88教案网

你的位置: 教案 > 高中教案 > 导航 > 高考物理基础知识归纳:电磁感应中的力学问题

高中物理电磁感应教案

发表时间:2021-02-18

高考物理基础知识归纳:电磁感应中的力学问题。

经验告诉我们,成功是留给有准备的人。高中教师要准备好教案,这是高中教师需要精心准备的。教案可以让学生能够在教学期间跟着互动起来,帮助高中教师提高自己的教学质量。那么一篇好的高中教案要怎么才能写好呢?以下是小编为大家收集的“高考物理基础知识归纳:电磁感应中的力学问题”希望能对您有所帮助,请收藏。

第五课时电磁感应中的力学问题习题课
1.如图所示,让闭合线圈abcd从高h处下落后,进入匀强磁场中,在bc边开始进入磁场,到ab边刚进入磁场的这一段时间内,表示线圈运动的v-t图像可能是下图中的中哪几个?()
2.如图甲中bacd为导体做成的框架,其平面与水平面成θ角,质量为m的导体棒PQ与ab、cd接触良好,回路的电阻为R,整个装置放于垂直框架平面的变化的磁场中,磁感强度B变化的状况如图乙,PQ始终静止,在0~ts内,PQ受到的摩擦力的变化状况可能是()
A.f一直增大
B.f一直减小
C.f先减小后增大
D.f先增大后减小
3.如图所示,足够长的导线框abcd固定在竖直平面内,bc段电阻为R,其他电阻不计,ef是一电阻不计的水平放置的导体杆,质量为m,杆的两端分别与ab、cd良好接触,又能沿框架无摩擦滑下,整个装置放在与框面垂直的匀强磁场中.当ef从静止开始下滑,经过一段时间后,闭合开关S,则在闭合开关S后()
A.ef加速度的数值有可能大于重力加速度
B.如果改变开关闭合时刻,ef先、后两次获得的最大速度一定不同
C.如果ef最终做匀速运动,这时电路消耗的电功率也因开关闭合时刻的不同而不同
D.ef两次下滑过程中,系统机械能的改变量等于电路消耗的电能与转化的内能之和
4.如图所示,用粗细不同的铜丝制成两个边长相同的正方形闭合线圈a和b,让它们从相同的高度处同时自由下落,下落中经过同一个有边界的匀强磁场区域,设经过匀强磁场区域时线框平面始终与磁场方向保持垂直,若不计空气阻力,则()
A.两个导线框同时落地
B.粗铜丝制成的线框a先落地
C.细铜丝制成的导线框b先落地
D.磁场区宽度未知,不能确定

5.两根相距为L的足够长的金属直角导轨如图所示放置,它们各有一边在同一水平面内,另一边垂直于水平面.质量均为m的金属细杆ab、cd与导轨垂直接触形成闭合回路,杆与导轨之间的动摩擦因数均为μ,导轨电阻不计,回路总电阻为2R.整个装置处于磁感应强度大小为B,方向竖直向上的匀强磁场中.当ab杆在平行于水平导轨的拉力F作用下以速度v1沿导轨匀速运动时,cd杆也正好以速度v2向下匀速运动.重力加速度为g.以下说法正确的是()
A.ab杆所受拉力F的大小为μmg+B.cd杆所受摩擦力为零
C.回路中的电流强度为D.μ与V1大小的关系为μ=

6.如图所示,在水平面上有两条平行导电导轨MN、PQ导轨间距离为l,匀强磁场垂直于导轨所在的平面(纸面)向里,磁感应强度的大小为B,两根金属杆1、2摆在导轨上,与导轨垂直,它们的质量和电阻分别为m1、m2和R1、R2两杆与导轨接触良好,与导轨间的动摩擦因数为μ,已知:杆1被外力拖动,以恒定的速度v0沿导轨运动;达到稳定状态时,杆2也以恒定速度沿导轨运动,导轨的电阻可忽略,求此时杆2克服摩擦力做功的功率.jab88.COM

7.如图所示,固定在水平面上的金属框架cdef,处在竖直向下的匀强磁场中,金属棒ab搁在框架上,可无摩擦滑动.此时,adeb构成一个边长为l的正方形.棒的电阻为r,其余部分电阻不计.开始时磁感应强度为B0.
(1)若从t=0时刻起,磁感应强度均匀增加,每秒增量为k,同时保持静止.求棒中的感应电流,并说明方向.
(2)在上述(1)情景中,始终保持棒静止,当t=t1s末时需加的垂直于棒的水平拉力为多大?
(3)若从t=0时刻起,磁感应强度逐渐减小,当棒以恒定速度v向右做匀速运动时,可使棒中不产生感应电流,则磁感应强度应怎样随时间变化?(写出B与t的关系式)

8.如图所示,矩形线框的质量m=0.016kg,长l=0.5m,宽d=0.1m,电阻R=0.1Ω.从离磁场区域高h1=5m处自由下落,刚入匀强磁场时由于磁场力作用,线框正好作匀速运动.求:
(1)磁场的磁感应强度;
(2)如果线框下边通过磁场所经历的时间为△t=0.15s,求磁场区域的高度h2.

9.如图所示,竖直平行导轨上端足够长,相距d,处在垂直于导轨平面的水平匀强磁场中,磁感应强度为B.导体杆bc和ef质量均为m,电阻均为R(其余电阻均不计),杆身与导轨垂直,bc固定在导轨上,ef紧贴导轨与导轨接触良好.用竖直向上的力F拉ef从静止开始向上做加速度为a的匀加速运动.
(1)推导力F的功率随时间变化的关系;
(2)讨论导轨对bc杆竖直方向的作用力随时间变化的关系.(不计水平方向的作用力).

10.如图所示,两根平行金属导轨固定在水平桌面上,每根导轨每米的电阻为r0=0.10Ω/m,导轨的端点P、Q用电阻可忽略的导线相连,两导轨间的距离l=0.20m,有随时间变化的匀强磁场垂直于桌面,已知磁感强度B与时间t的关系为B=kt,比例系数k=0.020T/s,一电阻不计的金属杆可在导轨上无摩擦地滑动,在滑动过程中保持与导轨垂直,在t=0时刻,金属杆紧靠在P、Q端,在外力作用下,杆以恒定的加速度从静止开始向导轨的另一端滑动,求在t=6.0s时金属杆所受的安培力.

相关推荐

高考物理基础知识归纳:电磁感应定律的应用


一名优秀的教师在教学方面无论做什么事都有计划和准备,作为高中教师就要在上课前做好适合自己的教案。教案可以让学生能够在教学期间跟着互动起来,有效的提高课堂的教学效率。你知道如何去写好一份优秀的高中教案呢?下面是小编精心为您整理的“高考物理基础知识归纳:电磁感应定律的应用”,仅供您在工作和学习中参考。

第5课时电磁感应定律的应用(二)

重点难点突破
一、电磁感应现象中的力学问题
1.通过导体的感应电流在磁场中将受到安培力作用,电磁感应问题往往和力学问题联系在一起,基本步骤是:
(1)用法拉第电磁感应定律和楞次定律求感应电动势的大小和方向.(2)求回路中的电流强度.(3)分析研究导体受力情况(包含安培力,用左手定则确定其方向).(4)列动力学方程或平衡方程求解.
2.对电磁感应现象中的力学问题,要抓好受力情况和运动情况的动态分析,导体受力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→周而复始地循环,循环结束时,加速度等于零,导体达到稳定运动状态,要抓住a=0时,速度v达最大值的特点.
二、电磁感应中的能量转化问题
导体切割磁感线或闭合回路中磁通量发生变化,在回路中产生感应电流,机械能或其他形式的能量便转化为电能,具有感应电流的导体在磁场中受安培力作用或通过电阻发热,又可使电能转化为机械能或电阻的内能,因此,电磁感应过程总是伴随着能量转化,用能量转化观点研究电磁感应问题常是导体的稳定运动(匀速直线运动或匀速转动),对应的受力特点是合外力为零,能量转化过程常常是机械能转化为内能,解决这类问题的基本步骤是:
1.用法拉第电磁感应定律和楞次定律确定电动势的大小和方向.
2.画出等效电路,求出回路中电阻消耗电功率的表达式.
3.分析导体机械能的变化,用能量守恒关系得到机械功率的改变与回路中电功率的改变所满足的方程.
三、电能求解的思路主要有三种
1.利用安培力的功求解:电磁感应中产生的电能等于克服安培力所做的功;
2.利用能量守恒求解:若只有电能与机械能的转化,则机械能的减少量等于产生的电能;
3.利用电路特征求解:根据电路结构直接计算电路中所产生的电能.
四、线圈穿越磁场的四种基本形式
1.恒速度穿越;
2.恒力作用穿越;
3.无外力作用穿越;
4.特殊磁场穿越.
典例精析
1.恒速度穿越
【例1】如图所示,在高度差为h的平行虚线区域内有磁感应强度为B,方向水平向里的匀强磁场.正方形线框abcd的质量为m,边长为L(Lh),电阻为R,线框平面与竖直平面平行,静止于位置“Ⅰ”时,cd边与磁场下边缘有一段距离H.现用一竖直向上的恒力F提线框,线框由位置“Ⅰ”无初速度向上运动,穿过磁场区域最后到达位置“Ⅱ”(ab边恰好出磁场),线框平面在运动中保持在竖直平面内,且ab边保持水平.当cd边刚进入磁场时,线框恰好开始匀速运动.空气阻力不计,g=10m/s2.求:
(1)线框进入磁场前距磁场下边界的距离H;
(2)线框由位置“Ⅰ”到位置“Ⅱ”的过程中,恒力F做的功为多少?线框产生的热量为多少?
【解析】(1)线框进入磁场做匀速运动,设速度为v1,有:
E=BLv1,I=ER,F安=BIL
根据线框在磁场中的受力,有F=mg+F安
在恒力作用下,线框从位置“Ⅰ”由静止开始向上做匀加速直线运动.有F-mg=ma,且H=
由以上各式解得H=(F-mg)
(2)线框由位置“Ⅰ”到位置“Ⅱ”的过程中,恒力F做的功为WF=F(H+h+L)
只有线框在穿越磁场的过程中才会产生热量,因此从cd边进入磁场到ab边离开磁场的过程中有F(L+h)=mg(L+h)+Q,所以Q=(F-mg)(L+h)
【思维提升】此类问题F安为恒力,但外力F可能是变力.
2.恒力作用穿越
【例2】质量为m边长为L的正方形线圈,线圈ab边距离磁场边界为s,线圈从静止开始在水平恒力F的作用下,穿过如图所示的有界匀强磁场,磁场宽度为d(dL).若它与水平面间没有摩擦力的作用,ab边刚进入磁场的速度与ab边刚离开磁场时的速度相等.下列说法正确的是()
A.线圈进入磁场和离开磁场的过程通过线圈的电荷量不相等
B.穿越磁场的过程中线圈的最小速度为
C.穿越磁场的过程中线圈的最大速度为
D.穿越磁场的过程中线圈消耗的电能为F(d+L)
【解析】根据q=,可知线圈进入磁场和离开磁场的过程中通过线圈的电荷量相等.
线圈ab边到达磁场边界前做匀加速直线运动,加速度a=Fm,达到磁场边界时有v2=2Fms,ab边刚进入磁场的速度与ab边刚离开磁场时的速度相等,根据动能定理,有Fd-W安=0,得线圈进入磁场时做功为W安=Fd且可知线圈的速度是先增大后减小,当线圈全部进入磁场中后速度又增大.所以,当线圈刚全部进入磁场中时速度达到最小值,根据动能定理有FL-W安=
12mv2-12mv2x
解得vx=
当a=0时,线圈速度最大,有F=F安=
即vm=
由于ab边刚进入磁场的速度与ab边刚离开磁场时的速度相等,那么线圈进入磁场和离开磁场时安培力做功相等,即消耗的电能也相等,故穿越磁场的过程中线圈中消耗的电能为E电=2W安=2Fd.故正确选项为B、C.
【答案】BC
【思维提升】此类问题F为恒力,但F安可能是变力.
3.无外力作用穿越
【例3】如图所示,在光滑水平面上有一竖直向下的匀强磁场,分布在宽度为L的区域内,现有一边长为d(dL)的正方形闭合线框以垂直于磁场边界的初速度v0滑过磁场,线框刚好穿过磁场.则线框在滑进磁场的过程中产生的热量Q1与滑出磁场的过程中产生的热量Q2之比为()
A.1∶1B.2∶1C.3∶1D.4∶1
【解析】设线框刚开始要离开磁场时的速度为v.
由于线圈滑进磁场和滑出磁场的过程中安培力的冲量相等.故有mv-mv0=0-mv
即v=12v0
因为无外力作用,根据能量守恒,滑进磁场时产生的热量为Q1=12mv20-12mv2=38mv20
滑出磁场时产生的热量为Q2=12mv2=18mv20
所以Q1∶Q2=3∶1
【答案】C
【思维提升】此类问题仅是机械能与电能之间的转化.
4.穿越特殊磁场区域
【例4】如图所示,一个方向垂直纸面向外的磁场位于以x轴与一曲线为边界的空间中,曲线方程y=0.5sin5πx(单位:m)(0≤x≤0.2m).磁感应强度B=0.2T.有一正方形金属线框abcd边长l=0.6m,线框总电阻R=0.1Ω,它的ab边与y轴重合,在拉力F的作用下,线框以1.0m/s的速度水平向右匀速运动.问:
(1)在线框拉过该磁场区域的过程中,拉力的最大瞬时功率是多少?
(2)线框拉过该磁场区域拉力做的功为多少?
【解析】(1)正方形金属线框进入和离开磁场时切割磁感线均产生感应电动势,电动势E与切割磁感线的有效长度有关,即E=BLv
正方形金属线框通过该磁场区域切割磁感线的有效长度为L=y=0.5sin5πx
当x=0.1m时,
L=Lm=y=0.5m
此时E=Em=BLmv=0.1V
匀速切割时,拉力F的最大瞬时功率等于此时的电功率,即PF=P电==0.1W
(2)在t=0.2s时间内,感应电动势的有效值为
E有效==0.052V
线框进入到离开磁场的时间
Δt=xv=0.2s
线框匀速通过磁场时,拉力所做的功等于消耗的电能.
WF=W电=×2Δt=2.0×10-2J
【思维提升】此类问题需先判断感应电动势随时间变化的图象.
5.电磁感应中的力学问题
【例5】相距为L=0.20m的足够长的金属直角导轨如图1所示放置,它们各有一边在同一水平面内,另一边垂直于水平面.质量均为m=0.1kg的金属细杆ab、cd与导轨垂直接触形成闭合回路,杆与导轨之间的动摩擦因数均为μ,导轨电阻不计,回路总电阻为R=1.0Ω.整个装置处于磁感应强度大小为B=0.50T,方向竖直向上的匀强磁场中.当ab杆在平行于水平导轨的拉力作用下从静止开始沿导轨匀加速运动时,cd杆也同时从静止开始沿导轨向下运动.测得拉力F与时间t的关系如图2所示.取g=10m/s2,求:
(1)杆ab的加速度a和动摩擦因数μ;
(2)杆cd从静止开始沿导轨向下运动达到最大速度所需的时间t0;
(3)画出杆cd在整个运动过程中的加速度随时间变化的a-t图象,要求标明坐标值(不要求写出推导过程).

【解析】(1)经时间t,杆ab的速率v=at
此时,回路中的感应电流为I==
对杆ab由牛顿第二定律得
F-BIL-μmg=ma
由以上各式整理得
F=ma+μmg+B2L2Rat
在图线上取两点:t1=0,F1=1.5N
t2=30s,F2=4.5N
代入上式解得a=10m/s2,μ=0.5
(2)cd杆受力情况如图,当cd杆所受重力与滑动摩擦力相等时,速度最大,则
mg=μFN
又FN=F安
F安=BIL
I==
v=at
联立解得t0==0.1×10×1.00.5×0.52×0.22×10s=20s
(3)如图所示.

【思维提升】力学中的整体法与隔离法在电磁感应中仍经常用到,此题关键是对两根导体棒的受力分析,结合牛顿定律得出F与t的关系,再进行求解.
【拓展1】如图所示,倾角θ=30°、宽为L=1m的足够长的U形光滑金属框固定在磁感应强度B=1T、范围足够大的匀强磁场中,磁场方向垂直导轨平面斜向上.现用一平行于导轨的牵引力F,牵引一根质量m=0.2kg,电阻R=1Ω的金属棒ab,由静止开始沿导轨向上移动(金属棒ab始终与导轨接触良好且垂直,不计导轨电阻及一切摩擦).问:
(1)若牵引力是恒力,大小为9N,则金属棒达到的稳定速度v1多大?
(2)若牵引力的功率恒定,大小为72W,则金属棒达到的稳定速度v2多大?
(3)若金属棒受到向上的拉力在斜面导轨上达到某一速度时,突然撤去拉力,从撤去拉力到棒的速度为零时止,通过金属棒的电荷量为0.48C,金属棒发热量为1.12J,则撤力时棒的速度v3多大?
【解析】(1)当金属棒达到稳定速度v1时,由受力分析及力的平衡条件有F=mgsinθ+
代入数据解得v1=8m/s
(2)当金属棒达到稳定速度v2时,由受力分析及力的平衡条件有=mgsinθ+
代入数据解得v2=8m/s
(3)设金属棒在撤去外力后还能沿斜面向上运动的最大距离为s,所需时间为Δt,则这一段时间内的平均感应电动势E-=,平均感应电流I-=E-R=,则通过金属棒的电荷量q=I-Δt=BLsR,则s=qRBL=0.48m,由能量守恒定律有12mv23=mgssinθ+Q
代入数据解得v3=4m/s
易错门诊
【例6】如图所示,竖直平面内有足够长的金属导轨,轨距为0.2m,金属导体ab可在导轨上无摩擦地上下滑动,ab的电阻为0.4Ω,导轨电阻不计,导轨ab的质量为0.2g,垂直纸面向里的匀强磁场的磁感应强度为0.2T,且磁场区域足够大,当ab导体自由下落0.4s时,突然接通电键S,试说出S接通后,ab导体的运动情况.(g取10m/s2)
【错解】S闭合后,ab受到竖直向下的重力和竖直向上的安培力作用.合力竖直向下,ab仍处于竖直向下的加速运动状态.随着向下速度的增大,安培力增大,ab受竖直向下的合力减小,直至减为0时,ab处于匀速竖直下落状态.
【错因】上述的解法是受平常做题时总有安培力小于重力的影响,没有对初速度和加速度之间的关系作认真地分析.不善于采用定量计算的方法分析问题.
【正解】闭合S之前导体自由下落的末速度为v0=gt=4m/s.S闭合瞬间,导体产生感应电动势,回路中产生感应电流.ab立即受到一个竖直向上的安培力.
F安=BILab==0.016N>mg=0.002N
此刻导体棒所受到合力的方向竖直向上,与初速度方向相反,加速度的表达式为
a==-g
所以,ab做竖直向下的加速度逐渐减小的变减速运动.当速度减小至F安=mg时,ab做竖直向下的匀速运动.
【思维提升】必须对棒ab进行受力分析,判断接通时F安与mg的大小关系,而不能凭经验下结论.

高考物理电磁感应中的能量转化和图象问题基础知识归纳


第七课时电磁感应中的能量转化和图象问题习题课
1.把一个矩形框从匀强磁场中匀速拉出第一次速度为V1,第二次速度为V2,且V2=2V1.若两次拉出线框所做的功分别为W1和W2,产生的热量分别为Q1和Q2,下面说法正确的是()
A.W1=W2,Q1=Q2B.W1<W2,Q1<Q2
C.W1=2W2,Q1=Q2D.W2=2W1,Q2=2Q1
2.如左图中的虚线上方空间有垂直线框平面的匀强磁场,直角扇形导线框绕垂直于线框平面的轴O以角速度ω匀速转动.设线框中感应电流的方向以逆时针为正方向,那么在下图中能正确描述线框从图所示位置开始转动一周的过程中,线框内感应电流随时间变化情况的是()

3.如图所示,平行金属导轨与水平面成θ角,导轨与固定电阻R1和R2相连,匀强磁场垂直穿过导轨平面.有一导体棒ab,质量为m,导体棒的电阻与固定电阻R1和R2的阻值均相等,与导轨之间的动摩擦因数为μ,导体棒ab沿导轨向上滑动,当上滑的速度为v时,受到安培力的大小为F.此时()
A.电阻R1消耗的热功率为Fv/3B.电阻R2消耗的热功率为Fv/6
C.整个装置因摩擦而消耗的热功率为μmgvcosθ
D.整个装置消耗的机械功率为(F+μmgcosθ)v
4.如左图所示,圆形线圈P静止在水平桌面上,其正上方悬挂一相同的线圈Q,P和Q共轴.Q中通有变化电流,电流随时间变化的规律如右图所示.P所受的重力为G,桌面对P的支持力为FN.则以下判断正确的是
A.t1时刻FN>GB.t2时刻FN>GC.t3时刻FN<GD.t3时刻FN=G
5.一矩形线圈位于一随时间t变化的匀强磁场内,磁场方向垂直线圈所在的平面(纸面)向里,如图1所示.以I表示线圈中的感应电流,以图中的线圈上所示方向的电流为正,则图2的I-t图正确的是()

图1

图2

6.如图所示,在倾角为300的绝缘斜面上,固定两条无限长的平行光滑金属导轨,匀强磁场B垂直于斜面向上,磁感应强度B=0.4T,导轨间距L=0.5m,两根金属棒ab、cd与导轨垂直地放在导轨上,金属棒质量mab=0.1kg,mcd=0.2kg,每根金属棒的电阻均为r=0.2W,导轨电阻不计.当用沿斜面向上的拉力拉动金属棒ab匀速向上运动时.cd金属棒恰在斜面上保持静止.求:(g取10m/s2)
(1)金属棒cd两端电势差;
(2)作用在金属棒ab上拉力的功率.

7.在图甲所示区域(图中直角坐标系Oxy的1、3象限)内有匀强磁场,磁感应强度方向垂直于图面向里,大小为B半径为l,圆心角为60o的扇形导线框OPQ以角速度ω绕O点在图面内沿逆时针方向匀速转动,导线框回路电阻为R.
(1)求线框中感应电流的最大值I0和交变感应电流的频率f.
(2)在图乙中画出线框转一周的时间内感应电流I随时间t变化的图像.(规定与图甲中线框的位置相应的时刻为t=0)

8.水平面上两根足够长的金属导轨平行固定放置,间距为L,一端通过导线与阻值为R的电阻连接;导轨上放一质量为m的金属杆,如图所示;金属杆与导轨的电阻忽略不计,匀强磁场竖直向下.用与导轨平行的恒定拉力F作用在金属杆上,杆最终将做匀速运动.当改变拉力的大小时,相对应的匀速运动速度v也会变化,v和F的关系如图.(取重力加速度g=10m/s2)
(1)金属杆在匀速运动之前做什么运动?
(2)若m=0.5kg,L=0.5m,R=0.5Ω;磁感应强度B为多大?
(3)由v-F图线的截距可求得什么物理量?其值为多少?

9.如图所示,将边长为a、质量为m、电阻为R的正方形导线框竖直向上抛出,穿过宽度为b、磁感应强度为B的匀强磁场,磁场的方向垂直纸面向里.线框向上离开磁场时的速度刚好是进人磁场时速度的一半,线框离开磁场后继续上升一段高度,然后落下并匀速进人磁场.整个运动过程中始终存在着大小恒定的空气阻力f且线框不发生转动.求:
(1)线框在下落阶段匀速进人磁场时的速度v2;
(2)线框在上升阶段刚离开磁场时的速度v1;
(3)线框在上升阶段通过磁场过程中产生的焦耳热Q.

10.如图甲所示,不计电阻的“U”形光滑导体框架水平放置,框架中间区域有竖直向上的匀强磁场,磁感应强度B=1.0T,有一导体杆AC横放在框架上,其质量为m=0.10kg,电阻为R=4.0Ω.现用细绳栓住导体杆,细绳的一端通过光滑的定滑轮绕在电动机的转轴上,另一端通过光滑的定滑轮与物体D相连,物体D的质量为M=0.30kg,电动机的内阻为r=1.0Ω.接通电路后,电压表的示数恒为U=8.0V,电流表的示数恒为I=1.0A,电动机牵引原来静止的导体杆AC平行于EF向右运动,其运动的位移—时间图像如图乙所示.取g=10m/s2.求:
(1)匀强磁场的宽度;
(2)导体杆在变速运动阶段产生的热量.

全国卷Ⅰ如图所示,LOO’L’为一折线,它所形成的两个角∠LOO’和∠OO’L‘均为450。折线的右边有一匀强磁场,其方向垂直OO’的方向以速度v做匀速直线运动,在t=0时刻恰好位于图中所示的位置。以逆时针方向为导线框中电流的正方向,在下面四幅图中能够正确表示电流—时间(I—t)关系的是(时间以l/v为单位)()

全国卷Ⅱ如图所示,在PQ、QR区域中存在着磁感应强度大小相等、方向相反的匀强磁场,磁场方向均垂直于纸面。一导线框abcdefa位于纸面内,框的邻边都互相垂直,bc边与磁场的边界P重合。导线框与磁场区域的尺寸如图所示。从t=0时刻开始,线框匀速很长两个磁场区域,以a→b→c→d→e→f为线框中的电动势的正方向,以下四个关系示意图中正确的是()

高考物理基础知识归纳:电磁感应中的能量转化和图象问题


一名优秀的教师在教学时都会提前最好准备,作为教师就要好好准备好一份教案课件。教案可以让学生们能够在上课时充分理解所教内容,帮助教师缓解教学的压力,提高教学质量。所以你在写教案时要注意些什么呢?考虑到您的需要,小编特地编辑了“高考物理基础知识归纳:电磁感应中的能量转化和图象问题”,欢迎阅读,希望您能够喜欢并分享!

第六课时电磁感应中的能量转化和图象问题
【知识要点回顾】
1.电磁感应现象实质是不同形式能量转化的过程.
(1)电磁感应过程中产生的感应电流在磁场中必定受到安培力的作用,因此,要维持感应电流的存在,必须有“外力”克服安培力做功,此过程中,其他形式的能量转化为电能,当感应电流通过用电器时,电能又转化为其他形式的能量.
(2)“外力”克服安培力做多少功,就有多少其他形式的能转化为电能.同理,安培力做功的过程,是电能转化为其他形式能的过程,安培力做多少功,就有多少电能转化为其他形式的能.
(3)解决这类问题的基本方法是:
①用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向;
②画出等效电路,求出回路中消耗电功率的表达式;
③分析导体机械能的变化,用能量守恒关系得到导体做功的功率的变化与回路中电功率的变化所满足的方程.
2.物理图象是一种形象直观的“语言”,它在电磁感应中也有广泛的应用.
(1)理解B-t、Φ-t、e-t、i-t等图象的意义和联系.
(2)从给定的电磁感应过程选出或画出正确的图象.
(3)由给定的图象分析或求解相应的物理量.
【要点讲练】
[例1]高频焊接原理示意如图所示,线圈通以高频交流电,金属工件的焊缝中就产生大量焦耳热,将焊缝熔化焊接,要使焊接时产生的热量较大可采用()
A.增大交变电流的电压B.增大交变电流的频率
C.增大焊接缝的接触电阻D.减少焊接缝的接触电阻

[例2]在水平桌面上,一个面积为S的圆形金属框置于匀强磁场中,线框平面与磁场垂直,磁感应强度B随时间t的变化关系如图(甲)所示,0—1s内磁场方向垂直线框平面向下.圆形金属框与两根水平的平行金属导轨相连接,导轨上放置一根导体棒,导体棒的长为L、电阻为R,且与导轨接触良好,导体棒处于另一匀强磁场中,如图(乙)所示.若导体棒始终保持静止,则其所受的静摩擦力f随时间变化的图象是图中的(设向右的方向为静摩擦力的正方向)()

[例3]如图所示,倾角θ=30°、宽度L=1m的足够长的U形平行光滑金属导轨,固定在磁感应强度B=1T、范围充分大的匀强磁场中,磁场方向与导轨平面垂直.用平行于导轨、功率恒为6W的牵引力F牵引一根质量为m=0.2kg、电阻R=1Ω的放在导轨上的金属棒ab,由静止开始沿导轨向上移动(ab始终与导轨接触良好且垂直).当ab棒移动2.8m时,获得稳定速度,在此过程中,克服安培力做功为5.8J(不计导轨电阻及一切摩擦,g取10m/s2),求:
(1)ab棒的稳定速度.
(2)ab棒从静止开始达到稳定速度所需时间.
例4.如图所示,两根足够长的固定平行金属光滑导轨位于同一水平面,道轨上横放着两根相同的导体棒ab、cd与导轨构成矩形回路.导体棒的两端连接着处于压缩状态的两根轻质弹簧,两棒的中间用细线绑住,它们的电阻均为R,回路上其余部分的电阻不计.在导轨平面内两导轨间有一竖直向下的匀强磁场.开始时,导体棒处于静止状态.剪断细线后,导体棒在运动过程中
A.回路中有感应电动势B.两根导体棒所受安培力的方向相同
C.两根导体棒和弹簧构成的系统机械能守恒
D.两根导体棒和弹簧构成的系统机械能不守恒
例5.如图所示,A是长直密绕通电螺线管,小线圈B与电流表连接,并沿A轴线Ox从O点自左向右匀速穿过螺线管A,能正确反映通过电流表中电流I随x变化规律的是

例6.如图所示,有理想边界的两个匀强磁场,磁感应强度均为B=0.5T,边界间距s=0.1m.一边长L=0.2m的正方形线框abcd由粗细均匀的电阻丝围成,总电阻R=0.4Ω.现使线框以v=2m/s的速度从位置Ⅰ运匀速动到位置Ⅱ.
(1)求cd边未进入右方磁场时线框所受安培力的大小.
(2)求整个过程中线框所产生的焦耳热.
(3)在坐标图中画出整个过程中线框a、b两点的电势差随时间t变化的图线.

高考物理基础知识要点复习电磁感应


20xx届高三物理一轮复习全案:第五章电磁感应单元复习(选修3-2)

【单元知识网络】
【单元归纳整合】
一、电磁感应中的“双杆问题”
电磁感应中“双杆问题”是学科内部综合的问题,涉及到电磁感应、安培力、牛顿运动定律和动量定理、动量守恒定律及能量守恒定律等。要求学生综合上述知识,认识题目所给的物理情景,找出物理量之间的关系,因此是较难的一类问题,也是近几年高考考察的热点。
下面对“双杆”类问题进行分类例析
1、“双杆”向相反方向做匀速运动:当两杆分别向相反方向运动时,相当于两个电池正向串联。
2.“双杆”同向运动,但一杆加速另一杆减速
当两杆分别沿相同方向运动时,相当于两个电池反向串联。

3.“双杆”中两杆都做同方向上的加速运动。
“双杆”中的一杆在外力作用下做加速运动,另一杆在安培力作用下做加速运动,最终两杆以同样加速度做匀加速直线运动。
4.“双杆”在不等宽导轨上同向运动。
“双杆”在不等宽导轨上同向运动时,两杆所受的安培力不等大反向,所以不能利用动量守恒定律解题。
【单元强化训练】
1、直导线ab放在如图所示的水平导体框架上,构成一个闭合回路.长直导线cd和框架处在同一个平面内,且cd和ab平行,当cd中通有电流时,发现ab向左滑动.关于cd中的电流下列说法正确的是()
A.电流肯定在增大,不论电流是什么方向
B.电流肯定在减小,不论电流是什么方向
C.电流大小恒定,方向由c到d
D.电流大小恒定,方向由d到c
解析:ab向左滑动,说明通过回路的磁通量在减小,通过回路的磁感应强度在减弱,通过cd的电流在减小,与电流方向无关.
答案:B
2、如图所示,四根等长的铝管和铁块(其中C中铝管不闭合,其他两根铝管和铁管均闭合)竖直放置在同一竖直平面内,分别将磁铁和铁块沿管的中心轴线从管的上端由静止释放,忽略空气阻力,则下列关于磁铁和铁块穿过管的运动时间的说法正确的是()
A.tAtB=tC=tDB.tC=tA=tB=tDC.tCtA=tB=tDD.tC=tAtB=tD
解析:A中闭合铝管不会被磁铁磁化,但当磁铁穿过铝管的过程中,铝管可看成很多圈水平放置的铝圈,据楞次定律知,铝圈将发生电磁感应现象,阻碍磁铁的相对运动;因C中铝管不闭合,所以磁铁穿过铝管的过程不发生电磁感应现象,磁铁做自由落体运动;铁块在B中铝管和D中铁管中均做自由落体运动,所以磁铁和铁块在管中运动时间满足tAtC=tB=tD,A正确.
答案:A
3、
(20xx陕西省西安市统考)如图所示,Q是单匝金属线圈,MN是一个螺线管,它的绕线方法没有画出,Q的输出端a、b和MN的输入端c、d之间用导线相连,P是在MN的正下方水平放置的用细导线绕制的软弹簧线圈.若在Q所处的空间加上与环面垂直的变化磁场,发现在t1至t2时间段内弹簧线圈处于收缩状态,则所加磁场的磁感应强度的变化情况可能是()
解析:在t1至t2时间段内弹簧线圈处于收缩状态,说明此段时间内穿过线圈的磁通量变大,即穿过线圈的磁场的磁感应强度变大,则螺线管中电流变大,单匝金属线圈Q产生的感应电动势变大,所加磁场的磁感应强度的变化率变大,即B—t图线的斜率变大,选项D正确.
答案:D
4、如图9-2-16中半径为r的金属圆盘在垂直于盘面的匀强磁场B中,绕O轴以角速度ω沿逆时针方向匀速转动,则通过电阻R的电流的大小和方向是(金属圆盘的电阻不计)()
A.由c到d,I=Br2ω/RB.由d到c,I=Br2ω/R
C.由c到d,I=Br2ω/(2R)D.由d到c,I=Br2ω/(2R)
解析:金属圆盘在匀强磁场中匀速转动,可以等效为无数根长为r的导体棒绕O点做匀速圆周运动,其产生的感应电动势大小为E=Br2ω/2,由右手定则可知其方向由外指向圆心,故通过电阻R的电流I=Br2ω/(2R),方向由d到c,故选D项.
答案:D
5、(20xx山东省烟台市一模)如图甲所示,P、Q为水平面内平行放置的金属长直导轨,间距为d,处在大小为B、方向竖直向下的匀强磁场中.一根质量为m、电阻为r的导体棒ef垂直于P、Q放在导轨上,导体棒ef与P、Q导轨之间的动摩擦因数为μ.质量为M的正方形金属框abcd,边长为L,每边电阻均为r,用细线悬挂在竖直平面内,ab边水平,线框的a、b两点通过细导线与导轨相连,金属框上半部分处在大小为B、方向垂直框面向里的匀强磁场中,下半部分处在大小也为B,方向垂直框面向外的匀强磁场中,不计其余电阻和细导线对a、b点的作用力.现用一电动机以恒定功率沿导轨方向水平牵引导体棒ef向左运动,从导体棒开始运动计时,悬挂线框的细线拉力T随时间的变化如图乙所示,求:
(1)t0时间以后通过ab边的电流
(2)t0时间以后导体棒ef运动的速度
(3)电动机的牵引力功率P
解:(1)以金属框为研究对象,从t0时刻开始拉力恒定,故电路中电流恒定,设ab边中电流为I1,cd边中电流为I2
由受力平衡:………(2分)
由图象知……………………………(1分)
,I1=3I2……………………(1分)
由以上各式解得:………………(2分)
(2)设总电流为I,由闭合路欧姆定律得:
…………………………………(2分)
………………………………………(1分)
………………………………………(1分)
I=I1+I2=I1=…………………………(2分)
解得:…………………………(2分)
(3)由电动机的牵引功率恒定P=Fv
对导体棒:……………(2分)
解得:……(2分)
6、(20xx山东省东营市一模)如图甲所示,两平行金属板的板长不超过0.2m,板间的电压u随时间t变化的图线如图乙所示,在金属板右侧有一左边界的MN、右边无界的匀强磁场。磁感应强度B=0.01T;方向垂直纸面向里。现有带正电的粒子连续不断地以速度,沿两板间的中线平行金属板射入电场中,磁场边界MN与中线垂直。已知带电粒子的比荷,粒子所受的重力和粒子间的相互作用力均忽略不计。
(1)在每个粒子通过电场区域的时间内,可以把板间的电场强度看作是恒定的。试说明这种处理能够成立的理由。
(2)设t=0.1S时刻射入电场的带电粒子恰能从平行金属板边缘射出,求该带电粒子射出电场时的速度大小。
(3)对于所有经过电场射入磁场的带电粒子,设其射入磁场的入射点和从磁场射出的出射点间的距离为d,试判断d的大小是否随时间而变化?若不变,证明你的结论;若变,求出d的变化范围。
(1)带电粒子在金属板间的运动时间①
得,(或t时间内金属板间电压变化,变化很小)②
…………2分
故t时间内金属板间的电场可以认为是恒定的…………2分
(2)t=0.1s时刻偏转电压
带电粒子沿两板间的中线射入电场恰从平行金属板边缘飞出电场,电场力做功
③…………2分
由动能定理:④…………2分
代入数据可得V=1.414×103m/s⑤…………2分
(3)设某一任意时刻射出电场的粒子速度为v,速度方向与水平方向的夹角为,则
⑥…………2分
粒子在磁场中有⑦…………2分
可得粒子进入磁场后,在磁场中做圆周运动的半径
由几何关系⑧…………2分
可得:d=20m,故d不随时间而变化。…………2分
7、(20xx天津市六校高三第三次联考)如图所示,两根间距为L的金属导轨MN和PQ,电阻不计,左端向上弯曲,其余水平,水平导轨左端有宽度为d、方向竖直向上的匀强磁场I,右端有另一磁场II,其宽度也为d,但方向竖直向下,磁场的磁感强度大小均为B。有两根质量均为m的金属棒a和b与导轨垂直放置,a和b在两导轨间的电阻均为R,b棒置于磁场II中点C、D处,导轨除C、D两处(对应的距离极短)外其余均光滑,两处对棒可产生总的最大静摩擦力为棒重力的K倍,a棒从弯曲导轨某处由静止释放。当只有一根棒作切割磁感线运动时,它速度的减小量与它在磁场中通过的距离成正比,即∝。试求:
(1)若b棒保持静止不动,则a棒释放的最大高度h0。
(2)若将a棒从高度小于h0的某处释放,使其以速度v0进入磁场I,结果a棒以的
速度从磁场I中穿出,求在a棒穿过磁场I过程中通过b棒的电量q和两棒即将相碰时b棒上的电功率Pb。
(3)若将a棒从高度大于h0的某处释放,使其以速度v1进入磁场I,经过时间t1后a棒从磁场I穿出时的速度大小为,求此时b棒的速度大小,在如图坐标中大致画出t1时间内两棒的速度大小随时间的变化图像。
解:(1)a棒从h0高处释放后在弯曲导轨上滑动时机械守恒,有
………………2分
a棒刚进入磁场I时…………1分
此时感应电流大小…………2分
此时b棒受到的安培力大小…………1分
依题意,有F=Kmg…………2分
求得………………1分
(2)由于a棒从小于进入h0释放,因此b棒在两棒相碰前将保持静止。
流过电阻R的电量
又………………2分
所以在a棒穿过磁场I的过程中,通过电阻R的电量
………………2分
将要相碰时a棒的速度…………2分
此时电流………………1分
此时b棒电功率………………1分
(3)由于a棒从高度大于h0处释放,因此当a棒进入磁场I后,b棒开始向左运动。由于每时每刻流过两棒的电流强度大小相等,两磁场的磁感强度大小相等,所以两棒在各自磁场中都做变加速运动,且每时每刻两棒的加速大小均相同,

所以当a棒在t1时间内速度改变时,b棒速度大小也相应改变了,即此时b棒速度大小为………………2分
两棒的速度大小随时间的变化图像大致右图所示…………2分
8、(20xx安徽省合肥市高三第一次教学质量检测)如图所示,匀强磁场的磁感应强度方向竖直向上,大小为B0,用电阻率为ρ、横截面积为S的导线做成的边长为的正方形线圈abcd水平放置,为过ad、bc两边中点的直线,线圈全部都位于磁场中。现把线圈右半部分固定不动,而把线圈左半部分以为轴向上转动60°,如图中虚线所示。
(1)求转动过程中通过导线横截面的电量;
(2)若转动后磁感应强度随时间按B=B0+kt变化(k为常量),求出磁场对方框ab边的作用力大小随时间变化的关系式。
(1)线框在翻折过程中产生的平均感应电动势
①1分
在线框产生的平均感应电流②1分
③1分
翻折过程中通过导线某横截面积的电量④1分
联立①②③④解得:⑤1分
(2)若翻折后磁感应强度随时间按B=B0+kt变化,在线框中产生的感应电动势大小
⑥1分
在线框产生的感应电流⑦1分
导线框ab边所受磁场力的大小为⑧1分
联立⑥⑦⑧解得:⑨1分20xx届高三物理一轮复习全案:第五章电磁感应单元复习(选修3-2)

【单元知识网络】
【单元归纳整合】
一、电磁感应中的“双杆问题”
电磁感应中“双杆问题”是学科内部综合的问题,涉及到电磁感应、安培力、牛顿运动定律和动量定理、动量守恒定律及能量守恒定律等。要求学生综合上述知识,认识题目所给的物理情景,找出物理量之间的关系,因此是较难的一类问题,也是近几年高考考察的热点。
下面对“双杆”类问题进行分类例析
1、“双杆”向相反方向做匀速运动:当两杆分别向相反方向运动时,相当于两个电池正向串联。
2.“双杆”同向运动,但一杆加速另一杆减速
当两杆分别沿相同方向运动时,相当于两个电池反向串联。

3.“双杆”中两杆都做同方向上的加速运动。
“双杆”中的一杆在外力作用下做加速运动,另一杆在安培力作用下做加速运动,最终两杆以同样加速度做匀加速直线运动。
4.“双杆”在不等宽导轨上同向运动。
“双杆”在不等宽导轨上同向运动时,两杆所受的安培力不等大反向,所以不能利用动量守恒定律解题。
【单元强化训练】
1、直导线ab放在如图所示的水平导体框架上,构成一个闭合回路.长直导线cd和框架处在同一个平面内,且cd和ab平行,当cd中通有电流时,发现ab向左滑动.关于cd中的电流下列说法正确的是()
A.电流肯定在增大,不论电流是什么方向
B.电流肯定在减小,不论电流是什么方向
C.电流大小恒定,方向由c到d
D.电流大小恒定,方向由d到c
解析:ab向左滑动,说明通过回路的磁通量在减小,通过回路的磁感应强度在减弱,通过cd的电流在减小,与电流方向无关.
答案:B
2、如图所示,四根等长的铝管和铁块(其中C中铝管不闭合,其他两根铝管和铁管均闭合)竖直放置在同一竖直平面内,分别将磁铁和铁块沿管的中心轴线从管的上端由静止释放,忽略空气阻力,则下列关于磁铁和铁块穿过管的运动时间的说法正确的是()
A.tAtB=tC=tDB.tC=tA=tB=tDC.tCtA=tB=tDD.tC=tAtB=tD
解析:A中闭合铝管不会被磁铁磁化,但当磁铁穿过铝管的过程中,铝管可看成很多圈水平放置的铝圈,据楞次定律知,铝圈将发生电磁感应现象,阻碍磁铁的相对运动;因C中铝管不闭合,所以磁铁穿过铝管的过程不发生电磁感应现象,磁铁做自由落体运动;铁块在B中铝管和D中铁管中均做自由落体运动,所以磁铁和铁块在管中运动时间满足tAtC=tB=tD,A正确.
答案:A
3、
(20xx陕西省西安市统考)如图所示,Q是单匝金属线圈,MN是一个螺线管,它的绕线方法没有画出,Q的输出端a、b和MN的输入端c、d之间用导线相连,P是在MN的正下方水平放置的用细导线绕制的软弹簧线圈.若在Q所处的空间加上与环面垂直的变化磁场,发现在t1至t2时间段内弹簧线圈处于收缩状态,则所加磁场的磁感应强度的变化情况可能是()
解析:在t1至t2时间段内弹簧线圈处于收缩状态,说明此段时间内穿过线圈的磁通量变大,即穿过线圈的磁场的磁感应强度变大,则螺线管中电流变大,单匝金属线圈Q产生的感应电动势变大,所加磁场的磁感应强度的变化率变大,即B—t图线的斜率变大,选项D正确.
答案:D
4、如图9-2-16中半径为r的金属圆盘在垂直于盘面的匀强磁场B中,绕O轴以角速度ω沿逆时针方向匀速转动,则通过电阻R的电流的大小和方向是(金属圆盘的电阻不计)()
A.由c到d,I=Br2ω/RB.由d到c,I=Br2ω/R
C.由c到d,I=Br2ω/(2R)D.由d到c,I=Br2ω/(2R)
解析:金属圆盘在匀强磁场中匀速转动,可以等效为无数根长为r的导体棒绕O点做匀速圆周运动,其产生的感应电动势大小为E=Br2ω/2,由右手定则可知其方向由外指向圆心,故通过电阻R的电流I=Br2ω/(2R),方向由d到c,故选D项.
答案:D
5、(20xx山东省烟台市一模)如图甲所示,P、Q为水平面内平行放置的金属长直导轨,间距为d,处在大小为B、方向竖直向下的匀强磁场中.一根质量为m、电阻为r的导体棒ef垂直于P、Q放在导轨上,导体棒ef与P、Q导轨之间的动摩擦因数为μ.质量为M的正方形金属框abcd,边长为L,每边电阻均为r,用细线悬挂在竖直平面内,ab边水平,线框的a、b两点通过细导线与导轨相连,金属框上半部分处在大小为B、方向垂直框面向里的匀强磁场中,下半部分处在大小也为B,方向垂直框面向外的匀强磁场中,不计其余电阻和细导线对a、b点的作用力.现用一电动机以恒定功率沿导轨方向水平牵引导体棒ef向左运动,从导体棒开始运动计时,悬挂线框的细线拉力T随时间的变化如图乙所示,求:
(1)t0时间以后通过ab边的电流
(2)t0时间以后导体棒ef运动的速度
(3)电动机的牵引力功率P
解:(1)以金属框为研究对象,从t0时刻开始拉力恒定,故电路中电流恒定,设ab边中电流为I1,cd边中电流为I2
由受力平衡:………(2分)
由图象知……………………………(1分)
,I1=3I2……………………(1分)
由以上各式解得:………………(2分)
(2)设总电流为I,由闭合路欧姆定律得:
…………………………………(2分)
………………………………………(1分)
………………………………………(1分)
I=I1+I2=I1=…………………………(2分)
解得:…………………………(2分)
(3)由电动机的牵引功率恒定P=Fv
对导体棒:……………(2分)
解得:……(2分)
6、(20xx山东省东营市一模)如图甲所示,两平行金属板的板长不超过0.2m,板间的电压u随时间t变化的图线如图乙所示,在金属板右侧有一左边界的MN、右边无界的匀强磁场。磁感应强度B=0.01T;方向垂直纸面向里。现有带正电的粒子连续不断地以速度,沿两板间的中线平行金属板射入电场中,磁场边界MN与中线垂直。已知带电粒子的比荷,粒子所受的重力和粒子间的相互作用力均忽略不计。
(1)在每个粒子通过电场区域的时间内,可以把板间的电场强度看作是恒定的。试说明这种处理能够成立的理由。
(2)设t=0.1S时刻射入电场的带电粒子恰能从平行金属板边缘射出,求该带电粒子射出电场时的速度大小。
(3)对于所有经过电场射入磁场的带电粒子,设其射入磁场的入射点和从磁场射出的出射点间的距离为d,试判断d的大小是否随时间而变化?若不变,证明你的结论;若变,求出d的变化范围。
(1)带电粒子在金属板间的运动时间①
得,(或t时间内金属板间电压变化,变化很小)②
…………2分
故t时间内金属板间的电场可以认为是恒定的…………2分
(2)t=0.1s时刻偏转电压
带电粒子沿两板间的中线射入电场恰从平行金属板边缘飞出电场,电场力做功
③…………2分
由动能定理:④…………2分
代入数据可得V=1.414×103m/s⑤…………2分
(3)设某一任意时刻射出电场的粒子速度为v,速度方向与水平方向的夹角为,则
⑥…………2分
粒子在磁场中有⑦…………2分
可得粒子进入磁场后,在磁场中做圆周运动的半径
由几何关系⑧…………2分
可得:d=20m,故d不随时间而变化。…………2分
7、(20xx天津市六校高三第三次联考)如图所示,两根间距为L的金属导轨MN和PQ,电阻不计,左端向上弯曲,其余水平,水平导轨左端有宽度为d、方向竖直向上的匀强磁场I,右端有另一磁场II,其宽度也为d,但方向竖直向下,磁场的磁感强度大小均为B。有两根质量均为m的金属棒a和b与导轨垂直放置,a和b在两导轨间的电阻均为R,b棒置于磁场II中点C、D处,导轨除C、D两处(对应的距离极短)外其余均光滑,两处对棒可产生总的最大静摩擦力为棒重力的K倍,a棒从弯曲导轨某处由静止释放。当只有一根棒作切割磁感线运动时,它速度的减小量与它在磁场中通过的距离成正比,即∝。试求:
(1)若b棒保持静止不动,则a棒释放的最大高度h0。
(2)若将a棒从高度小于h0的某处释放,使其以速度v0进入磁场I,结果a棒以的
速度从磁场I中穿出,求在a棒穿过磁场I过程中通过b棒的电量q和两棒即将相碰时b棒上的电功率Pb。
(3)若将a棒从高度大于h0的某处释放,使其以速度v1进入磁场I,经过时间t1后a棒从磁场I穿出时的速度大小为,求此时b棒的速度大小,在如图坐标中大致画出t1时间内两棒的速度大小随时间的变化图像。
解:(1)a棒从h0高处释放后在弯曲导轨上滑动时机械守恒,有
………………2分
a棒刚进入磁场I时…………1分
此时感应电流大小…………2分
此时b棒受到的安培力大小…………1分
依题意,有F=Kmg…………2分
求得………………1分
(2)由于a棒从小于进入h0释放,因此b棒在两棒相碰前将保持静止。
流过电阻R的电量
又………………2分
所以在a棒穿过磁场I的过程中,通过电阻R的电量
………………2分
将要相碰时a棒的速度…………2分
此时电流………………1分
此时b棒电功率………………1分
(3)由于a棒从高度大于h0处释放,因此当a棒进入磁场I后,b棒开始向左运动。由于每时每刻流过两棒的电流强度大小相等,两磁场的磁感强度大小相等,所以两棒在各自磁场中都做变加速运动,且每时每刻两棒的加速大小均相同,

所以当a棒在t1时间内速度改变时,b棒速度大小也相应改变了,即此时b棒速度大小为………………2分
两棒的速度大小随时间的变化图像大致右图所示…………2分
8、(20xx安徽省合肥市高三第一次教学质量检测)如图所示,匀强磁场的磁感应强度方向竖直向上,大小为B0,用电阻率为ρ、横截面积为S的导线做成的边长为的正方形线圈abcd水平放置,为过ad、bc两边中点的直线,线圈全部都位于磁场中。现把线圈右半部分固定不动,而把线圈左半部分以为轴向上转动60°,如图中虚线所示。
(1)求转动过程中通过导线横截面的电量;
(2)若转动后磁感应强度随时间按B=B0+kt变化(k为常量),求出磁场对方框ab边的作用力大小随时间变化的关系式。
(1)线框在翻折过程中产生的平均感应电动势
①1分
在线框产生的平均感应电流②1分
③1分
翻折过程中通过导线某横截面积的电量④1分
联立①②③④解得:⑤1分
(2)若翻折后磁感应强度随时间按B=B0+kt变化,在线框中产生的感应电动势大小
⑥1分
在线框产生的感应电流⑦1分
导线框ab边所受磁场力的大小为⑧1分
联立⑥⑦⑧解得:⑨1分