88教案网

你的位置: 教案 > 初中教案 > 导航 > 平行四边形的性质一导学案

四季的幼儿园教案

发表时间:2020-12-08

平行四边形的性质一导学案。

每个老师上课需要准备的东西是教案课件,大家在认真写教案课件了。只有写好教案课件计划,未来工作才会更有干劲!你们会写一段优秀的教案课件吗?小编特地为大家精心收集和整理了“平行四边形的性质一导学案”,欢迎您参考,希望对您有所助益!

4.1平行四边形的性质(1)
【学习目标】:1.掌握平行四边形的有关概念及性质(对边平行且相等,对角相等)
【回顾与思考】:
活动一:
准备两个全等的三角形,将它们相等的一组边重合,得到一个四边形.
(1)你得到了怎样的四边形?与同伴交流一下

(2)观察拼出的这样一个四边形,这个四边形的对边有怎样的位置关系?为什么?

(3)平行四边形的定义:的四边形叫做平行四边形.
平行四边形连成的线段叫做对角线

如图,四边形ABCD是平行四边形,
记作””

活动二:(1)观察你所拼的平行四边形中,有哪些相等的线段、相等的角?为什么?
(2)平行四边形的性质:平行四边形的对边
平行四边形的对角
几何语言:
∵四边形ABCD是平行四边形(已知)
∴AB=,BC=()
∠A=,∠B=()

【知识应用】:
1.□ABCD中,AB=3,BC=5,则AD=CD=。
2.□ABCD中,∠B=60°,则∠A=,∠C=,∠D=。
3.如图:四边形ABCD是平行四边形。
(1)边AB、BC的长度
(2)求∠D、∠C度数。

【当堂反馈(小测)】:
1.已知□ABCD中,∠B=70°,则∠A=______,∠C=______,∠D=______.
2.在□ABCD中,∠A+∠C=270°,则∠B=______,∠C=______.;
3.在□ABCD中,AB=3,BC=4,则□ABCD的周长等于_______.
4.平行四边形的周长等于56cm,两邻边长的比为3∶1,那么这个平行四边形较长的边长为_______.
5.已知,如图,□ABCD中,∠A=70°,AD=5cm,求∠B,∠C,∠D的度数及BC的长度。

6.已知,如图,□ABCD中,∠CAD=20°,∠D=50°,求∠B,∠BCD的度数
【巩固提升】:
1、已知□ABCD中,∠B=70°,则∠A=______,∠D=______。
2、在□ABCD中,AB=3,BC=4,则□ABCD的周长等于_______。
3、在□ABCD中,已知BC=8,周长等于24,则CD=_______。
4、在□ABCD中,∠A=65°,则∠D的度数是()
A.105°B.115°C.125°D.65°
5、在□ABCD中,∠B比∠A大20°,则∠D的度数是()
A.80°B.90°C.100°D.110°
6、一个四边形的三个内角的度数依次如下选项,其中是平行四边形的是()
A、88°,108°,88°B、88°,104°,108°
C、88°,92°,88°D、88°,92°,92°
7、□ABCD中,∠A:∠B:∠C:∠D的值可以是()
A、1:2:3:4B、1:2:2:1C、2:2:1:1D、2:1:2:1
8、已知,如图,□ABCD中,∠A=65°,AD=6cm,求∠B,∠C,∠D的度数及BC的长度。

9、如图,□ABCD中,∠ABC的平分线交AD于E,若∠AEB=20°,求∠D的度数

10.四边形ABCD是平行四边形,它的四条边中哪些线段可以通过平移而互相得到?

相关推荐

平行四边形的性质


4.1平行四边形的性质(2)
导学目标
1.掌握平行四边形的性质及平行线间的距离的概念。
2.理解平行线间的距离处处相等的结论,并了解其简单应用。
导学重点:理解并正确运用平行四边形的性质。
导学难点:平行四边形性质的探索。
导学方法:探索归纳法。
导学过程:
一、复习引入课题
1.在□ABCD中,∠A∶∠B∶∠C∶∠D的值可以是()
A.1∶2∶3∶4B.1∶2∶2∶1
C.1∶1∶2∶2D.2∶1∶2∶1
2.平行四边形的两条对角线把它分成全等三角形的对数是()
A.2B.4C.6D.8
3.在□ABCD中,∠A、∠B的度数之比为5∶4,则∠C等于()
A.60°B.80°C.100°D.120°
4.□ABCD的周长为36cm,AB=BC,则较长边的长为()A.15cmB.7.5cmC.21cmD.10.5cm
5.如图,□ABCD中,EF过对角线的交点O,AB=4,AD=3,OF=1.3,则四边形BCEF的周长为()
A.8.3B.9.6C.12.6D.13.6
二、讲授新课
1.做一做:(P100“做一做”的内容)
鼓励学生应用多种方式探索平行四边形的性质:
如图4-3,□ABCD的两条对角线AC,BD相交于点O,
(1)图中有哪些三角形是全等的?有哪些线段是相等的?
(2)能设法验证你的猜想吗?(测量,旋转,证明)
2.观察:
通过以上活动,你能得到哪些结论?结论:平行四边形的性质3:______________________。
三、例题讲解:
如下图,四边形ABCD是平行四边形,BD⊥AD,求BC,CD及OB。

引导学生寻求解题思路。
(让学生发表自己的见解,既培养了学生的语言表达能力及推理能力,又提高了学生的逻辑思维能力)
提出问题:“想一想”
引出平行线间距离的概念,并引导学生对比点到直线的距离,两点间距离等概念。
(让学生进一步感知生活中处处有数学)
和直线l距离为8cm的直线有______条.
三、例题讲解:p101例2
得出结论:平行线之间的距离________________.
四、随堂练习:
P102随堂练习第1题

2.如图,在□ABCD中,O是对角线AC、BD的交点,BE⊥AC,DF⊥AC,垂足分别为E、F.那么OE与OF是否相等?为什么?

五、课堂小结:你学到了什么?

六、课后巩固:p102习题4.2第1题和第2题
七、课后反思:

平行四边形的性质(1)导学案


做好教案课件是老师上好课的前提,大家在用心的考虑自己的教案课件。在写好了教案课件计划后,才能更好的在接下来的工作轻装上阵!那么到底适合教案课件的范文有哪些?下面是小编帮大家编辑的《平行四边形的性质(1)导学案》,仅供参考,欢迎大家阅读。

第六章平行四边形
6.1平行四边形的性质(一)
一、问题引入:

1.如图,a//b,m//n,则∠1与∠2,∠3,∠4有什么关系?(请用∠1表示出来)
mn
aAB
12
b34
CD
(第1题图)(第2题图)
2.两组对边的四边形叫做平行四边形;平行四边形ABCD记作,读作.

3.平行四边形不相邻的两个顶点连成的线段叫做它的.

4.平行四边形是中心对称图形,是它的对称中心.
5.如图,在ABCD中,有哪些相等的线段,哪些相等的角?你是如何得到的?

AD

BC
定理:
二、基础训练:
1.下列两个图形,能组成平行四边形的是()
A.两个等腰三角形B.两个直角三角形
C.两个锐角三角形D.两个全等三角形
2.已知ABCD的周长是38cm,则AB+BC=()cm.
A.20B.19.5C.19D.18
3.在ABCD中,已知∠A+∠C=200,则∠B=()
A.100B.90C.80D.70
三、例题展示:
例1.如图,AB//CD,AD//BE,AB=5,BC=10,∠B=60,∠CAD=40,则AD=,CD=,∠BAC=,∠D=,∠DCE=.//

AD

BCE

例2.如图,在ABCD中,E、F是对角线AC上的两点,并且AE=CF,求证:BE=DF.
AD
E
BC

四、课堂检测:
1.(2012泰安)如图,在平行四边形ABCD中,过点C的直线CE⊥AB,垂足为E,若∠EAD=53°,则∠BCE的度数为()
A.53°B.37°C.47°D.123°

2.ABCD的周长是18cm,△ABC的周长是14cm,则对角线AC的长是cm.

3.平行四边形的一个内角是它的邻角的2倍,则这个角的度数是.

4.如图,E、F是ABCD的对角线AC上的两点,BE//DF,你认为AE与CF相等吗?为什么?
AD
E

F
BC
5.(2012广安)如图,四边形ABCD是平行四边形,点E在BA的延长线上,且BE=AD,点F在AD上,AF=AB,求证:△AEF≌△DFC.

平行四边形及其性质导学案


老师职责的一部分是要弄自己的教案课件,大家在着手准备教案课件了。是时候对自己教案课件工作做个新的规划了,未来工作才会更有干劲!有多少经典范文是适合教案课件呢?为满足您的需求,小编特地编辑了“平行四边形及其性质导学案”,仅供参考,希望能为您提供参考!

18.1.1平行四边形及其性质(一)
年级:九年级学科:数学课型:新授课时间:年月日
执笔:太和县马集中心校审核:马集中心校数学导学案审核组课后反思
【励志语录】
1、要成功,需要跟成功者在一起。
2、要跟成功者有同样的结果,就必须采取同样的行动。
【学习目标】
学法指导:仔细阅读,做到有的放矢。
1、知道平行四边形的定义及有关概念;利用定义会识别平行四边形。
2、能根据定义探索并掌握平行四边形的对边相等、对角相等的性质。
3、能根据平行四边形的性质进行简单的计算和证明。
【重点】平行四边形的定义,平行四边形对角、对边相等的性质。
一、知识链接
1.我们一起来观察下图中的竹篱笆格子和汽车的防护链,想一想它们是什么几何图形的形象?
2.什么是四边形?四边形的一组对边有怎样的位置关系?一般四边形有哪些性质?

二、教材预习
学法指导:课前独学教材预习内容,总结本节课的重点、难点、注意点。课堂再以小组为单位交流,找出还存在的问题,并在小黑板上扼要展示本节重点内容和存在的问题。注意双色笔的使用,书写工整。
1、预习内容:自学课本83-84页,完成P84练习1、2、3。

2、预习测试:
1)、叫平行四边形。
定义的几何语言表述:

举一些生活实例:。
2)、根据平行四边形的定义及相关知识探究平行四边形元素之间的关系,得平行四边形性质定理1、2:
性质1:平行四边形邻角,对角。
性质2:平行四边形两组对边分别且。
3)、用以前学过的知识证明:
性质1

4)、几何语言:

合作探究
学法指导:课前独学,解决会的,有问题的上课对子或小组交流,形成共识,进行课堂大展示。展示时要讲清所用知识点、易错点。展示到小黑板的题要标清所用知识点、易错点;注意双色笔的使用,字体工整。
探究点一:性质一的应用
在平行四边形ABCD中,∠A=50°,求∠B、∠C、∠D的度数。
变式:1.在平行四边形ABCD中,∠A=∠B+40°,求∠A的邻角的度数。

2.在ABCD中,若∠A:∠B:∠C:∠D的值可以是(),
A.1:2:3:4B.1:2:2:1C1:1:2:2D2:1:2:1
方法归纳与总结:利用可以解决平行四边形角的度数。
探究点二:性质二的应用
平行四边形的两邻边的比是2:5,周长为28cm,求四边形的各边的长。
变式:平行四边形的一条角平分线分对边为3和4两部分,求平行四边形的周长。

方法归纳与总结:利用可以解决平行四边形边的长度。
探究点三:性质的综合应用
1、如图,AD∥BC,AE∥CD,BD平分∠ABC,求证AB=CE
方法归纳与总结:在平行四边形有角平分线时,结合平行四边形的性质会出现
三角形。
2、如图,在ABCD中,AE=CF,求证AF=CE

四.小结提升
学法指导:1、对照学习目标找差补缺。2、画出知识树。
通过本节课的学习,你有什么收获?你还有什么困惑?
画知识树

五、达标测试
学法指导:1、分层达标,敢于突破,横向比较,找出差距。
2、完成较早的小组与同学把答案写到小黑板上奖励分5’
3、对子互改,组长验收,教师查阅。
A.基础达标
1.填空:
(1)在ABCD中,∠A=,则∠B=度,∠C=度,∠D=度.
(2)如果ABCD中,∠A—∠B=240,则∠A=度,∠B=度,∠C=度,∠D=度.
(3)如果ABCD的周长为28cm,且AB:BC=2∶5,那么AB=cm,BC=cm,CD=cm,AD=cm.
B.能力测试
2.选择:
(1)在下列图形的性质中,平行四边形不一定具有的是().
(A)对角相等(B)对角互补(C)邻角互补(D)内角和是
(2)在ABCD中,如果EF∥AD,GH∥CD,EF与GH相交与点O,那么图中的平行四边形一共有().
(A)4个(B)5个(C)8个(D)9个
C、拓展与提高
3.如图4.3-9,在ABCD中,AC为对角线,BE⊥AC,DF⊥AC,E、F为垂足,求证:BE=DF.

4.如图所示,四边形ABCD是平行四边形,且∠EAD=∠BAF。
求证:ΔCEF是等腰三角形;
②观察图形,ΔCEF的哪两边之和恰好等于ABCD的周长?并说明理由。