88教案网

你的位置: 教案 > 初中教案 > 导航 > 特殊的平行四边形学案

四季的幼儿园教案

发表时间:2021-02-15

特殊的平行四边形学案。

作为老师的任务写教案课件是少不了的,大家在认真写教案课件了。各行各业都在开始准备新的教案课件工作计划了,我们的工作会变得更加顺利!你们知道哪些教案课件的范文呢?为此,小编从网络上为大家精心整理了《特殊的平行四边形学案》,供大家参考,希望能帮助到有需要的朋友。

课型新授授课时间2012年9月日
执笔人审稿人总第5课时
学习内容学习随记
学习目标:1、理解矩形的意义,知道矩形与平行四边形的区别与联系。
2、掌握矩形的性质定理,会用定理进行有关的计算与证明。
3、掌握直角三角形斜边上中线的性质与应用。
学习过程:
一、学习新知
自学教材13页—15页内容完成以下题目:
1、叫做矩形。矩形是________的平行四边形。
2、从矩形的意义可以探究矩形具有的性质:
(1)矩形具有平行四边形具有的一切性质。
(2)矩形与平行四边形比较又有其特殊的性质:
特殊在“角”上的性质是_____________________________________________.
特殊在“对角线”上的性质是:_______________________________________.
3、从矩形的性质可以说明直角三角形斜边上的中线等于斜边的________.
二、应用举例:
例题:在直角三角形ABC中,∠C=90°,CD是AB边上的中线,∠A=30°,
AC=5,求△ADC的周长。

三、随堂练习
1、由矩形的一个顶点向其所对的对角线引垂线,该垂线分直角为1:3两部分,则该垂线与另一条对角线的夹角为()
A、22.5°B、45°C、30°D、60°
2、已知:如图2,矩形ABCD中,E是BC上
一点,于F,若。求证:CE=EF。
自学收获

自学疑惑
学习内容
3、如图,将矩形ABCD沿对角线BD折叠,使点C落在F的位置,BF交AD于E,AD=8,AB=4,求△BED的面积。

四、课堂小结

五、当堂检测
1、矩形的两条对角线的夹角为60°,较短的边长为4.5厘米,则对角线长为。
2、如图5,在矩形ABCD中,,求这个矩形的周长。

3、折叠矩形ABCD纸片,先折出折痕BD,再折叠使A落在对角线BD上A′位置上,折痕为DG。AB=2,BC=1。求AG的长。

延伸阅读

特殊的平行四边形


作为老师的任务写教案课件是少不了的,是认真规划好自己教案课件的时候了。只有规划好了教案课件新的工作计划,新的工作才会如鱼得水!你们清楚有哪些教案课件范文呢?以下是小编为大家收集的“特殊的平行四边形”供大家借鉴和使用,希望大家分享!

教学课题§1.3特殊的平行四边形
教学目标:
知识与技能
1.探索并掌握平行四边形、矩形、菱形、正方形的定义
2.掌握它们之间的区别与联系
过程与方法
在观察、操作的探索过程中,发展学生的合情推理能力。
教学重点:平行四边形的定义
教学难点:平行四边形、特殊平行四边形彼此之间的关系
教学过程:
一、利用分类、特殊化的方法引出平行四边形的概念
1.复习四边形的知识.
(1)引导学生画任意凸四边形,指出它的主要元素——顶点、边、角、对角线。
强调对角线的作用:将四边形分割化归为三角形来研究.
(2)将四边形的边角按位置关系分为两类:
边角
教学时应结合图形,让学生识别清楚,并注意与三角形中角的对边、边的对角相区别.
2.教师提问:四边形中的两组对边按位置关系分为几种情况?
引导学生画图回答,并出示四边形与特殊四边形的关系,如图.
3.对比引出平行四边形的概念.
(1)引导学生根据上图,叙述平行四边形的概念,引出课题.
(2)注意它与梯形的对比,及它与四边形的特殊与一般的关系:平行四边形是特殊的四边形,因此它具有四边形的一切性质(共性).同时它还具有一般四边形不具备的特殊性质(特性).
(3)强调定义既是平行四边形的一个判定方法,同时又是平行四边形的一个性质.
(4)介绍平行四边形的符号表示及定义的使用方法:

①∵ABCD,
∴AD//BC,AB//CD(平行四边形的定义)
②∵AD//BC,AB//CD,
∴四边形ABCD是平行四边形(平行四边形的定义)

二、讲授新课
议一议:
用教具演示如图,从平行四边形到矩形的演变过程,得到矩形的概念,并理解矩形与平行四边形的关系.

1.矩形的定义:有一个角是直角的平行四边形叫做矩形(通常也叫长方形)。
注意:用定义判定一个四边形是矩形必须同时满足:①有一个角是直角②是平行四边形,两个条件缺一不可。
思考:
(1)如果把“平行四边形”换成“四边形”或去掉“有一个角是直角”能保证是矩形吗?
(2)增加条件行不行?如“有四个角是直角的平行四边形叫做矩形”可以吗?
引导学生思考后,进一步明确定义的内涵。

类比“平行四边形演变成矩形”而得到菱形。强调平行四边形增加一个特定条件“一组邻边相等”就得到菱形
可以发现:随着AB的运动,它仍然保持平行四边形的形状,但BC的长度却在不断地改变当BC恰好与AB相等时,就得到一种特殊的四边形———菱形。
2.菱形的定义:有一组邻边相等的平行四边形叫做菱形。

想一想:平行四边形是否可能有一组邻边相等并且有一个角是直角呢?这时,平行四边形演变成什么图形?
学生思考后回答。师生共同总结得出:
3.正方形的定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.

试一试:正方形、、矩形、菱形与平行四边形之间存在“特殊”与“一般”的关系,正方形、、矩形、菱形之间也存在“特殊”与“一般”的关系,你能用一张图来表示它们之间的关系吗?把你设计的图和同学们讨论,并写下来。
引导学生思考后,进行小组讨论。归纳如下:

集合表示,突出关系

平行四边形
矩形正方形菱形

三、练习巩固概念P54

四、课堂小结:
师生共同总结本节课内容。
矩形

有一个角是直角,
平行四边形且有一组邻边相等正方形

菱形

五、课后作业

六、课后反思

平行四边形的识别


22.2平行四边形的识别
教学目标
1.在观察、操作、推理、归纳等探索过程中,发展学生合情推理的能力,进一步培养学生数学说理的习惯与能力。
2.在理解平行四边形的简单识别方法的活动中,让学生获得成功的喜悦,体验到数学活动充满着探索和创造,感受到数学推理的严谨性。
3.培养学生独立思考的习惯。
教学重点与难点
重点:探索平行四边形的识别方法。
难点:理解平行四边形的识别方法与应用。
教学准备方格纸、直尺、图钉、剪刀。
教学过程
一、提问。
1.平行四边形对边(),对角(),对角线()。
2.()是平行四边形。
二、探索,概括。
1.探索。
(1)按照下面的步骤,在力格纸上画一个有一组对边平行且相等的四边形。
步骤1:画一线段AB。
步骤2:平移线段AD到BC。
步骤3:连结AB、DC,得到四边形ABCD,其中AD∥BC,AD=BC。
(2)如图,沿四边形的边剪下四边形,再在一张纸上沿四边形的边画出一个四边形。把两个四边形重合放在一起,重合的点分别记为A、B、C、D。通过连结对角线确定对角线的交点O,用一枚图钉穿过点O,把其中一个四边形绕点O旋转,观察旋转180°后的四边形与原来的四边形是否重合,重复旋转几次,看看是否得到同样的结果。
根据上述的过程,能否断定这个四边形是平行四边形?
2.概括。
我们可以看到旋转后的四边形与原来的四边形重合,即C点与A点重合,B点与D点重合。这样,我们就可以得到∠_BAC=∠ACD,从而AB∥DC,又AD∥BC,根据平行四边形的定义,可知道四边形ABCD是平行四边形。由此可以得到:
一组对边平行且相等的四边形是平行四边形。
(一步一步的引导学生得出结论,然后让学生用自己的语言叙述。)
三、应用举例。
例4如图,在平行四边形ABCD中,已知点E和点F分别在AD和BC上,且AE=CF,连结CE和AF,试说明四边形AFCE是平行四边形。
四、巩固练习。
如图,在平行四边形ABCD中,已知M和N分别是AB、CD上的中点,试说明四边形BMDN也是平行四边形。
五、拓展延伸。
在下面的格点图中,以格点为顶点,你能画出多少个平行四边形?
六、看谁做的既快又正确?
七、课堂小结。
这节课你有什么收获?学到了什么?还有什么疑问吗?
八、布置作业。
补充习题

平行四边形导学案


张家港市一中2014—2015学年度第二学期八年级数学导学案
初二班姓名学号
课题:9.3平行四边形(1)
预学目标
1.动手实践课本P64的“操作”,初步感受平行四边形的中心对称性.
2.利用中心对称的性质初步了解平行四边形中相等的角和线段.
3.从边、角以及对角线三个方面尝试归纳平行四边形的性质.
知识梳理
l.平行四边形的概念
如图1,_______∥_______,_______∥_______,
则四边形ABCD是_______,记作_______,读作_______.
2.平行四边形是中心对称图形
观察图2,将△ABC绕AC边的中点O旋转180°,可得到△_____,
则△_____和△______关于点_______成_______对称,由性质可以得到
∠BAC=∠_____,∠BCA=∠_______,所以_______∥_______,
_____∥______,所以由概念可知四边形ABCD是平行四边形.
综上可知□ABCD是_______图形,对称中心是_______.
3.平行四边形的性质
如图2,由于□ABCD是中心对称图形,故由中心对称的性质可知:
(1)AB_______,AD_______,即_______________________________________;
(2)∠ABC=∠_______,∠BAD=∠_______,即______________________________;
(3)OA=_______,OB=_______,即________________________________________.
4.如图,在□ABCD中,
(l)若∠B=100°,则∠D=_______;
(2)若∠A+∠C=140°,则∠C=_______,∠B=_______;
(3)若AB:BC=3:4,周长为28cm,则AD=_______,CD=_______;
(4)若□ABCD的周长为60cm,对角线相交于点O,△AOB的周长比△BOC的周长少8cm,则AB=_______,BC=_______.
例题精讲
例1(l)平行四边形ABCD的周长为80cm,相邻两边之比为1:3,则长边长
是_________cm,短边长是___________cm.
(2)在□ABCD中,∠A:∠B=1:2,则∠C=________,∠D=________.
(注意字母标写)
例2.如图,AB∥DE,BC∥EF,DF∥AC.
(1)图中有几个平行四边形?并表示出来,并说明理由.
(2)D、E、F分别是△ABC各边的中点吗?
(3)图中有哪些全等的三角形?将它们表示出来并说明理由.

变式:学校买了四棵树,准备栽在花园
里,已经栽了三棵(如图),现在学校希望
这四棵树能组成一个平行四边形,你觉得
第四棵树D应该栽在哪里呢?

例3.如图,在□ABCD中,∠C的平分线交AB于点E,交DA延长线于点F,且AE=5cm,EB=5cm,求□ABCD的周长.

变式:如图,在□ABCD中,∠BCD的平分线CE交AD于点E,∠ABC的平分线BG交CE于点F,交AD于点G.试说明AE=DG.

例4.如图,ABCD中,AC和BD相交于O,OE⊥AD于E,OF⊥BC于F,求证:OE=OF.
课堂小结平行四边形性质:1.平行四边形是中心对称图形,
对角线的交点是它的对称中心.
2.平行四边形对边相等.
3.平行四边形对角相等.
4.平行四边形的对角线互相平分.
添加:这节课涉及到的数学思想:
转化思想
整体思想
方程思想
数形结合思想
教后小记:本节课学习平行四边形的概念与性质及其运用,在学生的预习过程中,让学生初步掌握基础知识和基本运算,课堂上通过学生自主探索和动手操作加上合作交流,鼓励学生主动上台讲解,在解题过程中,与学生一起探讨解题的方法,灌输总结数学的思想方法和解题技巧。

初二数学课堂练习班级姓名学号
1.在□ABCD中,AB=5cm,BC=4cm,则□ABCD的周长为_______.
2.在□ABCD中,如果∠B=100°,那么∠A、∠D的度数分别是()
A.∠A=80°、∠D=100°B.∠A=100°、∠D=80°
C.∠B=80°、∠D=80°D.∠A=100°、∠D=100°
3.如图,在□ABCD中,∠ABD=90°,∠ADB=30°,
则四个内角的度数分别为_______°、_______°、_______°、_______°.
4.平行四边形的周长等于56cm,两邻边长的比为3:1,
那么这个平行四边形较长边的长为_______.
5.如图,在□ABCD中,AD=8cm,AB=6cm,DE
平分∠ADC,交BC边于点E,则BE的长为()
A.2cmB.4cmC.6cmD.8cm
6.如图,在□ABCD中,AC、BD为对角线,BC=6,
BC边上的高为4,则阴影部分的面积为()
A.3B.6C.12D.24
7.如果□ABCD的周长为40cm,△ABC的周长为25cm,则对角线AC的长是()
A.5cmB.15cmC.6cmD.16cm
8.在□ABCD中,AC、BD相交于点O,则图中共有全等三角形()
A.1对B.2对C.3对D.4对
9.如图,E是□ABCD的边AD的中点,CE与BA的延长线交于点F,若∠FCD=∠D,则下列结论不成立的是()
A.AD=CFB.BF=CFC.AF=CDD.DE=EF
10.在□ABCD中,对角线AC与BD相交于O,若AC=6,BD=10则AD长度x的取值范围是A.2x6B.3x9C.1x9D.2x8()
11.如图,E、F是□ABCD对角线AC上的两点,BE∥DF.求证:AF=CE.
12.如图,□ABCD的边BC上有一点E,且AE=AD,AE、DC的延长线相交于点F,
∠ADE=55°,那么∠CEF的度数是多少?

13.如图,在□ABCD中,EF过对角线的交点O,若AD=8cm,AB=6cm,OE=4cm,
求四边形ABFE的周长.

14.如图,在□ABCD中,AE⊥BC于点E,AF⊥CD于点F,若AE=4,AF=6,
□ABCD的周长为40,则□ABCD的面积为多少?

15.如图,在□ABCD中,∠ABC=60°,E、F分别在CD、BC的延长线上,AE∥BD,EF⊥BC,DF=2,求EF的长.

16.用三种不同的方法把□ABCD的面积四等分,并简要说明分法.