2Beam(2)3a,3a+2Ba2aemE

5.

图8-4-13

(2009重庆,25)如图8-4-13所示,离子源A产生的初速度为零、带电荷量均为e、质量不同的正离子被电压为U0的加速电场加速后匀速通过准直管,垂直射入匀强偏转电场,偏转后通过极板HM上的小孔S离开电场,经过一段匀速直线运动,垂直于边界MN进入磁感应强度为B的匀强磁场.已知HO=d,HS=2d,∠MNQ=90°.(忽略离子所受重力)

(1)求偏转电场场强E0的大小以及HM与MN的夹角φ;

(2)求质量为4m的离子在磁场中做圆周运动的半径;

(3)若质量为4m的离子垂直打在NQ的中点S1处,质量为16m的离子打在S2处,S1和S2之间的距离以及能打在NQ上的正离子的质量范围.

解析:(1)由eU0=12mv21-0F=eE0=ma2d=v1td=12at2

得E0=U0/d,由tanφ=v1at,得φ=45°.

(2)由v=v21+v2⊥=v21+(at)2evB=mv2R

得R=2mU0eB2.

(3)将4m和16m代入R,得R1、R2,

由ΔS=R22-(R2-R1)2-R1,

将R1、R2代入得ΔS=4(3-1)mU0eB2

由R′2=(2R1)2+(R′-R1)2,得R′=52R1

由12R1R52R1,得mmx25m.

答案:(1)45°(2)2mU0eB2(3)4(3-1)mU0eB2mmx25m

图8-4-14

1.如图8-4-14所示,实线表示在竖直平面内匀强电场的电场线,电场线与水平方向成α角,水平方向的匀强磁场与电场正交,有一带电液滴沿斜向上的虚线l做直线运动,l与水平方向成β角,且αβ,则下列说法中错误的是()

A.液滴一定做匀变速直线运动B.液滴一定带正电

C.电场线方向一定斜向上D.液滴一定做匀速直线运动

解析:在电磁场复合区域粒子一般不会做匀变速直线运动,因速度变化洛伦兹力变化,合外力一般变化.

答案:A

图8-4-15

2.如图8-4-15所示,光滑绝缘杆固定在水平位置上,使其两端分别带上等量同种正电荷Q1、Q2,杆上套着一带正电小球,整个装置处在一个匀强磁场中,磁感应强度方向垂直纸面向里,将靠近右端的小球从静止开始释放,在小球从右到左的运动过程中,下列说法中正确的是()

A.小球受到的洛伦兹力大小变化,但方向不变

B.小球受到的洛伦兹力将不断增大

C.小球的加速度先减小后增大

D.小球的电势能一直减小

解析:Q1、Q2连线上中点处电场强度为零,从中点向两侧电场强度增大且方向都指向中点,故小球所受电场力指向中点.小球从右向左运动过程中,小球的加速度先减小后增大,C正确.速度先增大后减小,洛伦兹力大小变化,由左手定则知,洛伦兹力方向不变,故A正确,B错误.小球的电势能先减小后增大,D错误.

答案:AC

图8-4-16

3.如图8-4-16所示.有一混合正离子束先后通过正交电场、磁场区域Ⅰ和匀强磁场区域Ⅱ,如果这束正离子束在区域Ⅰ中不偏转,进入区域Ⅱ后偏转半径又相同,则说明这些正离子具有相同的()

A.速度B.质量C.电荷D.比荷

解析:设电场的场强为E,由于粒子在区域Ⅰ里不发生偏转,则Eq=B1qv,得v=EB1;当粒子进入区域Ⅱ时,偏转半径又相同,所以R=mvB2q=mEB1B2q=EmB1B2q,故选项A、D正确.

答案:AD

图8-4-17

4.(2009辽宁、宁夏理综,16)医生做某些特殊手术时,利用电磁血流计来监测通过动脉的血流速度.电磁血流计由一对电极a和b以及一对磁极N和S构成,磁极间的磁场是均匀的.使用时,两电极a、b均与血管壁接触,两触点的连线、磁场方向和血流速度方向两两垂直,如图8-4-17所示.由于血液中的正负离子随血流一起在磁场中运动,电极a、b之间会有微小电势差.在达到平衡时,血管内部的电场可看作是匀强电场,血液中的离子所受的电场力和磁场力的合力为零.在某次监测中,两触点间的距离为3.0mm,血管壁的厚度可忽略,两触点间的电势差为160μV,磁感应强度的大小为0.040T.则血流速度的近似值和电极a、b的正负为()

A.1.3m/s,a正、b负B.2.7m/s,a正、b负

C.1.3m/s,a负、b正D.2.7m/s,a负、b正

解析:根据左手定则,可知a正b负,所以C、D两项错;因为离子在场中所受合力为零,Bqv=Udq,所以v=UBd=1.3m/s,A项对B项错.

答案:A

5.如图8-4-18所示,一个带正电荷的物块m,由静止开始从斜面上A点下滑,滑到水平面BC上的D点停下来.已知物块与斜面及水平面间的动摩擦因数相同,且不计物块经过B处时的机械能损失.先在ABC所在空间加竖直向下的匀强电场,第二次让物块m从A点由静止开始下滑,结果物块在水平面上的D′点停下来.后又撤去电场,在ABC所在空间加水平向里的匀强磁场,再次让物块m从A点由静止开始下滑,结果物块沿斜面滑下并在水平面上的D″点停下来.则以下说法中正确的是()

图8-4-18

A.D′点一定在D点左侧B.D′点一定与D点重合

C.D″点一定在D点右侧D.D″点一定与D点重合

解析:仅在重力场中时,物块由A点至D点的过程中,由动能定理得mgh-μmgcosαs1-μmgs2=0,即h-μcosαs1-μs2=0,由题意知A点距水平面的高度h、物块与斜面及水平面间的动摩擦因数μ、斜面倾角α、斜面长度s1为定值,所以s2与重力的大小无关,而在ABC所在空间加竖直向下的匀强电场后,相当于把重力增大了,s2不变,D′点一定与D点重合,B项正确;在ABC所在空间加水平向里的匀强磁场后,洛伦兹力垂直于接触面向上,正压力变小,摩擦力变小,重力做的功不变,所以D″点一定在D点右侧,C项正确.

答案:BC

图8-4-19

6.如图8-4-19所示,电源电动势为E,内阻为r,滑动变阻器电阻为R,开关K闭合.两平行极板间有匀强磁场,一带电粒子(不计重力)正好以速度v匀速穿过两板.以下说法正确的是()

A.保持开关闭合,将滑片P向上滑动一点,粒子将可能从下极板边缘射出

B.保持开关闭合,将滑片P向下滑动一点,粒子将可能从下极板边缘射出

C.保持开关闭合,将a极板向下移动一点,粒子将一定向下偏转

D.如果将开关断开,粒子将继续沿直线穿出

解析:本题考查电路、电容器、带电粒子在复合场中的运动等知识.开关闭合,滑片未滑动时,带电粒子所受洛伦兹力等于电场力.当滑片向上滑动时,带电粒子受到的电场力减小,由于不知道带电粒子的电性,所以电场力方向可能向上也可能向下,带电粒子刚进入磁场时洛伦兹力大小不变,与电场力的方向相反,所以带电粒子可能向上运动,也可能向下运动,A、B项正确,C项错误;开关断开,带电粒子在匀强磁场中做圆周运动,D项错误.

答案:AB

图8-4-20

7.在某地上空同时存在着匀强的电场与磁场,一质量为m的带正电小球,在该区域内沿水平方向向右做直线运动,如图8-4-20所示,关于场的分布情况可能的是()

A.该处电场方向和磁场方向重合

B.电场竖直向上,磁场垂直纸面向里

C.电场斜向里侧上方,磁场斜向外侧上方,均与v垂直

D.电场水平向右,磁场垂直纸面向里

解析:带电小球在复合场中运动一定受重力和电场力,是否受洛伦兹力需具体分析.A选项中若电场、磁场方向与速度方向垂直,则洛伦兹力与电场力垂直,如果与重力的合力为0就会做直线运动.B选项中电场力、洛伦兹力都向上,若与重力合力为0,也会做直线运动.C选项中电场力斜向里侧上方,洛伦兹力向外侧下方,若与重力的合力为0,就会做直线运动.D选项三个力的合力不可能为0,因此选项A、B、C正确.

答案:ABC

8.

图8-4-21

如图8-4-21所示,有位于竖直平面上的半径为R的圆形光滑绝缘轨道,其上半部分处于竖直向下、场强为E的匀强电场中,下半部分处于垂直水平面向里的匀强磁场中;质量为m,带正电,电荷量为q的小球,从轨道的水平直径的M端由静止释放,若小球在某一次通过最低点时对轨道的压力为零,求:

(1)磁感应强度B的大小;

(2)小球对轨道最低点的最大压力;

(3)若要小球在圆形轨道内做完整的圆周运动,求小球从轨道的水平直径的M端下滑的最小速度.

解析:(1)设小球向右通过最低点时的速率为v,由题意得:

mgR=12mv2,qBv-mg=mv2R,B=3mgq2gR.

(2)小球向左通过最低点时对轨道的压力最大.FN-mg-qBv=mv2R.FN=6mg.

(3)要小球完成圆周运动的条件是在最高点满足:mg+qE=mv21R

从M点到最高点由动能定理得:-mgR-qER=12mv21-12mv20

由以上可得v0=3R(mg+qE)m.

答案:(1)3mgq2gR(2)6mg(3)3R(mg+qE)m

图8-4-22

9.在坐标系xOy中,有三个靠在一起的等大的圆形区域,分别存在着方向如图8-4-22所示的匀强磁场,磁感应强度大小都为B=0.10T,磁场区域半径r=233m,三个圆心A、B、C构成一个等边三角形,B、C点都在x轴上,且y轴与圆形圆域C相切,圆形区域A内磁场垂直纸面向里,圆形区域B、C内磁场垂直纸面向外.在直角坐标系的第Ⅰ、Ⅳ象限内分布着场强E=1.0×105N/C的竖直方向的匀强电场,现有质量m=3.2×10-26kg,带电荷量q=-1.6×10-19C的某种负离子,从圆形磁场区域A的左侧边缘以水平速度v=106m/s沿正对圆心A的方向垂直磁场射入,求:

(1)该离子通过磁场区域所用的时间.

(2)离子离开磁场区域的出射点偏离最初入射方向的侧移为多大?(侧移指垂直初速度方向上移动的距离)

(3)若在匀强电场区域内竖直放置一挡板MN,欲使离子打到挡板MN上时偏离最初入射方向的侧移为零,则挡板MN应放在何处?匀强电场的方向如何?

解析:(1)离子在磁场中做匀速圆周运动,在A、C两区域的运动轨迹是对称的,如图所示,

设离子做圆周运动的半径为R,圆周运动的周期为T,由牛顿第二定律得:qvB=mv2R

又T=2πRv,解得:R=mvqB,T=2πmqB

将已知量代入得:R=2m

设θ为离子在区域A中的运动轨迹所对应圆心角的一半,由几何关系可知离子在区域A中运动轨迹的圆心恰好在B点,则:tanθ=rR=33,θ=30°

则离子通过磁场区域所用的时间为:t=T3=4.19×10-6s.

(2)由对称性可知:离子从原点O处水平射出磁场区域,由图可知侧移为d=2rsin2θ=2m.

(3)欲使离子打到挡板MN上时偏离最初入射方向的侧移为零,则离子在电场中运动时受到的电场力方向应向上,所以匀强电场的方向向下

离子在电场中做类平抛运动,加速度大小为:

a=Eq/m=5.0×1011m/s2,

沿y方向的位移为:y=12at2=d

沿x方向的位移为:x=vt,解得:x=22m

所以MN应放在距y轴22m的位置.

答案:(1)4.19×10-6s(2)2m(3)距y轴22m处方向向下

10.

图8-4-23

如图8-4-23所示,竖直平面坐标系xOy的第一象限,有垂直xOy面向外的水平匀强磁场和竖直向上的匀强电场,大小分别为B和E;第四象限有垂直xOy面向里的水平匀强电场,大小也为E;第三象限内有一绝缘光滑竖直放置的半径为R的半圆轨道,轨道最高点与坐标原点O相切,最低点与绝缘光滑水平面相切于N.一质量为m的带电小球从y轴上(y0)的P点沿x轴正方向进入第一象限后做圆周运动,恰好通过坐标原点O,且水平切入半圆轨道并沿轨道内侧运动,过N点水平进入第四象限,并在电场中运动(已知重力加速度为g).

(1)判断小球的带电性质并求出其所带电荷量;

(2)P点距坐标原点O至少多高;

(3)若该小球以满足(2)中OP最小值的位置和对应速度进入第一象限,通过N点开始计时,经时间t=2Rg小球距坐标原点O的距离s为多远?

解析:(1)小球进入第一象限正交的电场和磁场后,在垂直磁场的平面内做圆周运动,说明重力与电场力平衡,qE=mg①

得q=mgE②

小球带正电.

(2)小球在洛伦兹力作用下做匀速圆周运动,设匀速圆周运动的速度为v、轨道半径为r.

有:qvB=mv2r③

小球恰能通过半圆轨道的最高点并沿轨道运动,有:mg=mv2R④

由③④得:r=mRgqB⑤

PO的最小距离为:y=2r=2mRgqB.⑥

(3)小球由O运动到N的过程中机械能守恒:mg2R+12mv2=12mv2N⑦

由④⑦得:vN=4Rg+v2=5Rg⑧

根据运动的独立性可知,小球从N点进入电场区域后,在x轴方向以速度vN做匀速直线运动,沿电场方向做初速度为零的匀加速直线运动,则沿x轴方向有:x=vNt⑨

沿电场方向有:z=12at2⑩

a=qEm=g

t时刻小球距O点:s=x2+z2+(2R)2=27R.

答案:(1)正电mgE(2)2mRgqB(3)27R

高三物理教案:《带电粒子在复合场中的运动》教学设计


教案课件是每个老师工作中上课需要准备的东西,是认真规划好自己教案课件的时候了。此时就可以对教案课件的工作做个简单的计划,新的工作才会如鱼得水!适合教案课件的范文有多少呢?小编特地为大家精心收集和整理了“高三物理教案:《带电粒子在复合场中的运动》教学设计”,供您参考,希望能够帮助到大家。

一、带点粒子在复合场中的运动本质是力学问题

1、带电粒子在电场、磁场和重力场等共存的复合场中的运动,其受力情况和运动图景都比较复杂,但其本质是力学问题,应按力学的基本思路,运用力学的基本规律研究和解决此类问题。

2、分析带电粒子在复合场中的受力时,要注意各力的特点。如带电粒子无论运动与否,在重力场中所受重力及在匀强电场中所受的电场力均为恒力,它们的做功只与始末位置在重力场中的高度差或在电场中的电势差有关,而与运动路径无关。而带电粒子在磁场中只有运动 (且速度不与磁场平行)时才会受到洛仑兹力,力的大小随速度大小而变,方向始终与速度垂直,故洛仑兹力对运动电荷不做功.

二、带电微粒在重力、电场力、磁场力共同作用下的运动(电场、磁场均为匀强场)

1、带电微粒在三个场共同作用下做匀速圆周运动:必然是电场力和重力平衡,而洛伦兹力充当向心力.

2、带电微粒在三个场共同作用下做直线运动:重力和电场力是恒力,它们的合力也是恒力。

当带电微粒的速度平行于磁场时,不受洛伦兹力,因此可能做匀速运动也可能做匀变速运动;

当带电微粒的速度垂直于磁场时,一定做匀速运动。

3、与力学紧密结合的综合题,要认真分析受力情况和运动情况(包括速度和加速度)。必要时加以讨论。

三、带电粒子在重力场、匀强电场、匀强磁场的复合场中的运动的基本模型有:

1、匀速直线运动。自由的带点粒子在复合场中作的直线运动通常都是匀速直线运动,除非粒子沿磁场方向飞入不受洛仑兹力作用。因为重力、电场力均为恒力,若两者的合力不能与洛仑兹力平衡,则带点粒子速度的大小和方向将会改变,不能维持直线运动了。

2、匀速圆周运动。自由的带电粒子在复合场中作匀速圆周运动时,必定满足电场力和重力平衡,则当粒子速度方向与磁场方向垂直时,洛仑兹力提供向心力,使带电粒子作匀速圆周运动。

3、较复杂的曲线运动。在复合场中,若带电粒子所受合外力不断变化且与粒子速度不在一直线上时,带电粒子作非匀变速曲线运动。此类问题,通常用能量观点分析解决,带电粒子在复合场中若有轨道约束,或匀强电场或匀速磁场随时间发生周期性变化等原因,使粒子的运动更复杂,则应视具体情况进行分析。

正确分析带电粒子在复合场中的受力并判断其运动的性质及轨迹是解题的关键,在分析其受力及描述其轨迹时,要有较强的空间想象能力并善于把空间图形转化为最佳平面视图。当带电粒子在电磁场中作多过程运动时,关键是掌握基本运动的特点和寻找过程的边界条件.