88教案网

你的位置: 教案 > 高中教案 > 导航 > 09高考物理带电粒子在磁场中的运动1

观察中的发现教案

发表时间:2022-01-25

09高考物理带电粒子在磁场中的运动1。

一位优秀的教师不打无准备之仗,会提前做好准备,准备好一份优秀的教案往往是必不可少的。教案可以让学生能够在教学期间跟着互动起来,帮助教师提前熟悉所教学的内容。教案的内容要写些什么更好呢?下面是小编帮大家编辑的《09高考物理带电粒子在磁场中的运动1》,供大家参考,希望能帮助到有需要的朋友。

难点9带电粒子在磁场中的运动

一、难点形成原因

1、由于受力分析、圆周运动、曲线运动、牛顿定律知识的不熟悉甚至于淡忘,以至于不能将这些知识应用于带电粒子在磁场中的运动的分析,无法建立带电粒子在匀强磁场中的匀速圆周运动的物理学模型。

2、受电场力对带电粒子做功,既可改变粒子的速度(包括大小与方向)又可改变粒子的动能动量的影响,造成磁场中的洛仑兹力对带电粒子不做功(只改变其速度的方向不改变其大小)的定势思维干扰,受电场对带电粒子的偏转轨迹(可以是抛物线)的影响,造成对磁场偏转轨迹(可以是圆周)的定势思维干扰。从而使带电粒子在电场中的运动规律产生了对带电粒子在磁场中的运动的前摄抑制。

3、磁场内容的外延知识与学生对物理概念理解偏狭之间的矛盾导致学习困难。

精选阅读

带电粒子在磁场中的运动 质谱仪


教学目标
知识目标
1、理解带电粒子的初速度方向与磁感应强度方向垂直时,做匀速圆周运动.
2、会推导带电粒子在匀强磁场中做匀速圆周运动的半径、周期公式,并会用它们解答有关问题.
3、知道质谱仪的工作原理.

能力目标
通过推理、判断带电粒子在磁场中的运动性质的过程,培养学生严密的逻辑推理能力.

情感目标
通过学习质谱仪的工作原理,让学生认识先进科技的发展,有助于培养学生对物理的学习兴趣.

教学建议

教材分析
本节重点是研究带电粒子垂直射入匀强磁场中的运动规律:半径以及周期,通过复习相关力学知识,利用力于运动的关系突破这一重点,需要注意的是:
1、确定垂直射入匀强电场中的带电粒子是匀速圆周运动;
2、带电粒子的重力通常不考虑。

教法建议
由于我们研究的是带电粒子在磁场中的运动情况,研究的是磁场力与运动的关系,因此教学开始,需要学生回忆相关的力学知识,为了引导学生分析推导粒子做匀速圆周运动的原因、规律,教师可以通过实验演示引入,让学生认真观察实验现象,结合运动和力的关系分析原因,总结规律,积极思考、讨论例题,对规律加深理解、提高应用能力.最后通过例题讲解,加深知识的理解.

教学设计方案

带电粒子在磁场中的运动质谱仪

一、素质教育目标

(一)知识教学点

1、理解带电粒子的初速度方向与磁感应强度方向垂直时,做匀速圆周运动.

2、会推导带电粒子在匀强磁场中做匀速圆周运动的半径、周期公式,并会用它们解答有关问题.

3、知道质谱仪的工作原理.

(二)能力训练点

通过推理、判断带电粒子在磁场中的运动性质的过程,培养学生严密的逻辑推理能力.

(三)德育渗透点

通过学习质谱仪的工作原理,理解高科技的巨大力量.

(四)美育渗透点

用电子射线管产生的电子做圆周运动的精美图像感染学生,提高学生对物理学图像形式美的审美感受力.

二、学法引导

1、教师通过演示实验法引入,复习提问法引导学生分析推导粒子做匀速圆周运动的原因、规律.通过例题讲解,加深理解.

2、学生认真观察实验现象,结合运动和力的关系分析原因,总结规律,积极思考、讨论例题,对规律加深理解、提高应用能力.

三、重点难点疑点及解决办法

1、重点

带电粒子垂直射入匀强磁场中的运动半径和运动周期.

2、难点

确定垂直射入匀强磁场中的带电粒子运动是匀速圆周运动.

3、疑点

带电粒子的重力通常为什么不考虑?

4、解决办法

复习力学知识、引导同学利用力与运动的关系分析,讨论带电粒子在磁场中的运动情况。

四、课时安排

1课时

五、教具学具准备

演示用特制的电子射线管。

六、师生互动活动设计

教师先通过演示实验引入,再启发引导学生用力学知识分析原因,推导规律,通过例题讲解,学生思考和讨论进一步加深对知识的理解,提高学生运用知识解决实际问题的能力。

七、教学步骤

(一)明确目标

(略)

(二)整体感知

本节教学首先通过演示实验告诉学生,当带电粒子的初速度方向与磁场方向垂直时,粒子在匀强磁场中做匀速圆周运动这一结论,然后试着用力与运动的关系分析粒子为什么做匀速圆周运动,再由学生推导带电粒子在磁场中的运动半径和周期,根据力学知识,重点是理解运动半径与磁感应强度、速度的关系;运动周期与粒子速率和运动半径无关.

(三)重点、难点的学习与目标完成过程

1、引入新课

上一节我们学习了洛仑兹力的概念,我们知道带电粒子垂直磁场方向运动时,会受到大小,方向始终与速度方向垂直的洛仑兹力作用,今天我们来研究一下,受洛仑兹力作用的带电粒子是如何运动的?

2、粒子为什么做匀速圆周的运动?

首先通过演示实验观察到,当带电粒子的初速度方向与匀强磁场方向垂直时,粒子的运动轨道是圆.

在力学中我们学习过,物体作匀速圆周运动的条件是物体所受的合外力大小不变,方向始终与速度方向垂直.当带电粒子垂直于匀强磁场方向运动时,通常它的重力可以忽略不计(请同学们讨论),可看作只受洛仑兹力作用,洛仑兹力方向和速度方向在同一个平面内,由于洛仑兹力方向总与速度方向垂直,因而它对带电粒子不做功,根据动能定理可知运动粒子的速度大小不变,再由可知,粒子在运动过程中所受洛仑兹力的大小即合外力的大小不变,根据物体作匀速圆周运动的条件得出带电粒子垂直匀强磁场运动时,作匀速圆周运动.

3、粒子运动的轨道半径和周期公式

带电粒子垂直于匀强磁场方向运动时做匀速圆周运动,其向心力等于洛仑兹力,请同学们根据牛顿第二定律,推导带电粒子的运动半径和周期公式.

经过推导得出粒子运动半径,运动周期。

运用学过的力学知识理解,当粒子运动速度较大时,粒子要离心运动,其运动半径增大,所以速度大,半径也大;当磁场较强时,运动电荷受洛仑兹力增大,粒子要向心运动,其运动半径减小,所以磁感应强度大,半径小.由于带电粒子运动速度大时,其运动半径大,运动轨迹也长,可以理解粒子运动的周期与速度的大小和轨道半径无关.为了加深同学们对半径和周期公式的理解,举下面的例题加以练习.

[例1]同一种带电粒子以不同的速度垂直射入匀强磁场中,其运动轨迹如图所示,则可知

(1)带电粒子进入磁场的速度值有几个?

(2)这些速度的大小关系为.

(3)三束粒子从O点出发分别到达1、2、3点所用时间关系为.

4、质谱仪

首先请同学们阅读课本上例题的分析求解过程,然后组织学生讨论质谱仪的工作原理.

(四)总结、扩展

本节课我们学习了带电粒子垂直于匀强磁场运动的情况,经过实验演示和理论分析得出粒子做匀速圆周运动.并根据牛顿运动定律得出粒子运动的半径公式和周期公式.最后我们讨论了它的一个具体应用——质谱仪.

但应注意的是如果带电粒子速度方向不是垂直匀强磁场方向时,带电粒子将不再是作匀速圆周运动.

八、布置作业

(1)P156(1)~(6)


九、板书设计

五、带电粒子在磁场中的运动质谱仪

一、运动轨迹

粒子作匀速圆周运动.

二、半径和周期

运动半径:

运动周期:

三、质谱仪

带电粒子在磁场中运动轨迹2


确定带电粒子在磁场中运动轨迹的方法

带电粒子在匀强磁场中作圆周运动的问题是近几年高考的热点,这些题不但涉及洛伦兹力,而且往往与几何关系相联系,使问题难度加大,但无论这类题多么复杂,其关键一点在于画轨迹,只要确定了轨迹,问题便迎刃而解,下面举几种确定带电粒子运动轨迹的方法。
1.对称法
带电粒子如果从一直线边界进入又从该边界射出,则其轨迹关于入射点和出射点线段的中垂线对称,入射速度方向与出射速度方向与边界的夹角相等,利用这一结论可以轻松画出粒子的轨迹。
图1
例1.如图1所示,在y小于0的区域内存在匀强磁场,磁场方向垂直于xy平面并指向纸面外,磁感应强度为B,一带正电的粒子以速度从O点射入磁场,入射速度方向为xy平面内,与x轴正向的夹角为,若粒子射出磁场的位置与O点的距离为L,求该粒子电量与质量之比。
解析:根据带电粒子在有界磁场的对称性作出轨迹,如图2所示,找出圆心A,向x轴作垂线,垂足为H,由与几何关系得:
图2

带电粒子磁场中作圆周运动,由
解得②
①②联立解得

2.动态圆法
在磁场中向垂直于磁场的各个方向发射粒子时,粒子的运动轨迹是围绕发射点旋转的动态圆,用这一规律可确定粒子的运动轨迹。
例2.如图3所示,S为电子源,它在纸面360度范围内发射速度大小为,质量为m,电量为q的电子(q0),MN是一块足够大的竖直挡板,与S的水平距离为L,挡板左侧充满垂直纸面向外的匀强磁场,磁感应强度大小为,求挡板被电子击中的范围为多大?
图3
解析:由于粒子从同一点向各个方向发射,粒子的轨迹构成绕S点旋转的一动态圆,动态圆的每一个圆都是逆时针旋转,这样可以作出打到最高点与最低点的轨迹,如图4所示,最高点为动态圆与MN的相切时的交点,最低点为动态圆与MN相割,且SB为直径时B为最低点,带电粒子在磁场中作圆周运动,由得
图4
SB为直径,则由几何关系得
A为切点,所以OA=L
所以粒子能击中的范围为。

3.放缩法
带电粒子在磁场中以不同的速度运动时,圆周运动的半径随着速度的变化而变化,因此可以将半径放缩,探索出临界点的轨迹,使问题得解。
例3.如图5所示,匀强磁场中磁感应强度为B,宽度为d,一电子从左边界垂直匀强磁场射入,入射方向与边界的夹角为,已知电子的质量为m,电量为e,要使电子能从轨道的另一侧射出,求电子速度大小的范围。
图5
解析:如图6所示,当入射速度很小时电子会在磁场中转动一段圆弧后又从同一侧射出,速率越大,轨道半径越大,当轨道与边界相切时,电子恰好不能从另一侧射出,当速率大于这个临界值时便从右边界射出,设此时的速率为,带电粒子在磁场中作圆周运动,由几何关系得
图6

电子在磁场中运动时洛伦兹力提供向心力
,所以②
①②联立解得所以电子从另一侧射出的条件是速度大于。

4.临界法
临界点是粒子轨迹发生质的变化的转折点,所以只要画出临界点的轨迹就可以使问题得解。
例4.长为L的水平极板间,有垂直纸面向内的匀强磁场,如图7所示,磁感应强度为B,板间距离也为L,两极板不带电,现有质量为m电量为q的带负电粒子(不计重力)从左边极板间中点处垂直磁感线以水平速度v射入磁场,欲使粒子打到极板上,求初速度的范围。
图7
解析:由左手定则判定受力向下,所以向下偏转,恰好打到下板右边界和左边界为两个临界状态,分别作出两个状态的轨迹图,如图8、图9所示,打到右边界时,在直角三角形OAB中,由几何关系得:
图8图9
解得轨道半径
电子在磁场中运动时洛伦兹力提供向心力
因此
打在左侧边界时,如图9所示,由几何关系得轨迹半径
电子在磁场中运动时洛伦兹力提供向心力,
所以
所以打在板上时速度的范围为
以上是确定带电粒子在磁场中运动轨迹的四种方法,在解题中如果善于抓住这几点,可以使问题轻松得解。

09年高考物理带电粒子在组合场中运动


专题:带电粒子在组合场中或复合场中运动的问题

一、带电微粒在组合场或复合场中运动分析

1、组合场或复合场

组合场是指电厂与磁场同时存在,但各位于一定的区域内,并不重叠的情况。

复合场通常是指电场与磁场在某一区域并存或电场、磁场和重力场并存于某一区域的情况

2、带电粒子的受力特点

①要明确电场力和洛仑兹力的不同特点

②通常情况下,象电子、质子、α粒子等微观粒子在组合场或复合场中受重力远小于电场力或洛仑兹力,因而重力在无特别说明的情况下可忽略不计。如果题目中无特别说明,但给出了具体数据则可通过计算比较来确定是否需要考虑重力,有时结合粒子的运动状态和电场力、洛伦兹力的方向来判断是否需要考虑重力。

带电粒子在匀强磁场中的运动


一名爱岗敬业的教师要充分考虑学生的理解性,准备好一份优秀的教案往往是必不可少的。教案可以让学生更好的吸收课堂上所讲的知识点,帮助高中教师更好的完成实现教学目标。我们要如何写好一份值得称赞的高中教案呢?下面是小编精心收集整理,为您带来的《带电粒子在匀强磁场中的运动》,欢迎大家阅读,希望对大家有所帮助。

沧州市颐和中学导学案
学科高中物理
课题带电粒子在匀强磁场中的运动课型
1.洛伦兹力演示仪
构造:玻璃泡内充有稀薄气体,在电子束通过时能够显示电子的径迹。砺磁线圈产生匀强磁场,
实验:根据洛伦兹力的知识预测电子束的径迹,然后观察实验。
洛伦兹力总与速度垂直,不改变速度大小,洛伦兹力大小不变。猜想:匀速圆周运动。
⑴不加磁场时观察电子束的径迹
⑵给砺磁线圈通电,在玻璃泡中产生沿两线圈中心连线方向的匀强磁场
⑶保持出射电子的速度不变,改变磁感应强度,观察电子束径迹的变化
⑷保持磁感应强度不变,改变出射电子的速度,观察电子束径迹的变化
实验结论:沿着与磁场垂直的方向射入磁场的带电粒子,在匀强磁场中做匀速圆周运动。

2.带电粒子在磁场中做匀速圆周运动的半径和周期
带电粒子的受力及运动分析
带电粒子垂直进入匀强磁场中的受力情况分析。
带电粒子受的洛伦兹力方向不断变化,但始终与v垂直,洛伦兹力的大小不变。
运动分析
没有力作用使电子离开与磁场方向垂直的平面。也没有垂直于磁场方向以外的速度分量使电子离开与磁场方向垂直的平面。所以电子的运动轨迹平面与磁场方向垂直。
洛伦兹力只改变速度的方向,不改变速度的大小,提供带电粒子做匀速园周运动的向心力。
结论:带电粒子垂直进入匀强磁场中,粒子在洛伦兹力的作用下,在垂直于磁场方向的平面内做匀速圆周运动。
轨道半径和周期
(1)轨道半径公式
一带电粒子的质量为m,电荷量为q,速度为v,带电粒子垂直进入磁感应强度为B的匀强磁场中,其半径r和周期T为多大?
核心关系:洛伦兹力给带电粒子做圆周运动提供向心力。
F=mv2r
粒子做匀速圆周运动所需的向心力是由粒子所受的洛伦兹力提供的,所以
qvB=mv2r
由此得出
r=mvqB
上式告诉我们,在匀强磁场中做匀速园周运动的带电粒子,它的轨道半径跟粒子的运动速率成正比。运动的速度越大,轨道的半径也越大。
(2)周期公式
将半径r代入周期公式T=2πrv中,得到
T=2πmqB
带电粒子在磁场中做匀速圆周运动的周期跟轨道半径和运动速率无关。
【例题1】、、它们以下列情况垂直进入同一匀强磁场,求轨道半径之比,周期之比。
①具有相同速度;
②具有相同动量;
③具有相同动能。
解答:依据qvB=mv2r,得r=mvqB
①v、B相同,所以r∝mq,所以r1∶r2∶r3=1∶2∶2
②因为mv、B相同,所以r∝1q,r1∶r2∶r3=2∶2∶1
③12mv2相同,v∝1m,B相同,所以r∝mq,所以r1∶r2∶r3=1∶2∶1
4、质谱议
(1)质谱仪的结构
质谱仪由粒子源、加速电场、偏转磁场、显示屏等组成。
(2)质谱仪的工作原理
r和进入磁场的速度无关,进入同一磁场时,,而且这些个量中,U、B、r可以直接测量,那么,我们可以用装置来测量粒子的比荷q/m。
质子数相同而质量数不同的原子互称为同位素。在上图中,如果容器A中含有电荷量相同而质量有微小差别的粒子,根据例题中的结果可知,它们进入磁场后将沿着不同的半径做圆周运动,打到照相底片不同的地方,在底片上形成若干谱线状的细条,叫质谱线。每一条对应于一定的质量,从谱线的位置可以知道圆周的半径r,如果再已知带电粒子的电荷量q,就可算出它的质量。这种仪器叫做质谱议。
(3)质谱仪的应用
质谱仪最初是由汤姆生的学生阿斯顿设计的,他用质谱仪首先得到了氖20和氖22的质谱线,证实了同位素的存在。后来经过多次改进,质谱仪已经成了一种十分精密的仪器,是测量带电粒子的质量和分析同位素的重要工具。

【例题2】如图所示,一质量为m,电荷量为q的粒子从容器A下方小孔S1飘入电势差为U的加速电场。然后让粒子垂直进入磁感应强度为B的磁场中做匀速圆周运动,最后打到照相底片D上,如图所示。求
①粒子进入磁场时的速率;
②粒子在磁场中运动的轨道半径。
解答:①粒子在S1区做初速度为零的匀加速直线运动。在S2区做匀速直线运动,在S3区做匀速圆周运动。
由动能定理可知
12mv2=qU
由此可解出
v=2qUm
②粒子在磁场中做匀速圆周运动的轨道半径为
r=mvqB=2mUqB2
巩固练习