高中函数的应用教案
发表时间:2020-04-15函数的概念。
函数的概念(一)一、教学目标
1、知识与技能:
函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间
的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想与意识.
2、过程与方法:
(1)通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;
(2)了解构成函数的要素;
(3)会求一些简单函数的定义域和值域;
(4)能够正确使用“区间”的符号表示某些函数的定义域;
3、情态与价值,使学生感受到学习函数的必要性的重要性,激发学习的积极性。
二、教学重点与难点:
重点:理解函数的模型化思想,用集合与对应的语言来刻画函数;
难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;
三、学法与教学方法
1、学法:学生通过自学、思考、交流、讨论和概括,从而更好地完成本节课的教学目标.
2、教学方法:探析交流法
四、教学过程
(一)创设情景,揭示课题
1、复习初中所学函数的概念,强调函数的模型化思想;
2、阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:
(1)炮弹的射高与时间的变化关系问题;
(2)南极臭氧空洞面积与时间的变化关系问题;
(3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题
3、分析、归纳以上三个实例,它们有什么共同点。
4、引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;
5、根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.
(二)研探新知
1、函数的有关概念
(1)函数的概念:
设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数(function).
记作:y=f(x),x∈A.
其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域(range).
注意:
①“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;
②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.
(2)构成函数的三要素是什么?
定义域、对应关系和值域
(3)区间的概念
①区间的分类:开区间、闭区间、半开半闭区间;
②无穷区间;
③区间的数轴表示.
(4)初中学过哪些函数?它们的定义域、值域、对应法则分别是什么?
通过三个已知的函数:y=ax+b(a≠0)
y=ax2+bx+c(a≠0)
y=(k≠0)
比较描述性定义和集合,与对应语言刻画的定义,谈谈体会。
师:归纳总结
(三)质疑答辩,排难解惑,发展思维。
1、如何求函数的定义域
例1:已知函数f(x)=+
(1)求函数的定义域;
(2)求f(-3),f()的值;
(3)当a>0时,求f(a),f(a-1)的值.
分析:函数的定义域通常由问题的实际背景确定,如前所述的三个实例.如果只给出解析式y=f(x),而没有指明它的定义域,那么函数的定义域就是指能使这个式子有意义的实数的集合,函数的定义域、值域要写成集合或区间的形式.
解:(1)得函数的定义域为。
(1)f(-3)=-1,f()=
(2)当a>0时,,f(a)=。,f(a-1)=
。
例2、设一个矩形周长为80,其中一边长为x,求它的面积关于x的函数的解析式,并写出定义域.
分析:由题意知,另一边长为,且边长为正数,所以0<x<40.
所以s==(40-x)x(0<x<40)
引导学生小结几类函数的定义域:
(1)如果f(x)是整式,那么函数的定义域是实数集R.
(2)如果f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合.
(3)如果f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数的集合.
(4)如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合.(即求各集合的交集)
(5)满足实际问题有意义.
巩固练习:课本P22第1
2、如何判断两个函数是否为同一函数
例3、下列函数中哪个与函数y=x相等?
(1)y=()2;(2)y=();(3)y=;(4)y=
分析:
○1构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)
○2两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。
解:(略)课本P21例2
(四)巩固深化,反馈矫正:
(1)课本P22第2题
(2)判断下列函数f(x)与g(x)是否表示同一个函数,说明理由?
①f(x)=(x-1)0;g(x)=1否
②f(x)=x;g(x)=否
③f(x)=x2;f(x)=(x+1)2是
④f(x)=|x|;g(x)=是
(3)求下列函数的定义域
①②③f(x)=+
④f(x)=⑤
【①;②;③;④
⑤。】
(五)归纳小结
①从具体实例引入了函数的概念,用集合与对应的语言描述了函数的定义及其相关概念;②初步介绍了求函数定义域和判断同一函数的基本方法,同时引出了区间的概念。
(六)设置问题,留下悬念
1、课本P28习题1.2(A组)第1—7题(B组)第1题
2、举出生活中函数的例子(三个以上),并用集合与对应的语言来描述函数,同时说出函数的定义域、值域和对应关系。
五、课后反思:
相关知识
函数的概念与性质
函数的概念与性质
一、学习要求
①了解映射的概念,理解函数的概念;
②了解函数的单调性和奇偶性的概念,掌握判断一些简单函数单调性奇偶性的方法;
③了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数;
④理解分数指数幂的概念,掌握有理数幂的运算性质,掌握指数函数的概念、图像和性质;
⑤理解对数函数的概念、图象和性质;⑥能够应用函数的性质、指数函数和对数函数性质解决某些简单实际问题.
二、两点解读
重点:①求函数定义域;②求函数的值域或最值;③求函数表达式或函数值;④二次函数与二次方程、二次不等式相结合的有关问题;⑤指数函数与对数函数;⑥求反函数;⑦利用原函数和反函数的定义域值域互换关系解题.
难点:①抽象函数性质的研究;②二次方程根的分布.
三、课前训练
1.函数的定义域是(D)
(A)(B)(C)(D)
2.函数的反函数为(B)
(A)(B)
(C)(D)
3.设则.
4.设,函数是增函数,则不等式的解集为(2,3)
四、典型例题
例1设,则的定义域为()
(A)(B)
(C)(D)
解:∵在中,由,得,∴,
∴在中,.
故选B
例2已知是上的减函数,那么a的取值范围是()
(A)(B)(C)(D)
解:∵是上的减函数,当时,,∴;又当时,,∴,∴,且,解得:.∴综上,,故选C
例3函数对于任意实数满足条件,若,则
解:∵函数对于任意实数满足条件,
∴,即的周期为4,
∴,
∴
例4设的反函数为,若×
,则2
解:
∴m+n=3,f(m+n)=log3(3+6)=log39=2
(另解∵,
∴)
例5已知是关于的方程的两个实根,则实数为何值时,大于3且小于3?
解:令,则方程
的两个实根可以看成是抛物线与轴的两个交点(如图所示),
故有:,所以:,
解之得:
例6已知函数有如下性质:如果常数,那么该函数在上是减函数,在上是增函数.如果函数的值域为,求b的值;
解:函数的最小值是,则=6,∴;
函数概念
年级高一
学科数学
课题
函数概念2
授课时间
撰写人
学习重点
求一些简单函数的定义域与值域,并能用“区间”的符号表示;
学习难点
求函数的定义域与值域及对函数的定义域或值域书写形式
学习目标
1.会求一些简单函数的定义域值域
2.对函数概念的进一步理解
3.会对函数的定义域或值域正确书写
教学过程
一自主学习
复习
1.函数的概念:
2.函数的三要素是、、.3.函数与y=3x是不是同一个函数?为何?4.求函数定义域的规则
练一练
求下列函数的定义域(用区间表示).(1);
(2);
(3)
二师生互动
例1求下列函数的值域(用区间表示):(1)y=x-3x+4;(2);(3)y=;(4).
变式:求函数的值域及定义域。
小结:求函数值域的常用方法有:
观察法、配方法、拆分法、基本函数法.
练一练
求下列函数的定义域及值域
(1)(2)(3)例2对函数,以下说法中正确的是
(1)是的函数;(2)对于不同的,的值也不同;(3)表示当x=a时函数的值,是一个常量;(4)一定可以用一个具体式子表示出来;(5)当和确定后,的值也就确定了。
三巩固练习
1.函数的定义域是().A.B.C.RD.2.函数的值域是().A.B.C.D.R3.下列各组函数的图象相同的是()
A.
B.
C.
D.4.函数f(x)=+的定义域用区间表示是.5.已知,则的值6.函数对任意实数满足条件,若,则
四课后反思
五课后巩固练习
1.设一个矩形周长为80,其中一边长为x,求它的面积y关于x的函数的解析式,并写出定义域.
2.(2009江西)函数的定义域
3.(2007北京)已知函数,分别由下表给出
则的值为;当时,.
指数函数的概念
课题:指数函数的定义
【教学目标】
1.通过实际问题了解指数函数模型的实际背景,理解指数函数的概念和意义.
2.在学习的过程中体会研究具体函数的过程和方法.
3.让学生了解数学来自生活,数学又服务于生活得哲理;培养学生观察问题、分析问题的能力.
【教学重点】
指数函数定义及其理解.
【教学难点】
指数函数的定义及其理解.
【教学步骤】
(一)引入课题
引例1任何有机体都是由细胞作为基本单位组成的,每个细胞每次分裂为2个,则1个细胞第一次分裂后变为2个细胞,第二次分裂就得到4个细胞,第三次分裂后就得到8个细胞……
问题:1个细胞分裂次后,得到的细胞个数与的关系式是什么?
分裂次数细胞个数
……
由上面的对应关系,我们可以归纳出,第次分裂后,细胞的个数为.
这个函数的定义域是非负整数集,由,任给一个值,我们就可以求出对应的值.
引例2一种放射性元素不断衰变为其他元素,每经过一年剩余的质量约为原来的84%.
问题:若设该放射性元素最初的质量为1,则年后的剩余量与的关系式是什么?
时间剩余质量
经过1年
经过2年
经过3年
……
由上面的对应关系,我们可以归纳出,经过年后,剩余量.
问题:上面两个实例得到的函数解析式有什么共同特征?
它们的自变量都出现在指数位置上,底数是一个大于0且不等于1的常量.我们称这样的函数为指数函数.
(二)讲授新课
1.指数函数的定义:
一般地,形如的函数,叫做指数函数,其中是自变量,是不等于1的正的常数.
说明:(1)由于我们已经将指数幂推广到实数指数幂,因此当>0时,自变量可以取任意的实数,因此指数函数的定义域是R,即.
(2)为什么要规定底数呢.
因为当时,若,则恒为0;若≤0,则无意义.
而当时,不一定有意义,例如,时,显然没有意义.
若时,恒为1,没有研究的必要.
因此,为了避免上述情况,我们规定.注意:此解释只要能说明即可,不必深化,也可视学生情况决定是否向同学解释.
练一练:
下列函数中,哪些是指数函数?
,,,,,,,,.
分析:紧扣指数函数的定义,形如函数叫做指数函数,即前面的系数为1,是一个正常数,指数是.
解:,,,都是指数函数,其余都不是指数函数.
(三)典型例题
例1已知指数函数,求,,,的值.
解:;
;
;
.
例2已知指数函数,若,求自变量的值.
解:将代入,得
,
即,
所以.
例3设,若,求的值.
解:由已知,得
,
即,
因为,
所以.
(四)课堂练习
1.已知指数函数,求,,,的值.
2.已知指数函数,若,求自变量的值.
(五)课堂小结
1.指数函数的定义;
2.研究函数的方法.
(六)课后作业
教材P102练习1,2,3.
(七)板书设计
指数函数的定义
一、指数函数的定义:二、例题:三、练习:四、小结:
例11、
练一练:例22、五、作业:
例3
【教学设计说明】
1.本节课的教学,首先从实际问题引入指数函数的概念,这样既说明指数函数的概念来源于生活实际,也便于学生接受和培养学生用数学的意识.由于本节课是指数函数的起始课,只介绍了指数函数的定义,因此应让学生在理解概念的基础上,落实所学知识.在例题方面,选取紧密联系函数解析式的三种类型题目.例1,已知自变量求函数值;例2,已知函数值求自变量,例3,已知指数函数经过某点确定底数.通过这三方面例题的讲授,使学生对指数函数的解析式有一个较全面的理解,同时为后面指数函数的图像与性质的学习奠定基础.
2.本节课的教学过程:
(1)从实际问题引入,得到指数函数的概念;
(2)对指数函数的进一步理解;
(3)例题、练习、小结、作业.
《函数的概念》教学设计
《函数的概念》教学设计
教材分析:函数是描述客观世界变化规律的重要数学模型,高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想。
教学目的:
(1)通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;
(2)了解构成函数的要素;
(3)会求一些简单函数的定义域和值域;
(4)能够正确使用“区间”的符号表示某些函数的定义域;
教学重点:理解函数的模型化思想,用合理对应的语言来刻画函数
教学难点:符号“y=f﹙x﹚”的含义,函数定义域和值域的区间表示
教学过程:
一、引入课题
1、复习初中所学函数的概念,强调函数的模型化思想;
2、阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:
(1)炮弹的射高与时间的变化关系问题;
(2)南极的臭氧空洞面积与时间的变化关系问题;
(3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题
3、引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;
4、根据初中所学的函数概念,判断各个实例中的两个变量间的关系是否是函数关系。
二、新课教学
(一)函数的有关概念
1、函数的概念:
设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f﹙x﹚和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作:y=f﹙x﹚,x∈A
其中,x叫做自变量,x的取值范围A叫做函数的定义域,与x的值相对应的y值叫做函数值,函数值的集合﹛f﹙x﹚|x∈A﹜叫做函数的值域。
注意:
(1)“y=f﹙x﹚”是函数符合,可以用任意的字母表示,如“y=g﹙x﹚”
(2)函数符号“y=f﹙x﹚”中的f﹙x﹚表示与x对应的函数值
2、构成函数的三要素:定义域、对应关系和值域
3、区间的概念
(1)区间的分类:开区间、闭区间、半开半闭区间
(2)无穷区间
(3)区间的数轴表示
4、一次函数、二次函数、反比例函数的定义域和值域讨论(由学生完成,师生共同分析讲评)
(二)典型例题
1、求函数定义域:课本P20例1
说明:
(1)函数的定义域通常由问题的实际背景决定
(2)如果只给出解析式y=f﹙x﹚,而没有指明它的定义域,则函数的定义域是指能使这个式子有意义的实数的集合
(3)函数的定义域、值域要写成集合或区间的形式
巩固练习:课本P22第1题
2、判断两个函数是否为同一函数:课本P21例2
说明:
(1)构成函数三个要素是定义域、对应关系和值域,由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)。
(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。
巩固练习:
(1)课本P22第2题
(2)判断下列函数f﹙x﹚与g﹙x﹚是否表示同一函数,说明理由
①f﹙x﹚=(x-1);g﹙x﹚=1②f﹙x﹚=x;g﹙x﹚=√x
③f﹙x﹚=x;g﹙x﹚=(x+1)④f﹙x﹚=|x|;g﹙x﹚=√x
(三)课堂练习
求下列函数的定义域
(1)f﹙x﹚=1/x-|x|(2)f﹙x﹚=1/1+x(3)f﹙x﹚=√x-6x+10(4)f﹙x﹚=√1-x+√x+3
三、归纳小结,强化思想
从具体实例引入了函数的概念,用集合与对应的语言描述了函数的定义及其相关概念,介绍了求函数定义域和判断同一函数的典型题目,引入了区间的概念来表示集合。
四、作业布置
课本P28习题1.2(A组)第1—7题(B组)第1题

