88教案网

你的位置: 教案 > 高中教案 > 导航 > 20xx高考物理《机械能守恒定律》材料分析

高中物理欧姆定律教案

发表时间:2021-02-18

20xx高考物理《机械能守恒定律》材料分析。

一名优秀的教师在每次教学前有自己的事先计划,教师要准备好教案,这是老师职责的一部分。教案可以让学生更好的消化课堂内容,帮助教师营造一个良好的教学氛围。优秀有创意的教案要怎样写呢?下面是由小编为大家整理的“20xx高考物理《机械能守恒定律》材料分析”,仅供参考,欢迎大家阅读。

20xx高考物理《机械能守恒定律》材料分析

第3节机械能守恒定律
考点一|重力势能、弹性势能及机械能守恒的判断

1.重力做功与重力势能
(1)重力做功的特点
重力做功与路径无关,只与初、末位置的高度差有关.
(2)重力做功与重力势能变化的关系
①定性关系:重力对物体做正功,重力势能就减少;重力对物体做负功,重力势能就增加.
②定量关系:物体从位置A到位置B时,重力对物体做的功等于物体重力势能的减少量,即WG=-ΔEp.
③重力势能的变化量是绝对的,与参考面的选取无关.
2.弹性势能
(1)定义
发生弹性形变的物体的各部分之间,由于有弹力的相互作用而具有的势能.
(2)弹力做功与弹性势能变化的关系
①弹力做功与弹性势能变化的关系类似于重力做功与重力势能变化的关系.
②对于弹性势能,一般物体的弹性形变量越大,弹性势能越大.
3.机械能
动能、重力势能和弹性势能统称为机械能.
4.机械能守恒定律
内容:在只有重力或弹力做功的物体系统内,动能与势能可以互相转化,而总的机械能保持不变.
5.机械能守恒的条件
(1)系统只受重力或弹簧弹力的作用,不受其他外力.
(2)系统除受重力或弹簧弹力作用外,还受其他内力和外力,但这些力对系统不做功.
(3)系统内除重力或弹簧弹力做功外,还有其他内力和外力做功,但这些力做功的代数和为零.
(4)系统跟外界没有发生机械能的传递,系统内外也没有机械能与其他形式的能发生转化.

(20xx·浙江10月学考)如图531所示,无人机在空中匀速上升时,不断增加的能量是()

图531
A.动能B.动能、重力势能
C.重力势能、机械能
D.动能、重力势能、机械能
C[动能与质量和速度有关,重力势能与质量和高度有关,机械能为两者之和,题目中无人机匀速上升,速度不变,高度增加,因此动能不变,重力势能增加,机械能增加.故选C.]

1.重力势能的求解方法
(1)定义法:选取参考平面,确定物体相对参考平面的高度h,代入Ep=mgh求解重力势能.
(2)WG和Ep关系法:由WG=Ep1-Ep2知Ep2=Ep1-WG或Ep1=WG+Ep2.
(3)变化量法:重力势能的变化量ΔEp=Ep2-Ep1,故Ep2=Ep1+ΔEp或Ep1=Ep2-ΔEp.
2.对重力做功和重力势能的“四点”提醒
(1)重力做功的大小与物体的运动状态无关,与物体是否受其他力无关;
(2)重力做功,一定会引起重力势能的变化;
(3)重力势能是标量,但有正负,其意义表示物体的重力势能比它在参考平面的重力势能大还是小;
(4)WG=-ΔEp中的负号表示重力做的功与重力势能变化的绝对值相等,符号相反.
3.机械能是否守恒的判断方法
(1)利用机械能的定义判断(直接判断):机械能包括动能、重力势能和弹性势能,判断机械能是否守恒可以看物体或系统机械能的总和是否变化.
(2)用做功判断:若物体或系统只有重力或系统内弹力做功,虽受其他力,但其他力不做功,机械能守恒.
(3)用能量转化来判断:若物体系统中只有动能和势能的相互转化而无机械能与其他形式的能的转化,则物体系统机械能守恒.

1.关于重力势能的几种理解,正确的是()
A.重力势能的值与参考平面的选择有关
B.放在地面上的物体,它的重力势能一定等于零
C.不同质量的物体,由于在同一地点,所以重力势能相等
D.因为重力势能是标量,所以只能取正值
A[重力势能的值与参考平面有关,选定了参考平面后,物体处于比参考平面低处,其重力势能为负值,A正确.]
2.关于重力做功,下列说法不正确的是()
A.重力做正功,物体的重力势能一定减小
B.重力做负功,重力势能一定增加
C.重力做负功,可以说成物体克服重力做功
D.重力做正功,物体的动能一定增加
D[重力做正功,重力势能减小,重力做负功,重力势力增加,D符合题意.]
3.如图532所示为蹦床运动员在空中表演的情景.在运动员从最低点开始反弹至即将与蹦床分离的过程中,蹦床的弹性势能和运动员的重力势能变化情况分别是()

图532
A.弹性势能减小,重力势能增大
B.弹性势能减小,重力势能减小
C.弹性势能增大,重力势能增大
D.弹性势能增大,重力势能减小
A[当蹦床恢复原状时,运动员与蹦床分离,此过程中,蹦床的形变量减小,所以弹性势能减小;运动员的高度一直在增大,所以重力势能增大.A选项正确,B、C、D选项错误.]
4.如图533所示,一蹦极运动员身系弹性蹦极绳从水面上方的高台下落,到最低点时距水面还有数米距离.假定空气阻力可忽略,运动员可视为质点,下列说法不正确的是()

图533
A.运动员到达最低点前重力势能始终减小
B.蹦极绳张紧后的下落过程中,弹力做负功,弹性势能增加
C.蹦极过程中,运动员、地球和蹦极绳所组成的系统机械能守恒
D.蹦极过程中,重力势能的改变量与重力势能零点的选取有关
D[运动员到达最低点前重力势能始终减小,选项A正确,不符合题意;蹦极绳张紧后的下落过程中,弹力做负功,由功能关系知,弹性势能增加,选项B正确,不符合题意;蹦极过程中,运动员、地球和蹦极绳所组成的系统只有动能和势能的转化,系统机械能守恒,选项C正确,不符合题意;蹦极过程中,重力势能的改变量与重力势能零点的选取无关,选项D错误,符合题意.]
5.(多选)(加试要求)如图534所示,下列关于机械能是否守恒的判断正确的是()

图534
A.甲图中,物体A将弹簧压缩的过程中,物体A机械能守恒
B.乙图中,物体A固定,物体B沿斜面匀速下滑,物体B的机械能守恒
C.丙图中,不计任何阻力和定滑轮的质量时,A加速下落,B加速上升过程中,A、B组成的系统机械能守恒
D.丁图中,小球沿水平面做匀速圆锥摆运动时,小球的机械能守恒
CD[甲图中重力和弹力做功,物体A和弹簧组成的系统机械能守恒,但物体A机械能不守恒,A错.乙图中物体B除受重力外,还受到弹力和摩擦力作用,弹力不做功,但摩擦力做负功,物体B的机械能不守恒,B错.丙图中绳子张力对A做负功,对B做正功,代数和为零,A、B组成的系统机械能守恒,C对.丁图中小球的动能不变,势能不变,机械能守恒,D对.]考点二|机械能守恒定律的应用

机械能守恒的三种表达式
1.守恒观点
(1)表达式:
Ek1+Ep1=Ek2+Ep2或E1=E2.
(2)意义:系统初状态的机械能等于末状态的机械能.
(3)注意:要先选取零势能参考平面,并且在整个过程中必须选取同一个零势能参考平面.
2.转化观点
(1)表达式:ΔEk=-ΔEp.
(2)意义:系统的机械能守恒时,系统增加(或减少)的动能等于系统减少(或增加)的势能.
3.转移观点(加试要求)
(1)表达式:ΔEA增=ΔEB减.
(2)意义:若系统由A、B两部分组成,当系统的机械能守恒时,则A部分机械能的增加量等于B部分机械能的减少量.

1.应用机械能守恒定律解题的优点
应用机械能守恒定律时,相互作用的物体间的力可以是变力,也可以是恒力,只要符合守恒条件,机械能就守恒.而且机械能守恒定律只涉及物体系的初、末状态的物理量,而不需分析中间过程的复杂变化,使处理问题得到简化.
2应用机械能守恒定律解题的步骤
(1)选取研究对象(物体系或物体),明确研究过程.
(2)进行受力、做功分析,判断机械能是否守恒.
(3)根据题意灵活选取定律的表达式,列方程并求解.
注意:应用守恒式E1=E2时,应选择合适的零势能面;应用转化式ΔEk=-ΔEp时,无需选择零势能面,但需要弄清动能或势能是增加还是减小;应用转移式ΔEA增=ΔEB减时,无需选择零势能面,但需要弄清每个物体的机械能是增加还是减小.

1.总质量约为3.8吨的“嫦娥三号”探测器在距月面3m处关闭反推发动机,让其以自由落体方式降落在月球表面.4条着陆腿触月信号显示,“嫦娥三号”完美着陆月球虹湾地区.月球表面附近重力加速度约为1.6m/s2,4条着陆腿可视作完全相同的四个轻弹簧,在软着陆后,每个轻弹簧获得的弹性势能大约是()

图535
A.28500JB.4560J
C.18240JD.9120J
B[设每个轻弹簧获得的弹性势能为Ep,由机械能守恒定律可得:mgh=4Ep,故Ep=mgh=4560J,故B正确.]
2.在同一位置以相同的速率把三个小球分别沿水平、斜向上、斜向下方向抛出,不计空气阻力,则落在同一水平地面时的速度大小()
A.一样大B.水平抛的最大
C.斜向上抛的最大D.斜向下抛的最大
A[由机械能守恒定律mgh+mv=mv知,落地时速度v2的大小相等,故A正确.]
3.如图536所示,在轻弹簧的下端悬挂一个质量为m的小球A,若将小球A从弹簧原长位置由静止释放,小球A能够下降的最大高度为h.若将小球A换为质量为2m的小球B,仍从弹簧原长位置由静止释放,已知重力加速度为g,不计空气阻力,则小球B下降h时的速度为()

图536
A.B.
C.D.0
B[对弹簧和小球A,根据机械能守恒定律得弹性势能Ep=mgh;对弹簧和小球B,根据机械能守恒定律有Ep+×2mv2=2mgh,得小球B下降h时的速度v=,只有选项B正确.]
4.(加试要求)如图537所示,固定的竖直光滑长杆上套有质量为m的小圆环,圆环与水平状态的轻质弹簧一端连接,弹簧的另一端连接在墙上,且处于原长状态.现让圆环由静止开始下滑,已知弹簧原长为L,圆环下滑到最大距离时弹簧的长度变为2L(未超过弹性限度),则在圆环下滑到最大距离的过程中()

图537
A.圆环的机械能守恒
B.弹簧弹性势能变化了mgL
C.圆环下滑到最大距离时,所受合力为零
D.圆环重力势能与弹簧弹性势能之和保持不变
B[圆环沿杆下滑的过程中,圆环与弹簧组成的系统动能、弹性势能、重力势能之和守恒,选项A、D错误;弹簧长度为2L时,圆环下落的高度h=L,根据机械能守恒定律,弹簧的弹性势能增加了ΔEp=mgh=mgL,选项B正确;圆环释放后,圆环向下先做加速运动,后做减速运动,当速度最大时,合力为零,下滑到最大距离时,具有向上的加速度,合力不为零,选项C错误.]
5.(20xx·上虞模拟)如图538所示,竖直平面内的一半径R=0.50m的光滑圆弧槽BCD,B点与圆心O等高,一水平面与圆弧槽相接于D点,质量m=0.10kg的小球从B点正上方H=0.95m高处的A点自由下落,由B点进入圆弧轨道,从D点飞出后落在水平面上的Q点,DQ间的距离x=2.4m,球从D点飞出后的运动过程中相对水平面上升的最大高度h=0.80m,g取10m/s2,不计空气阻力,求:

图538
(1)小球经过C点时轨道对它的支持力大小FN;
(2)小球经过最高点P的速度大小vP;
(3)D点与圆心O的高度差hOD.
【解析】(1)设经过C点时速度为v1,由机械能守恒有mg(H+R)=mv由牛顿第二定律有FN-mg=代入数据解得FN=6.8N.(2)P到Q做平抛运动有h=gt2,=vPt代入数据解得vP=3.0m/s.(3)由机械能守恒定律,有mv+mgh=mg(H+hOD),代入数据,解得hOD=0.30m.
【答案】(1)6.8N(2)3.0m/s(3)0.30m

扩展阅读

20xx高考物理复习实验06验证机械能守恒定律学案新人教版


实验06验证机械能守恒定律
(对应学生用书P102)
一、实验目的
验证机械能守恒定律.
二、实验原理
通过实验,求出做自由落体运动物体的重力势能的减少量和相应过程动能的增加量,若二者相等,说明机械能守恒,从而验证机械能守恒定律.
三、实验器材
打点计时器、电源、纸带、复写纸、重物、刻度尺、铁架台(附夹子)、导线两根
四、实验步骤
1.安装仪器
2.将纸带固定在重物上,让纸带穿过打点计时器限位孔
3.用手提着纸带,让重物靠近打点计时器并处于静止状态下,然后接通电源,松开纸带,让重物自由落下,纸带上打下一系列小点
4.从几条打下点的纸带中挑选出点迹清楚的纸带进行测量
5.在起始点标上0,在以后各点依次标上1、2、3…,用刻度尺测出对应下落高度h1、h2、h3…
(20xx重庆市一中月考)(1)关于“验证机械能守恒定律”的实验中,以下说法中正确的是____________
A.实验时需要称出重物的质量
B.实验中摩擦是不可避免的,因此纸带越短越好,因为纸带越短,克服摩擦做的功就少,误差就小
C.纸带上打下的第1、2点间距超过2mm,则无论怎样处理数据,实验误差都会很大
D.实验处理数据时,可直接利用打下的实际点迹,而不必采用“计数点”的方法
(2)若正确的操作完成实验,正确的选出纸带进行测量,量得连续三点A、B、C到第一个点O的距离如下图所示(相邻计数点时间间隔为0.02s),当地重力加速度的值为9.8m/s2,那么(结果均保留两位有效数字)
①纸带的____________端与重物相连
②打下计数点B时,重物的速度vB=____________m/s
③在从起点O到打下计数点B的过程中,测得重物重力势能的减少量ΔEp略大于动能的增加量ΔEk,这是因为________________________________________________.
解析:(1)A实验时动能的增加量与重力势能的减少量,均含有质量,因此不需称出重物的质量,故A错误;B实验中摩擦是不可避免的,因此纸带短点好,因为纸带越短,克服摩擦力做的功就越少,但要通过测量长度来求出变化的高度与瞬时速度,因此太短导致误差就越大,故B错误;C.若纸带上第1、2两点间距大于2mm,可在后面选取两个点用表达式mgΔh=12mv22-12mv21依然可以来验证机械能守恒定律,故C错误;D处理打点的纸带时,可以直接利用打点计时器打出的实际点迹,而不必采用“计数点”的方法,若采用计数点,会使测量长度变长,从而减小测量长度的误差,故D正确.故选D.
(2)①重物在开始下落时速度较慢,在纸带上打的点较密,越往后,物体下落得越快,纸带上的点越稀,所以纸带上靠近重物的一端的点较密,因此纸带的左端与重物相连.
②根据匀变速直线运动中间时刻的速度等于该过程的平均速度有:
vB=xAC2T=7.06-3.14×10-22×0.02m/s=0.98m/s.
③ΔEpΔEk说明有部分重力势能变成了其他能,是因为下落存在摩擦阻力和空气阻力的影响.
答案:(1)D(2)①左②0.98③存在阻力做功
(对应学生用书P103)
一、数据处理
计算速度vn=hn+1-hn-12T
方案一:利用起点和第n点:验证ghn=12v2n
方案二:任取较远两点A、B:验证ghAB=12v2B-12v2A
二、误差分析
1.减小测量误差:一是测下落距离时都从0点量起,一次将各点对应下落高度测量完,二是多测几次取平均值.
2.误差由于重物和纸带下落过程中要克服阻力做功.故动能的增加量ΔEk=12mv2n必定稍小于重力势能的减少量ΔEp=mghn,改进办法是调整器材的安装,尽可能地减小阻力.
三、注意事项
1.打点计时器要竖直:安装打点计时器时要竖直架稳,使其两限位孔在同一竖直平面内以减少摩擦阻力.
2.重物密度要大:重物应选用质量大、体积小、密度大的材料.
3.一先一后:应先接通电源,让打点计时器正常工作,后松开纸带让重物下落.
④测长度,算速度:某时刻的瞬时速度的计算应用vn=dn+1-dn-12T,不能用vn=2gdn或vn=gt来计算.
(20xx全国新课标卷Ⅰ)某同学用图(a)所示的实验装置验证机械能守恒定律,其中打点计时器的电源为交流电源,可以使用的频率有20Hz、30Hz和40Hz.打出纸带的一部分如图(b)所示.
图(a)
图(b)
该同学在实验中没有记录交流电的频率f,需要用实验数据和其他题给条件进行推算.
(1)若从打出的纸带可判定重物匀加速下落,利用f和图(b)中给出的物理量可以写出:在打点计时器打出B点时,重物下落的速度大小为____________,打出C点时重物下落的速度大小为____________,重物下落的加速度大小为____________.
(2)已测得s1=8.89cm,s2=9.50cm,s3=10.10cm;当重力加速度大小为9.80m/s2,实验中重物受到的平均阻力大小约为其重力的1%.由此推算出f为____________Hz.
解析:(1)打B点时,重物下落的速度等于AC段的平均速度,所以vB=s1+s22T=s1+s2f2;同理,打出C点时,重物下落的速度vC=s2+s32T=s2+s3f2;加速度a=s3-s12T2=s3-s1f22.
(2)由牛顿第二定律得:mg-kmg=ma,解得:f=21-kgs3-s1,代入数值解得:f=40Hz.
答案:(1)12(s1+s2)f12(s2+s3)f12(s3-s1)f2(2)40
(对应学生用书P103)
视角1实验器材、装置的改进
视角2速度测量方法的改进
由光电门计算速度――→替代测量纸带上各点速度
视角3实验方案的改进
利用自由落体运动的闪光照片验证机械能守恒定律.
(20xx江苏卷)某同学用如图所示的装置验证机械能守恒定律.一根细线系住钢球,悬挂在铁架台上,钢球静止于A点,光电门固定在A的正下方,在钢球底部竖直地粘住一片宽度为d的遮光条.将钢球拉至不同位置由静止释放,遮光条经过光电门的挡光时间t可由计时器测出,取v=dt作为钢球经过A点时的速度.记录钢球每次下落的高度h和计时器示数t,计算并比较钢球在释放点和A点之间的势能变化大小ΔEp与动能变化大小ΔEk,就能验证机械能是否守恒.
(1)ΔEp=mgh计算钢球重力势能变化的大小,式中钢球下落高度h应测量释放时的钢球球心到____________之间的竖直距离.
A.钢球在A点时的顶端
B.钢球在A点时的球心
C.钢球在A点时的底端
(2)用ΔEk=12mv2计算钢球动能变化的大小,用刻度尺测量遮光条宽度,示数如图所示,其读数为____________cm.某次测量中,计时器的示数为0.0100s,则钢球的速度为v=____________m/s.
(3)下表为该同学的实验结果:
ΔEp(×10-2J)4.8929.78614.6919.5929.38
ΔEk(×10-2J)5.0410.115.120.029.8
他发现表中的ΔEp与ΔEk之间存在差异,认为这是由于空气阻力造成的.你是否同意他的观点?请说明理由.
(4)请你提出一条减小上述差异的改进建议.
解析:(1)钢球下落高度h,应测量释放时钢球心到钢球在A点时的球心之间的竖直距离,故选B.
(2)遮光条的宽度d=1.50cm,钢球的速度v=dt=1.50m/s
(3)不同意,因为空气阻力会造成ΔEk小于ΔEp,但表中ΔEk大于ΔEp.
(4)分别测出光电门和球心到悬点的长度L和l,计算ΔEk时,将v折算成钢球的速度v′=lLv.
答案:(1)B(2)1.501.50(3)不同意理由见解析(4)见解析

验证机械能守恒定律


一名优秀的教师在教学时都会提前最好准备,教师在教学前就要准备好教案,做好充分的准备。教案可以让学生更好的消化课堂内容,帮助教师提高自己的教学质量。优秀有创意的教案要怎样写呢?下面是小编为大家整理的“验证机械能守恒定律”,欢迎您参考,希望对您有所助益!

总课题机械能守恒定律总课时第26课时
课题验证机械能守恒定律课型实验课



标知识与技能
1、会用打点计时器打下的纸带计算物体运动的速度。
2、掌握验证机械能守恒定律的实验原理。
过程与方法
通过用纸带与打点计时器来验证机械能守恒定律,体验验证过程和物理学的研究方法。
情感、态度与价值观
通过实验验证,体会学习的快乐,激发学习的兴趣;通过亲身实践,树立“实践是检验真理的唯一标准”的科学观。培养学生的观察和实践能力,培养学生实事求是的科学态度。
教学
重点掌握验证机械能守恒定律的实验原理。
教学
难点验证机械能守恒定律的误差分析及如何减小实验误差的方法。
学法
指导实验探究
教学
准备
教学
设想预习导学→学生初步了解本节内容→实验探究→突出重点,突破难点→典型例题分析→巩固知识→达标提升
教学过程
师生互动补充内容或错题订正
任务一预习导学
⒈为进行验证机械能守恒定律的实验,有下列器材可供选用:铁架台,打点计时器,复写纸,纸带,秒表,低压直流电源,导线,电键,天平。其中不必要的器材有:;缺少的器材是。
⒉物体做自由落体运动时,只受力作用,其机械能守恒,若物体自由下落H高度时速度为V,应有MgH=,故只要gH=1/2V2成立,即可验证自由落体运动中物体的机械能守恒。
⒊在打出的各纸带中挑选出一条点迹,且第1、2两打点间距离接近的纸带。
⒋测定第N个点的瞬时速度的方法是:测出与N点相邻的前、后两段相等时间T内下落的距离SN和SN+1,,有公式VN=算出。
⒌在验证机械能守恒定律时,如果以v2/2为纵轴,以h为横轴,根据实验数据绘出的图线应是,才能验证机械能守恒定律,其斜率等于的数值。
任务二重点复习
1、推导出机械能守恒定律在本实验中的具体表达式。
在图1中,质量为m的物体从O点自由下落,以地作零重力势能面,下落过程中任意两点A和B的机械能分别为:
EA=,EB=
如果忽略空气阻力,物体下落过程中的机械能守恒,于是有:

上式亦可写成

为了方便,可以直接从开始下落的O点至任意一点(如图1中A点)来进行研究,这时应有:----本实验要验证的表达式,式中h是
高度,vA是物体在A点的
速度。
2、如何求出A点的瞬时速度vA?
(引导:根据做匀加速运动的物体在某一段时间t内的平均速度等于该时间中间时刻的瞬时速度可求出A点的瞬时速度vA。)
图2是竖直纸带由下而上实际打点后的情况。从O点开始依次取点1,2,3,……图中s1,s2,s3,……分别为0~2点,1~3点,2~4点……各段间的距离。
根据公式,t=2×0.02s(纸带上任意两个相邻的点间所表示的时间都是0.02s),可求出各段的平均速度。这些平均速度就等于是1,2,3,……各点相对应的瞬时速度v1,v2,v3,…….

3、如何确定重物下落的高度?
(引导:图2中h1,h2,h3,……分别为纸带从O点下落的高度。)

根据以上数值可以计算出任意点的重力势能和动能,从而验证机械能守恒定律。
任务三进行实验
一、在学生开始做实验之前,老师应强调如下几个问题:
1、该实验中选取被打点纸带应注意两点:一是第一点O为计时起点,O点的速度应为零。怎样判别呢?

2、是否需要测量重物的质量?

3、在架设打点计时器时应注意什么?为什么?

4、实验时,接通电源和释放纸带的顺序怎样?为什么?

5、测量下落高度时,某同学认为都必须从起始点算起,不能弄错。他的看法正确吗?为了减小测量h值的相对误差,选取的各个计数点要离起始点适当远些好,还是近些好?

二、学生进行分组实验。(学生讨论实验的步骤,教师巡回指导,帮助能力较差的学生完成实验步骤)(参考实验步骤)
1.把打点计时器安装在铁架台上,用导线将学生电源和打点计时器接好.
2.把纸带的一端用夹子固定在重锤上,另一端穿过打点计时器的限位孔,用手竖直提起纸带,使重锤停靠在打点计时器附近.
3.接通电源,待计时器打点稳定后再松开纸带,让重锤自由下落,打点计时器应该在纸带上打出一系列的点.
4.重复上一步的过程,打三到五条纸带.
5.选择一条点迹清晰且第l、2点间距离接近2mm的纸带,在起始点标上0,以后各点依次为1、2、3……用刻度尺测量对应下落的高度h1h2h3,……记人表格中.
6.用公式vn=hn+1+hn-1/2t,计算出各点的瞬时速度v1v2v3……并记录在表格中.
各计数点l23456
下落高度
速度
势能
动能
结论
7.计算各点的重力势能的减少量mgh。和动能的增加量1/2mvn2,并进行比较.看是否相等,将数值填人表格内.
任务四达标提升
(1)2.在《验证机械能守恒定律》的实验中,已知打点计时器所用电源的频率为50Hz,查得当地的重力加速度g=9.8m/s2,实验中得到一条点迹清楚的纸带如图7-10-1所示,把第一个点记作O,另选连续的4个点A、B、C、D作为测量的点,经测量A、B、C、D各点到O的距离分别为62.99cm、70.18cm、77.76cm、85.73cm.根据以上数据,可知重物由O点运动到C点,重力势能减少量等于J,动能的增加量等于J(取三位有效数字).在实验允许误差范围内,可认为重物下落过程中,机械能,(可设重物质量为m)
2.在《验证机械能守恒定律》的实验中,下列说法中正确的是()
A.要用天平称重锤质量
B.实验时,当松开纸带让重锤下落的同时,立即接通电源
C.要选用第1、2两点接近2mm的纸带
D.实验结果总是动能增加量略大于重力势能的减小量
(3)在做“验证机械能守恒定律”的实验时,用打点计时器打出纸带如图3所示,其中A点为打下的第一个点,0、1、2……为连续的计数点。现测得两相邻计数点之间的距离分别为s1、s2、s3、s4、s5、s6,已知相邻计数点间的打点时间间隔均为T。根据纸带测量出的距离及打点的时间间隔,可以求出此实验过程中重锤下落运动的加速度大小表达式为:
_________。在打第5号计数点时,纸带运动的瞬时速度大小的表达式为________。要验证机械能守恒定律,为减小实验误差,应选择打下第_________号和第__________号计数点之间的过程为研究对象。
(4)某次“验证机械能守恒定律”的实验中,用6V、50Hz的打点计时器打出的一条无漏点的纸带,如图4所示,O点为重锤下落的起点,选取的计数点为A、B、C、D,各计数点到O点的长度已在图上标出,单位为毫米,重力加速度取9.8m/s2,若重锤质量为1kg。
①打点计时器打出B点时,重锤下落的速度vB=m/s,重锤的动能EkB=
J。
②从开始下落算起,打点计时器打B点时,重锤的重力势能减小量为
J。
③根据纸带提供的数据,在误差允许的范围内,重锤从静止开始到打出B点的过程中,得到的结论是。

高三物理《机械能守恒定律》教材分析


高三物理《机械能守恒定律》教材分析

考点19机械能守恒定律
考点名片
考点细研究:本考点是物理教材的基础,也是历年高考必考的内容之一,其主要包括的考点有:(1)机械能守恒的条件的理解及判断方法;(2)机械能守恒定律的三种表达形式;(3)多个物体机械能守恒。其中考查到的如:20xx年全国卷第16题、20xx年全国卷第25题、20xx年江苏高考第14题、20xx年全国卷第21题、20xx年天津高考第3题、20xx年四川高考第1题、20xx年福建高考第18题、20xx年全国卷第15题、20xx年安徽高考第15题、20xx年福建高考第20题、20xx年浙江高考第23题等。
备考正能量:本考点的考题题型全、分值高,与其他知识相结合、与生产生活实际和现代科技结合命题的趋势较强,在复习中应侧重对基础知识的理解和应用。

一、基础与经典
1.下列说法正确的是()
A.做匀速直线运动的物体,机械能一定守恒
B.做曲线运动的物体,机械能可能守恒
C.物体所受的合力为零,机械能一定守恒
D.物体所受的合力不为零时,机械能一定不守恒
答案B
解析做匀速运动的物体只意味着其动能不变,但势能不一定不变,故选项A错误;做曲线运动的物体比如:平抛运动,其机械能就守恒,故选项B正确;物体所受的合力为零,只意味着物体处于平衡状态,机械能不一定守恒,故选项C错误;物体所受的合力不为零,一样能满足机械能守恒定律的条件,如做自由落体运动的物体,故选项D错误。
2.在如图所示的物理过程示意图中,甲图一端固定有小球的轻杆,从右偏上30°角释放后绕光滑支点摆动;乙图为末端固定有小球的轻质直角架,释放后绕通过直角顶点的固定轴O无摩擦转动;丙图为轻绳一端连着一小球,从右偏上30°角处自由释放;丁图为置于光滑水平面上的带有竖直支架的小车,把用细绳悬挂的小球从图示位置释放,小球开始摆动,则关于这几个物理过程(空气阻力忽略不计),下列判断中正确的是()

A.甲图中小球机械能守恒
B.乙图中小球A机械能守恒
C.丙图中小球机械能守恒
D.丁图中小球机械能守恒
答案A
解析甲图过程中轻杆对小球不做功,小球的机械能守恒,A正确;乙图过程中轻杆对A的弹力不沿杆的方向,会对小球做功,所以小球A的机械能不守恒,但两个小球组成的系统机械能守恒,B错误;丙图中小球在绳子绷紧的瞬间有动能损失,机械能不守恒,C错误;丁图中小球和小车组成的系统机械能守恒,但小球的机械能不守恒,这是因为摆动过程中小球的轨迹不是圆弧,细绳会对小球做功,D错误。
3.半径为r和R(rΔEk2t1t2B.ΔEk1=ΔEk2t1t2
C.ΔEk1ΔEk2t1t2,沿轨道运动的小球先到达,选项B正确。

14.20xx·山东高考]20xx年我国相继完成“神十”与“天宫”对接、“嫦娥”携“玉兔”落月两大航天工程。某航天爱好者提出“玉兔”回家的设想:如图,将携带“玉兔”的返回系统由月球表面发射到h高度的轨道上,与在该轨道绕月球做圆周运动的飞船对接,然后由飞船送“玉兔”返回地球。设“玉兔”质量为m,月球半径为R,月面的重力加速度为g月。以月面为零势能面,“玉兔”在h高度的引力势能可表示为Ep=,其中G为引力常量,M为月球质量。若忽略月球的自转,从开始发射到对接完成需要对“玉兔”做的功为()

A.(h+2R)B.(h+R)
C.D.
答案D
解析对“玉兔”,由G=m得v=,动能Ek=mv2,势能Ep=且GM=R2g月,由功能关系知对“玉兔”做的功W=Ek+Ep=·,故D项正确。
15.20xx·陕西商洛模拟](多选)如图所示,将质量为2m的重物悬挂在轻绳的一端,轻绳的另一端系一质量为m的环,环套在竖直固定的光滑直杆上,光滑定滑轮与直杆的距离为d。杆上的A点与定滑轮等高,杆上的B点在A点正下方距离为d处。现将环从A处由静止释放,不计一切摩擦阻力,下列说法正确的是()

A.环到达B处时,重物上升的高度h=
B.环到达B处时,环与重物的速度大小相等
C.环从A到B,环减少的机械能等于重物增加的机械能
D.环能下降的最大高度为d
答案CD

解析环到达B处时,对环的速度进行分解,可得v环cosθ=v物,由题图中几何关系可知θ=45°,则v环=v物,B错误;因环从A到B,环与重物组成的系统机械能守恒,则环减少的机械能等于重物增加的机械能,C正确;当环到达B处时,由题图中几何关系可得重物上升的高度h=(-1)d,A错误;当环下落到最低点时,设环下落高度为H,由机械能守恒有mgH=2mg(-d),解得H=d,故D正确。
16.20xx·兰州质检](多选)如图所示,竖直面内有一个半径为R、光滑的圆轨道固定在水平地面上。一个质量为m的小球从距水平地面上方h高处的P点由静止开始自由下落,恰好从N点沿切线方向进入圆轨道。不考虑空气阻力,已知重力加速度为g,则下列说法正确的是()

A.适当调整高度h,可使小球从轨道最高点M飞出后,恰好落在轨道右端口N处
B.若h=2R,则小球在轨道最低点对轨道的压力为5mg
C.只有h≥2.5R时,小球才能到达圆轨道的最高点M
D.若h=R,则小球能上升到圆轨道左侧离地高度为R的位置,该过程重力做功为mgR
答案BC
解析若小球恰好能到达最高点M,则应满足mg=m,得v=。小球离开M后做平抛运动,下落高度为R时,运动的水平距离x=vt=·=RR,选项A错误;球从h=2R高处到圆轨道最低点的过程,由机械能守恒定律有2mgR=mv,结合向心力公式有N-mg=m,得N=5mg,根据牛顿第三定律有N′=N=5mg,选项B正确;小球恰能到达M时,根据机械能守恒定律有mg(h-2R)=mv2,得h=2.5R,选项C正确;若h=R,则根据机械能守恒定律知小球能上升到圆轨道左侧离地的最大高度为R处,该过程重力做功为0,选项D错误。
17.20xx·北京丰台区测试]某同学利用如图实验装置研究摆球的运动情况,摆球从A点由静止释放,经过最低点C到达与A等高的B点,D、E、F是OC连线上的点,OE=DE,DF=FC,OC连线上各点均可钉钉子。每次均将摆球从A点由静止释放,不计绳与钉子碰撞时机械能的损失。下列说法正确的是()

A.若只在E点钉钉子,摆球最高可能摆到A、B连线以上的某点
B.若只在D点钉钉子,摆球最高可能摆到A、B连线以下的某点
C.若只在F点钉钉子,摆球最高可能摆到D点
D.若只在F点以下某点钉钉子,摆球可能做完整的圆周运动
答案D
解析根据机械能守恒定律可知,在E点和D点钉钉子,摆球最高可摆到与A、B等高的位置,故A、B错误;当在F点钉钉子时,摆球不可能摆到D点,因为摆球如果摆到D点,根据机械能守恒定律可知,其速度为0,可是摆球要想由C点摆到D点,在D点时必须有一定的速度,至少由重力提供向心力,所以C错误;若在F点以下钉钉子,则摆球摆到最高点时能够具有一定的速度,有可能做完整的圆周运动,D正确。
18.20xx·山西右玉一模]一小球以一定的初速度从图示位置进入光滑的轨道,小球先进入圆轨道1,再进入圆轨道2,圆轨道1的半径为R,圆轨道2的半径是轨道1的1.8倍,小球的质量为m,若小球恰好能通过轨道2的最高点B,则小球在轨道1上经过A处时对轨道的压力为()

A.2mgB.3mgC.4mgD.5mg
答案C
解析小球恰好能通过轨道2的最高点B时,有mg=,小球在轨道1上经过A处时,有F+mg=,根据机械能守恒,有mghBA=1.6mgR=mv-mv,解得F=4mg,C项正确。
19.20xx·安徽第三次联考]如图所示,光滑轨道由AB、BCDE两段细圆管平滑连接组成,其中AB段水平,BCDE段为半径为R的四分之三圆弧,圆心O及D点与AB等高,整个轨道固定在竖直平面内,现有一质量为m,初速度v0=的光滑小球水平进入圆管AB,设小球经过轨道交接处无能量损失,圆管孔径远小于R,则(小球直径略小于管内径)()

A.小球到达C点时的速度大小vC=
B.小球能通过E点且抛出后恰好落至B点
C.无论小球的初速度v0为多少,小球到达E点时的速度都不能为零
D.若将DE轨道拆除,则小球能上升的最大高度与D点相距2R
答案B
解析对小球从A点至C点过程,由机械能守恒有mv+mgR=mv,解得vC=,选项A错误;对小球从A点至E点的过程,由机械能守恒有mv=mv+mgR,解得vE=,小球从E点抛出后,由平抛运动规律有x=vEt,R=gt2,解得x=R,则小球恰好落至B点,选项B正确;因为内管壁可提供支持力,所以小球到达E点时的速度可以为零,选项C错误;若将DE轨道拆除,设小球能上升的最大高度为h,则有mv=mgh,又由机械能守恒可知vD=v0,解得h=R,选项D错误。

一、基础与经典
20.如图所示,两个半径均为R的四分之一圆弧构成的光滑细管道ABC竖直放置,且固定在光滑水平面上,圆心连线O1O2水平。轻弹簧左端固定在竖直挡板上,右端与质量为m的小球接触(不拴接,小球的直径略小于管的内径),长为R的薄板DE置于水平面上,板的左端D到管道右端C的水平距离为R。开始时弹簧处于锁定状态,具有一定的弹性势能,其中重力加速度为g。解除锁定,小球离开弹簧后进入管道,最后从C点抛出。

(1)若小球经C点时所受的弹力的大小为mg,求弹簧弹性势能的大小Ep;
(2)若换用质量m1不同的小球用锁定弹簧发射(弹簧势能不变),问小球质量m1满足什么条件,从C点抛出的小球才能击中薄板DE。
答案(1)mgR(2)m≤m1≤m
解析(1)从解除弹簧锁定到小球运动到C点过程,弹簧和小球系统机械能守恒,设小球到达C点的速度大小为v1,根据机械能守恒定律可得:Ep=2mgR+mv。
又小球经C点时所受的弹力的大小为mg,分析可知方向只能向下。根据向心力公式得:mg+mg=m,
联立解得:Ep=mgR。
(2)小球离开C点后做平抛运动,根据平抛运动规律有:
2R=gt2,x=v2t,
若要小球击中薄板,应满足R≤x≤2R,
又弹簧的弹性势能Ep=mgR=2m1gR+m1v,
解得m≤m1≤m,
故小球质量m1满足m≤m1≤m条件时,小球能击中薄板DE。
二、真题与模拟
21.20xx·全国卷]如图所示,一轻弹簧原长为2R,其一端固定在倾角为37°的固定直轨道AC的底端A处,另一端位于直轨道上B处,弹簧处于自然状态。直轨道与一半径为R的光滑圆弧轨道相切于C点,=7R,A、B、C、D均在同一竖直平面内。质量为m的小物块P自C点由静止开始下滑,最低到达E点(未画出)。随后P沿轨道被弹回,最高到达F点,=4R。已知P与直轨道间的动摩擦因数μ=,重力加速度大小为g。

(1)求P第一次运动到B点时速度的大小;
(2)求P运动到E点时弹簧的弹性势能;
(3)改变物块P的质量,将P推至E点,从静止开始释放。已知P自圆弧轨道的最高点D处水平飞出后,恰好通过G点。G点在C点左下方,与C点水平相距R、竖直相距R。求P运动到D点时速度的大小和改变后P的质量。
答案(1)2(2)mgR(3)m
解析(1)根据题意知,B、C之间的距离l为
l=7R-2R=5R
设P到达B点时的速度为vB,由动能定理得
mglsinθ-μmglcosθ=mv
式中θ=37°。联立式并由题给条件得
vB=2
(2)设BE=x。P到达E点时速度为零,设此时弹簧的弹性势能为Ep。P由B点运动到E点的过程中,由动能定理有
mgxsinθ-μmgxcosθ-Ep=0-mv
E、F之间的距离l1为
l1=4R-2R+x
P到达E点后反弹,从E点运动到F点的过程中,由动能定理有
Ep-mgl1sinθ-μmgl1cosθ=0
联立式并由题给条件得
x=R
Ep=mgR
(3)设改变后P的质量为m1。D点与G点的水平距离x1和竖直距离y1分别为
x1=R-Rsinθ
y1=R+R+Rcosθ
式中,θ为过C点的圆轨道半径与竖直方向夹角。
设P在D点的速度为vD,由D点运动到G点的时间为t。由平抛运动公式有
y1=gt2
x1=vDt
联立式得
vD=
设P在C点速度的大小为vC。在P由C运动到D的过程中机械能守恒,有
m1v=m1v+m1g
P由E点运动到C点的过程中,同理,由动能定理有
Ep-m1g(x+5R)sinθ-μm1g(x+5R)cosθ=m1v
联立式得
m1=m。
22.20xx·全国卷]如图,在竖直平面内有由圆弧AB和圆弧BC组成的光滑固定轨道,两者在最低点B平滑连接。AB弧的半径为R,BC弧的半径为。一小球在A点正上方与A相距处由静止开始自由下落,经A点沿圆弧轨道运动。

(1)求小球在B、A两点的动能之比;
(2)通过计算判断小球能否沿轨道运动到C点。
答案(1)5(2)小球恰好可以沿轨道运动到C点
解析(1)设小球的质量为m,小球在A点的动能为EkA,由机械能守恒得
EkA=mg
设小球在B点的动能为EkB,同理有EkB=mg
由式得=5
(2)若小球能沿轨道运动到C点,小球在C点所受轨道的正压力N应满足
N≥0
设小球在C点的速度大小为vC,由牛顿运动定律和向心加速度公式有
N+mg=m
由式得,vC应满足mg≤m,即vC≥
由机械能守恒有mg=mv
由式可知,小球恰好可以沿轨道运动到C点。

§7.8机械能守恒定律(1)


§7.8机械能守恒定律(1)
教学目标
知识与技能
1、知道什么是机械能,知道物体的动能和势能可以相互转化,知道能量的转换必须通过做功实现;
2、会正确推导物体在光滑曲面上运动过程中的机械能守恒,理解机械能守恒定律的内容、表达式、守恒的条件。
过程与方法
1、在具体的问题中会判定物体的机械能是否守恒;
2、初步学会从能量转化和守恒的观点来解释物理现象,分析问题。
情感、态度与价值观
通过能量转换与守恒的教学,培养学生学以致用的思想。
教学重点
理解机械能守恒定律的内容、表达式、守恒的条件。
教学难点
物体机械能是否守恒的判定
教具准备
单摆,弹簧振子,滚摆
教学过程
一、课前导学
演示单摆和弹簧振子,分析能量转化情况,引入新课。
二、质疑讨论
(一)动能和势能的相互转化
1、自由落体运动的物体运动过程中能量的转化情况是怎样的?
2、演示单摆和弹簧振子,分析能量转化情况。
小结:(1)动能和势能可以相互转化,转化时必定有重力或弹簧的弹力做功;
(2)在忽略阻力只有重力或弹簧的弹力做功的物体系统内总的机械能保持不变。
(二)机械能守恒定律
1、内容:
2、表达式:
3、守恒的条件:
4、理解:
(1)“守恒”的含义:指一个过程中某个量一直保持不变,而并非只是初、末两状态相同。
(2)我们可以分三个层次来表述机械能守恒定律:
A、只有重力做功的情形。这时弹性势能不改变。可表示为:
B、只有弹力做功的情形。这时重力势能不改变。可表示为:
其中Ek1和Ek2表示守恒过程中任意两个状态时的动能,EN1和EN2表示守恒过程中任意两个状态时的弹性势能。
C、同时有重力和弹力做功、但其它力不做功的情形。可表示为:
重力、弹力以外的力做正功,机械能增加;重力、弹力以外的力做负功,机械能减少。
通常在不涉及时间和加速度的情况下,应用机械能守恒定律解题较为简便。
要注意:机械能守恒定律是针对系统而言的,即便我们平时说某个物体具有重力势能,实际上是指由该物体和地球组成的系统所具有的重力势能。
三、反馈矫正
例1:分析下列情况下机械能是否守恒?
A、跳伞运动员从空中匀速下落过程
B、物体以8m/s2在空中下落过程
C、物体作平抛运动过程
D、物体在细线拉力作用下沿光滑斜面上滑过程
例2:把一个小球用细绳悬挂起来,就成为一个摆(如图),摆长为l,最大偏角为θ。小球运动到最低位置时的速度是多大?
讨论:1、最低点时绳的拉力;
2、利用机械能守恒定律解决问题的一般步骤.
(1)选取研究对象——系统或物体.
(2)根据研究对象所经历的物理过程.进行受力、做功分析,判断机械能是否守恒.
(3)恰当地选取参考平面,确定研究对象在过程的初末状态时的机械能.
(4)根据机械能守恒定律列方程,进行求解.
例3:如图所示,桌面高为A,质量为m的小球从离桌面高为H处自由落下,不计空气阻力,假设桌面处的重力势能为零,则小球落到地面前瞬间的机械能为()
A、mghB、mgHC、mg(H+h)D、mg(H—h)
四、巩固迁移
课课练108页1--6
§7.8机械能守恒定律(2)
教学目标
知识与技能
1、进一步理解机械能守恒定律的内容,表达式和适用条件;
2、在具体问题中,能判定机械能是否守恒,并能列出机械能守恒的方程式。
过程与方法
进一步利用机械能守恒定律来解题
情感、态度与价值观
应用机械能守恒定律解决具体问题
教学重点
在具体的问题中能判定机械能是否守恒,并能列出定律的数学表达式。
教学难点
机械能是否守恒的判断,机械能守恒定律的应用
教学过程
一、课前导学
1、机械能守恒定律的内容
2、应用机械能守恒定律解题的步骤
二、质疑讨论
1、机械能守恒的条件:只有重力或弹簧的弹力做功
理解:
(1)系统只受重力,弹力
(2)系统受重力,弹力外,还受其它力.但其它力都不做功
(3)系统受重力,弹力外,还受其它力.但其它力做功代数和为零
2、机械能守恒定律的表达式:
三、反馈矫正
例1:长为L的均匀链条,放在光滑的水平桌面上,且使其长度的1/4垂在桌边,如图所示,松手后链条从静止开始沿桌边下滑,则链条滑至刚刚离开桌边时的速度大小为多大?
解析:链条下滑时,因桌面光滑,没有摩擦力做功。整根链条总的机械能守恒,可用机械能守恒定律求解。设整根链条质量为m,则单位长度质量(质量线密度)为:m/L
设桌面重力势能为零,由机械能守恒定律得

点拨:求解这类题目时,一是注意零势点的选取,应尽可能使表达式简化,该题如选链条全部滑下时的最低点为零势能点,则初始势能就比较麻烦。二是灵活选取各部分的重心,该题最开始时的势能应取两部分(桌面上和桌面下)势能总和,整根链条的总重心便不好确定,最后刚好滑出桌面时的势能就没有必要再分,可对整根链条求出重力势能。
例2:课课练113页11题

例3:课课练114页17题

四、巩固迁移
1、课课练114页15题16题
2、课课练111页1--4题
§7.8《机械能守恒定律》习题
主备人:黄步海
教学目标
知识与技能
进一步理解机械能守恒定律的内容、表达式、守恒的条件。
过程与方法
应用机械能守恒定律解题
情感、态度与价值观
通过能量转换与守恒的教学,培养学生学以致用的思想。
教学重点
理解机械能守恒定律的内容,表达式.守恒的条件。
教学难点
物体机械能定律的应用
教学过程
一、课前导学
复习机械能守恒定律及其条件
二、质疑讨论
1、在只有重力和弹簧的弹力做功的情况下,物体的动能和势能发生相互转化,但机械能的总量保持不变.
2、对机械能守恒定律的理解:
(1)系统在初状态的总机械能等于末状态的总机械能.
即E1=E2或1/2mv12+mgh1=1/2mv22+mgh2
(2)物体(或系统)减少的势能等于物体(或系统)增加的动能,反之亦然。
即-ΔEP=ΔEK
(3)若系统内只有A、B两个物体,则A减少的机械能EA等于B增加的机械能ΔEB即-ΔEA=ΔEB
3、机械能守恒定律解题步骤
三、反馈矫正
例1质量为m的小球从离心轨道上由静止开始无摩擦滑下后进入竖直面内的圆形轨道,圆形轨道的半径为R,求:(1)要使小球能达到圆形轨道的最高点,h至少应为多大?(2)当h=4R时,小球运动到圆环的最高点速度是多大?此时圆环对小球的压力为多少?

例2一根内壁光滑的细圆管,形状如下图所示,放在竖直平面内一个小球自A口的正上方高h处自由落下,第一次小球恰能
抵达B点;第二次落入A口后,自B口射出,恰能再进入
A口,则两次小球下落的高度之比h1:h2=______
例3:如图示,长为L的轻质硬棒的底端和中点各固定一个质量为m的小球,为使轻质硬棒能绕转轴O转到最高点,则底端小球在如图示位置应具有的最小速度v=。

例4:如图所示,一固定的楔形木块,其斜面的倾角θ=30°,另一边与地面垂直,顶上有一定滑轮。一柔软的细线跨过定滑轮,两端分别与物块A和B连结,A的质量为4m,B的质量为m,开始时将B按在地面上不动,然后放开手,让A沿斜面下滑而B上升。物块A与斜面间无摩擦。设当A沿斜面下滑S距离后,细线突然断了。求物块B上升离地的最大高度H.
四、巩固迁移
1、一个人站在阳台上,以相同的速率v分别把三个球竖直向上抛出、竖直向下抛出、水平抛出,不计空气阻力,则三球落地时的速率()
A、上抛球最大B、下抛球最大C、平抛球最大D、三球一样大
2、如图-1,小球自a点由静止自由下落,到b点时与弹簧接触,到c点时弹簧被压缩到最短,若不计弹簧质量和空气阻力,在小球由a→b→c的运动过程中()
A、物体从A下降到B的过程中,动能不断变小
B、物体从B上升到A的过程中,动能先增大后减小
C、物体由A下降到B的过程中,弹簧的弹性势能不断增大
D、物体由B上升到A的过程中,弹簧所减少的弹性势能等于物体所增加的动能与增加的重力势能之和
3、长为L质量分布均匀的绳子,对称地悬挂在轻小的定滑轮上,如图所示.轻轻地推动一下,让绳子滑下,那么当绳子离开滑轮的瞬间,绳子的速度为.
4、将质量为M和3M的两小球A和B分别拴在一根细绳的两端,绳长为L,开始时B球静置于光滑的水平桌面上,A球刚好跨过桌边且线已张紧,如图所示.当A球下落时拉着B球沿桌面滑动,桌面的高为h,且h<L.若A球着地后停止不动,求:(1)B球刚滑出桌面时的速度大小.(2)B球和A球着地点之间的距离.

7.9实验:验证机械能守恒定律
教学目标
知识与技能
1、会用打点计时器打下的纸带计算物体运动的速度;
2、掌握验证机械能守恒定律的实验原理。
过程与方法
通过用纸带与打点计时器来验证机械能守恒定律,体验验证过程和物理学的研究方法。
情感、态度与价值观
通过实验验证,体会学习的快乐,激发学习的兴趣;通过亲身实践,树立“实践是检验真理的唯一标准”的科学观。培养学生的观察和实践能力,培养学生实事求是的科学态度。
教学重点
掌握验证机械能守恒定律的实验原理。
教学难点
验证机械能守恒定律的误差分析及如何减小实验误差的方法。
教学过程
一、课前导学
⒈为进行验证机械能守恒定律的实验,有下列器材可供选用:铁架台,打点计时器,复写纸,纸带,秒表,低压直流电源,导线,电键,天平。其中不必要的器材有:;缺少的器材是。
⒉物体做自由落体运动时,只受力作用,其机械能守恒,若物体自由下落H高度时速度为V,应有MgH=,故只要gH=1/2V2成立,即可验证自由落体运动中物体的机械能守恒。
⒊在打出的各纸带中挑选出一条点迹,且第1、2两打点间距离接近
的纸带。
⒋测定第N个点的瞬时速度的方法是:测出与N点相邻的前、后两段相等时间T内下落的距离SN和SN+1,,有公式VN=算出。
⒌在验证机械能守恒定律时,如果以v2/2为纵轴,以h为横轴,根据实验数据绘出的图线应是,才能验证机械能守恒定律,其斜率等于的数值。
二、质疑讨论
1、推导出机械能守恒定律在本实验中的具体表达式。
在图1中,质量为m的物体从O点自由下落,以地作零重力势能面,下落过程中任意两点A和B的机械能分别为:
EA=,EB=
如果忽略空气阻力,物体下落过程中的机械能守恒,于是有
EA=EB,即=
上式亦可写成
该式左边表示物体由A到B过程中动能的增加,右边表示物体由A到B过程中重力势能的减少。等式说明,物体重力势能的减少等于动能的增加。为了方便,可以直接从开始下落的O点至任意一点(如图1中A点)来进行研究,这时应有:----本实验要验证的表达式,式中h是物体从O点下落至A点的高度,vA是物体在A点的瞬时速度。
2、如何求出A点的瞬时速度vA?
根据做匀加速运动的物体在某一段时间t内的平均速度等于该时间中间时刻的瞬时速度可求出A点的瞬时速度vA。图2是竖直纸带由下而上实际打点后的情况。从O点开始依次取点1,2,3,……图中s1,s2,s3,……分别为0~2点,1~3点,2~4点……各段间的距离。
根据公式,t=2×0.02s(纸带上任意两个相邻的点间所表示的时间都是0.02s),可求出各段的平均速度。这些平均速度就等于是1,2,3,……各点相对应的瞬时速度v1,v2,v3,…….例如:量出0~2点间距离s1,则在这段时间里的平均速度,这就是点1处的瞬时速度v1。依次类推可求出点2,3,……处的瞬时速度v2,v3,……。
3、如何确定重物下落的高度?图2中h1,h2,h3,……分别为纸带从O点下落的高度。根据以上数值可以计算出任意点的重力势能和动能,从而验证机械能守恒定律。
学生活动:学生看书明确实验的各项任务及实验仪器。复习《用打点计时器测速度》的实验,掌握用打点计时器测量匀变速直线运动速度的方法。

三、反馈矫正
1、在学生开始做实验之前,应强调如下几个问题:
(1)该实验中选取被打点纸带应注意两点:一是第一点O为计时起点,O点的速度应为零。怎样判别呢?
(2)是否需要测量重物的质量?
(3)在架设打点计时器时应注意什么?为什么?
(4)实验时,接通电源和释放纸带的顺序怎样?为什么?
(5)测量下落高度时,某同学认为都必须从起始点算起,不能弄错。他的看法正确吗?为了减小测量h值的相对误差,选取的各个计数点要离起始点适当远些好,还是近些好?
参考:
(1)因为打点计时器每隔0.02s打点一次,在最初的0.02s内物体下落距离应为0.002m,所以应从几条纸带中选择第一、二两点间距离接近两年2mm的纸带进行测量;二是在纸带上所选的点就是连续相邻的点,每相邻两点时间间隔t=0.02s.
(2)因为不需要知道物体在某点动能和势能的具体数值,所以不必测量物体的质量m,而只需验证就行了。
(3)打点计时器要竖直架稳,使其两限位孔在同一竖直平面内,以尽量减少重物带着纸带下落时所受到的阻力作用。
(4)必须先接通电源,让打点计时器正常工作后才能松开纸带让重物下落。
(5)这个同学的看法是正确的。为了减小测量h值的相对误差,选取的各个计数点要离起始点适当远些好。
2、学生进行分组实验。
四、巩固迁移
(1)为进行“验证机械能守恒定律”的实验,有下列器材可供选用:铁架台,打点计时器,复写纸,纸带,秒表,低压直流电源,导线,电键,天平。其中不必要的器材有:;缺少的器材是。
(2)在验证机械能守恒定律时,如果以v2/2为纵轴,以h为横轴,根据实验数据绘出的图线应是,才能验证机械能守恒定律,其斜率等于的数值。
(3)在做“验证机械能守恒定律”的实验时,用打点计时器打出纸带如图3所示,其中A点为打下的第一个点,0、1、2……为连续的计数点。现测得两相邻计数点之间的距离分别为s1、s2、s3、s4、s5、s6,已知相邻计数点间的打点时间间隔均为T。根据纸带测量出的距离及打点的时间间隔,可以求出此实验过程中重锤下落运动的加速度大小表达式为_________。在打第5号计数点时,纸带运动的瞬时速度大小的表达式为________。要验证机械能守恒定律,为减小实验误差,应选择打下第_________号和第__________号计数点之间的过程为研究对象。
(4)某次“验证机械能守恒定律”的实验中,用6V、50Hz的打点计时器打出的一条无漏点的纸带,如图4所示,O点为重锤下落的起点,选取的计数点为A、B、C、D,各计数点到O点的长度已在图上标出,单位为毫米,重力加速度取9.8m/s2,若重锤质量为1kg。
①打点计时器打出B点时,重锤下落的速度vB=m/s,重锤的动能EkB=J。
②从开始下落算起,打点计时器打B点时,重锤的重力势能减小量为J。
③根据纸带提供的数据,在误差允许的范围内,重锤从静止开始到打出B点的过程中,得到的结论是。
参考答案:(1)不必要的器材有:秒表、低压直流电源、天平。缺少的器材是低压交流电源、重锤、刻度尺。(2)通过原点的直线、g.(3)(s6+s5+s4-s3-s2–s1)/9T2,(s5+s6)/2T,1、5.(4)①1.175,0.69,0.69②0.69,③机械能守恒。