小学数学复习教案
发表时间:2020-11-242012届高三特长班数学复数总复习。
古人云,工欲善其事,必先利其器。作为高中教师就要精心准备好合适的教案。教案可以让学生们有一个良好的课堂环境,帮助授课经验少的高中教师教学。那么一篇好的高中教案要怎么才能写好呢?小编收集并整理了“2012届高三特长班数学复数总复习”,供大家参考,希望能帮助到有需要的朋友。
高三特长班数学总复习——复数
一、知识梳理:
1、复数定义:,其中i满足。
2、复数a+bi(a,b∈R)与复平面内的点P一一对应,记向量是一一对应的.与虚轴上的点对应,与实轴上的点对应,复数对应的点到原点的距离叫做。
3、复数z=a+bi(a,b∈R)的共轭复数:
4、熟练记忆掌握运用以下结论:
(1)复数相等的充要条件:a+bi=c+di等价于。
(2)复数z=a+bi(a,b∈R)是实数的充要条件:,是纯虚数的充要条件:,是虚数的充要条件:,是零的充要条件:。
(3)复数z=a+bi(a,b∈R)的模记作。
5、复数运算:(1)复数加法:(a+bi)+(c+di)=
(2)复数减法:(a+bi)-(c+di)=
(3)乘法:(a+bi)(c+di)=
(a+bi)(a-bi)=(a+bi)2=(a-bi)2=
(4)除法:
牛刀小试:(6-5i)+(3+2i)(6-5i)-(3+2i)(6-5i)(3+2i)
二、高考链接
1、复数的实部是()A.-2B.2C.3D.4
2、设的共轭复数是,若,,则等于()
A.B.C.D.
3、复数等于()..
A.B.C.D.
4、已知(a,b∈R),其中i为虚数单位,则a+b=()
(A)-1(B)1(C)2(D)3
三、抢分演练:
1、下列n的取值中,使=1(i是虚数单位)的是()
A.n=2B.n=3C.n=4D.n=5
2、在复平面内,复数对应的点位于()
A.第一象限B.第二象限C.第三象限D.第四象限.
3.若i为虚数单位,图中复平面内点Z表示复数Z,则表示复数的点是()
A.EB.FC.GD.H
4、若复数为纯虚数,则实数的值为
A.B.C.D.或.
5、设(是虚数单位),则()
A.B.C.D.
6、i是虚数单位,i(1+i)等于()
A.1+iB.-1-iC.1-iD.-1+i
7、复数()
A.2B.-2C.D.
8、已知复数,那么=()
(A)(B)(C)(D)
9、是虚数单位,()
A、B、C、D、
10、已知是实数,是纯虚数,则=()
(A)1(B)-1(C)(D)-
11、i是虚数单位,若,则乘积的值是()()
(A)-15(B)-3(C)3(D)15
12、复数的实部是。
13、若复数z满足z(1+i)=1-i(I是虚数单位),则其共轭复数=__________________.
(jk251.CoM 教师范文大全)
扩展阅读
2012届高三理科数学数列总复习
一名优秀的教师就要对每一课堂负责,作为教师就要早早地准备好适合的教案课件。教案可以让学生能够听懂教师所讲的内容,帮助教师提前熟悉所教学的内容。那么怎么才能写出优秀的教案呢?下面是小编为大家整理的“2012届高三理科数学数列总复习”,相信您能找到对自己有用的内容。
第六章数列
高考导航
考试要求重难点击命题展望
1.数列的概念和简单表示法?
(1)了解数列的概念和几种简单的表示方法(列表、图象、通项公式);?(2)了解数列是自变量为正整数的一类函数.?
2.等差数列、等比数列?
(1)理解等差数列、等比数列的概念;?
(2)掌握等差数列、等比数列的通项公式与前n项和公式;?
(3)能在具体问题情境中识别数列的等差关系或等比关系,并能用有关知识解决相应的问题;?
(4)了解等差数列与一次函数、等比数列与指数函数的关系.本章重点:1.等差数列、等比数列的定义、通项公式和前n项和公式及有关性质;
2.注重提炼一些重要的思想和方法,如:观察法、累加法、累乘法、待定系数法、倒序相加求和法、错位相减求和法、裂项相消求和法、分组求和法、函数与方程思想、数学模型思想以及离散与连续的关系.?
本章难点:1.数列概念的理解;2.等差等比数列性质的运用;3.数列通项与求和方法的运用.仍然会以客观题考查等差数列与等比数列的通项公式和前n项和公式及性质,在解答题中,会保持以前的风格,注重数列与其他分支的综合能力的考查,在高考中,数列常考常新,其主要原因是它作为一个特殊函数,使它可以与函数、不等式、解析几何、三角函数等综合起来,命出开放性、探索性强的问题,更体现了知识交叉命题原则得以贯彻;又因为数列与生产、生活的联系,使数列应用题也倍受欢迎.
知识网络
6.1数列的概念与简单表示法
典例精析
题型一归纳、猜想法求数列通项
【例1】根据下列数列的前几项,分别写出它们的一个通项公式:
(1)7,77,777,7777,…
(2)23,-415,635,-863,…
(3)1,3,3,5,5,7,7,9,9,…
【解析】(1)将数列变形为79(10-1),79(102-1),79(103-1),…,79(10n-1),
故an=79(10n-1).
(2)分开观察,正负号由(-1)n+1确定,分子是偶数2n,分母是1×3,3×5,5×7,…,(2n-1)(2n+1),故数列的通项公式可写成an=(-1)n+1.
(3)将已知数列变为1+0,2+1,3+0,4+1,5+0,6+1,7+0,8+1,9+0,….
故数列的通项公式为an=n+.
【点拨】联想与转换是由已知认识未知的两种有效的思维方法,观察归纳是由特殊到一般的有效手段,本例的求解关键是通过分析、比较、联想、归纳、转换获得项与项序数的一般规律,从而求得通项.
【变式训练1】如下表定义函数f(x):
x12345
f(x)54312
对于数列{an},a1=4,an=f(an-1),n=2,3,4,…,则a2008的值是()
A.1B.2C.3D.4
【解析】a1=4,a2=1,a3=5,a4=2,a5=4,…,可得an+4=an.
所以a2008=a4=2,故选B.
题型二应用an=求数列通项
【例2】已知数列{an}的前n项和Sn,分别求其通项公式:
(1)Sn=3n-2;
(2)Sn=18(an+2)2(an>0).
【解析】(1)当n=1时,a1=S1=31-2=1,
当n≥2时,an=Sn-Sn-1=(3n-2)-(3n-1-2)=2×3n-1,
又a1=1不适合上式,
故an=
(2)当n=1时,a1=S1=18(a1+2)2,解得a1=2,
当n≥2时,an=Sn-Sn-1=18(an+2)2-18(an-1+2)2,
所以(an-2)2-(an-1+2)2=0,所以(an+an-1)(an-an-1-4)=0,
又an>0,所以an-an-1=4,
可知{an}为等差数列,公差为4,
所以an=a1+(n-1)d=2+(n-1)4=4n-2,
a1=2也适合上式,故an=4n-2.
【点拨】本例的关键是应用an=求数列的通项,特别要注意验证a1的值是否满足“n≥2”的一般性通项公式.
【变式训练2】已知a1=1,an=n(an+1-an)(n∈N*),则数列{an}的通项公式是()
A.2n-1B.(n+1n)n-1C.n2D.n
【解析】由an=n(an+1-an)an+1an=n+1n.
所以an=anan-1×an-1an-2×…×a2a1=nn-1×n-1n-2×…×32×21=n,故选D.
题型三利用递推关系求数列的通项
【例3】已知在数列{an}中a1=1,求满足下列条件的数列的通项公式:
(1)an+1=an1+2an;(2)an+1=2an+2n+1.
【解析】(1)因为对于一切n∈N*,an≠0,
因此由an+1=an1+2an得1an+1=1an+2,即1an+1-1an=2.
所以{1an}是等差数列,1an=1a1+(n-1)2=2n-1,即an=12n-1.
(2)根据已知条件得an+12n+1=an2n+1,即an+12n+1-an2n=1.
所以数列{an2n}是等差数列,an2n=12+(n-1)=2n-12,即an=(2n-1)2n-1.
【点拨】通项公式及递推关系是给出数列的常用方法,尤其是后者,可以通过进一步的计算,将其进行转化,构造新数列求通项,进而可以求得所求数列的通项公式.
【变式训练3】设{an}是首项为1的正项数列,且(n+1)a2n+1-na2n+an+1an=0(n=1,2,3,…),求an.
【解析】因为数列{an}是首项为1的正项数列,
所以anan+1≠0,所以(n+1)an+1an-nanan+1+1=0,
令an+1an=t,所以(n+1)t2+t-n=0,
所以[(n+1)t-n](t+1)=0,
得t=nn+1或t=-1(舍去),即an+1an=nn+1.
所以a2a1a3a2a4a3a5a4…anan-1=12233445…n-1n,所以an=1n.
总结提高
1.给出数列的前几项求通项时,常用特征分析法与化归法,所求通项不唯一.
2.由Sn求an时,要分n=1和n≥2两种情况.
3.给出Sn与an的递推关系,要求an,常用思路是:一是利用Sn-Sn-1=an(n≥2)转化为an的递推关系,再求其通项公式;二是转化为Sn的递推关系,先求出Sn与n之间的关系,再求an.
6.2等差数列
典例精析
题型一等差数列的判定与基本运算
【例1】已知数列{an}前n项和Sn=n2-9n.
(1)求证:{an}为等差数列;(2)记数列{|an|}的前n项和为Tn,求Tn的表达式.
【解析】(1)证明:n=1时,a1=S1=-8,
当n≥2时,an=Sn-Sn-1=n2-9n-[(n-1)2-9(n-1)]=2n-10,
当n=1时,也适合该式,所以an=2n-10(n∈N*).
当n≥2时,an-an-1=2,所以{an}为等差数列.
(2)因为n≤5时,an≤0,n≥6时,an>0.
所以当n≤5时,Tn=-Sn=9n-n2,
当n≥6时,Tn=a1+a2+…+a5+a6+…+an
=-a1-a2-…-a5+a6+a7+…+an
=Sn-2S5=n2-9n-2×(-20)=n2-9n+40,
所以,
【点拨】根据定义法判断数列为等差数列,灵活运用求和公式.
【变式训练1】已知等差数列{an}的前n项和为Sn,且S21=42,若记bn=,则数列{bn}()
A.是等差数列,但不是等比数列B.是等比数列,但不是等差数列
C.既是等差数列,又是等比数列D.既不是等差数列,又不是等比数列
【解析】本题考查了两类常见数列,特别是等差数列的性质.根据条件找出等差数列{an}的首项与公差之间的关系从而确定数列{bn}的通项是解决问题的突破口.{an}是等差数列,则S21=21a1+21×202d=42.
所以a1+10d=2,即a11=2.所以bn==22-(2a11)=20=1,即数列{bn}是非0常数列,既是等差数列又是等比数列.答案为C.
题型二公式的应用
【例2】设等差数列{an}的前n项和为Sn,已知a3=12,S12>0,S13<0.
(1)求公差d的取值范围;
(2)指出S1,S2,…,S12中哪一个值最大,并说明理由.
【解析】(1)依题意,有
S12=12a1+12×(12-1)d2>0,S13=13a1+13×(13-1)d2<0,
即
由a3=12,得a1=12-2d.③
将③分别代入①②式,得
所以-247<d<-3.
(2)方法一:由d<0可知a1>a2>a3>…>a12>a13,
因此,若在1≤n≤12中存在自然数n,使得an>0,an+1<0,
则Sn就是S1,S2,…,S12中的最大值.
由于S12=6(a6+a7)>0,S13=13a7<0,
即a6+a7>0,a7<0,因此a6>0,a7<0,
故在S1,S2,…,S12中,S6的值最大.
方法二:由d<0可知a1>a2>a3>…>a12>a13,
因此,若在1≤n≤12中存在自然数n,使得an>0,an+1<0,
则Sn就是S1,S2,…,S12中的最大值.
故在S1,S2,…,S12中,S6的值最大.
【变式训练2】在等差数列{an}中,公差d>0,a2008,a2009是方程x2-3x-5=0的两个根,Sn是数列{an}的前n项的和,那么满足条件Sn<0的最大自然数n=.
【解析】由题意知又因为公差d>0,所以a2008<0,a2009>0.当
n=4015时,S4015=a1+a40152×4015=a2008×4015<0;当n=4016时,S4016=a1+a40162×4016=a2008+a20092×4016>0.所以满足条件Sn<0的最大自然数n=4015.
题型三性质的应用
【例3】某地区2010年9月份曾发生流感,据统计,9月1日该地区流感病毒的新感染者有40人,此后,每天的新感染者人数比前一天增加40人;但从9月11日起,该地区医疗部门采取措施,使该种病毒的传播得到控制,每天的新感染者人数比前一天减少10人.
(1)分别求出该地区在9月10日和9月11日这两天的流感病毒的新感染者人数;
(2)该地区9月份(共30天)该病毒新感染者共有多少人?
【解析】(1)由题意知,该地区9月份前10天流感病毒的新感染者的人数构成一个首项为40,公差为40的等差数列.
所以9月10日的新感染者人数为40+(10-1)×40=400(人).
所以9月11日的新感染者人数为400-10=390(人).
(2)9月份前10天的新感染者人数和为S10=10(40+400)2=2200(人),
9月份后20天流感病毒的新感染者的人数,构成一个首项为390,公差为-10的等差数列.
所以后20天新感染者的人数和为T20=20×390+20(20-1)2×(-10)=5900(人).
所以该地区9月份流感病毒的新感染者共有2200+5900=8100(人).
【变式训练3】设等差数列{an}的前n项和为Sn,若S4≥10,S5≤15,则a4的最大值为
.
【解析】因为等差数列{an}的前n项和为Sn,且S4≥10,S5≤15,
所以5+3d2≤a4≤3+d,即5+3d≤6+2d,所以d≤1,
所以a4≤3+d≤3+1=4,故a4的最大值为4.
总结提高
1.在熟练应用基本公式的同时,还要会用变通的公式,如在等差数列中,am=an+(m-n)d.
2.在五个量a1、d、n、an、Sn中,知其中的三个量可求出其余两个量,要求选用公式要恰当,即善于减少运算量,达到快速、准确的目的.
3.已知三个或四个数成等差数列这类问题,要善于设元,目的仍在于减少运算量,如三个数成等差数列时,除了设a,a+d,a+2d外,还可设a-d,a,a+d;四个数成等差数列时,可设为a-3m,a-m,a+m,a+3m.
4.在求解数列问题时,要注意函数思想、方程思想、消元及整体消元的方法的应用.
6.3等比数列
典例精析
题型一等比数列的基本运算与判定
【例1】数列{an}的前n项和记为Sn,已知a1=1,an+1=n+2nSn(n=1,2,3,…).求证:
(1)数列{Snn}是等比数列;(2)Sn+1=4an.
【解析】(1)因为an+1=Sn+1-Sn,an+1=n+2nSn,
所以(n+2)Sn=n(Sn+1-Sn).
整理得nSn+1=2(n+1)Sn,所以Sn+1n+1=2Snn,
故{Snn}是以2为公比的等比数列.
(2)由(1)知Sn+1n+1=4Sn-1n-1=4ann+1(n≥2),
于是Sn+1=4(n+1)Sn-1n-1=4an(n≥2).
又a2=3S1=3,故S2=a1+a2=4.
因此对于任意正整数n≥1,都有Sn+1=4an.
【点拨】①运用等比数列的基本公式,将已知条件转化为关于等比数列的特征量a1、q的方程是求解等比数列问题的常用方法之一,同时应注意在使用等比数列前n项和公式时,应充分讨论公比q是否等于1;②应用定义判断数列是否是等比数列是最直接,最有依据的方法,也是通法,若判断一个数列是等比数列可用an+1an=q(常数)恒成立,也可用a2n+1=anan+2恒成立,若判定一个数列不是等比数列则只需举出反例即可,也可以用反证法.
【变式训练1】等比数列{an}中,a1=317,q=-12.记f(n)=a1a2…an,则当f(n)最大时,n的值为()
A.7B.8C.9D.10
【解析】an=317×(-12)n-1,易知a9=317×1256>1,a10<0,0<a11<1.又a1a2…a9>0,故f(9)=a1a2…a9的值最大,此时n=9.故选C.
题型二性质运用
【例2】在等比数列{an}中,a1+a6=33,a3a4=32,an>an+1(n∈N*).
(1)求an;
(2)若Tn=lga1+lga2+…+lgan,求Tn.
【解析】(1)由等比数列的性质可知a1a6=a3a4=32,
又a1+a6=33,a1>a6,解得a1=32,a6=1,
所以a6a1=132,即q5=132,所以q=12,
所以an=32(12)n-1=26-n.
(2)由等比数列的性质可知,{lgan}是等差数列,
因为lgan=lg26-n=(6-n)lg2,lga1=5lg2,
所以Tn=(lga1+lgan)n2=n(11-n)2lg2.
【点拨】历年高考对性质考查较多,主要是利用“等积性”,题目“小而巧”且背景不断更新,要熟练掌握.
【变式训练2】在等差数列{an}中,若a15=0,则有等式a1+a2+…+an=a1+a2+…+a29-n(n<29,n∈N*)成立,类比上述性质,相应地在等比数列{bn}中,若b19=1,能得到什么等式?
【解析】由题设可知,如果am=0,在等差数列中有
a1+a2+…+an=a1+a2+…+a2m-1-n(n<2m-1,n∈N*)成立,
我们知道,如果m+n=p+q,则am+an=ap+aq,
而对于等比数列{bn},则有若m+n=p+q,则aman=apaq,
所以可以得出结论:
若bm=1,则有b1b2…bn=b1b2…b2m-1-n(n<2m-1,n∈N*)成立.
在本题中则有b1b2…bn=b1b2…b37-n(n<37,n∈N*).
题型三综合运用
【例3】设数列{an}的前n项和为Sn,其中an≠0,a1为常数,且-a1,Sn,an+1成等差数列.
(1)求{an}的通项公式;
(2)设bn=1-Sn,问是否存在a1,使数列{bn}为等比数列?若存在,则求出a1的值;若不存在,说明理由.
【解析】(1)由题意可得2Sn=an+1-a1.
所以当n≥2时,有
两式相减得an+1=3an(n≥2).
又a2=2S1+a1=3a1,an≠0,
所以{an}是以首项为a1,公比为q=3的等比数列.
所以an=a13n-1.
(2)因为Sn=a1(1-qn)1-q=-12a1+12a13n,所以bn=1-Sn=1+12a1-12a13n.
要使{bn}为等比数列,当且仅当1+12a1=0,即a1=-2,此时bn=3n.
所以{bn}是首项为3,公比为q=3的等比数列.
所以{bn}能为等比数列,此时a1=-2.
【变式训练3】已知命题:若{an}为等差数列,且am=a,an=b(m<n,m、n∈N*),则am+n=bn-amn-m.现在已知数列{bn}(bn>0,n∈N*)为等比数列,且bm=a,bn=b(m<n,m,n∈N*),类比上述结论得bm+n=.
【解析】n-mbnam.
总结提高
1.方程思想,即等比数列{an}中五个量a1,n,q,an,Sn,一般可“知三求二”,通过求和与通项两公式列方程组求解.
2.对于已知数列{an}递推公式an与Sn的混合关系式,利用公式an=Sn-Sn-1(n≥2),再引入辅助数列,转化为等比数列问题求解.
3.分类讨论思想:当a1>0,q>1或a1<0,0<q<1时,等比数列{an}为递增数列;当a1>0,0<q<1或a1<0,q>1时,{an}为递减数列;q<0时,{an}为摆动数列;q=1时,{an}为常数列.
6.4数列求和
典例精析
题型一错位相减法求和
【例1】求和:Sn=1a+2a2+3a3+…+nan.
【解析】(1)a=1时,Sn=1+2+3+…+n=n(n+1)2.
(2)a≠1时,因为a≠0,
Sn=1a+2a2+3a3+…+nan,①
1aSn=1a2+2a3+…+n-1an+nan+1.②
由①-②得(1-1a)Sn=1a+1a2+…+1an-nan+1=1a(1-1an)1-1a-nan+1,
所以Sn=a(an-1)-n(a-1)an(a-1)2.
综上所述,Sn=
【点拨】(1)若数列{an}是等差数列,{bn}是等比数列,则求数列{anbn}的前n项和时,可采用错位相减法;
(2)当等比数列公比为字母时,应对字母是否为1进行讨论;
(3)当将Sn与qSn相减合并同类项时,注意错位及未合并项的正负号.
【变式训练1】数列{2n-32n-3}的前n项和为()
A.4-2n-12n-1B.4+2n-72n-2C.8-2n+12n-3D.6-3n+22n-1
【解析】取n=1,2n-32n-3=-4.故选C.
题型二分组并项求和法
【例2】求和Sn=1+(1+12)+(1+12+14)+…+(1+12+14+…+12n-1).
【解析】和式中第k项为ak=1+12+14+…+12k-1=1-(12)k1-12=2(1-12k).
所以Sn=2[(1-12)+(1-122)+…+(1-12n)]
=-(12+122+…+12n)]
=2[n-12(1-12n)1-12]=2[n-(1-12n)]=2n-2+12n-1.
【变式训练2】数列1,1+2,1+2+22,1+2+22+23,…,1+2+22+…+2n-1,…的前n项和为()
A.2n-1B.n2n-n
C.2n+1-nD.2n+1-n-2
【解析】an=1+2+22+…+2n-1=2n-1,
Sn=(21-1)+(22-1)+…+(2n-1)=2n+1-n-2.故选D.
题型三裂项相消法求和
【例3】数列{an}满足a1=8,a4=2,且an+2-2an+1+an=0(n∈N*).
(1)求数列{an}的通项公式;
(2)设bn=1n(14-an)(n∈N*),Tn=b1+b2+…+bn(n∈N*),若对任意非零自然数n,Tn>m32恒成立,求m的最大整数值.
【解析】(1)由an+2-2an+1+an=0,得an+2-an+1=an+1-an,
从而可知数列{an}为等差数列,设其公差为d,则d=a4-a14-1=-2,
所以an=8+(n-1)×(-2)=10-2n.
(2)bn=1n(14-an)=12n(n+2)=14(1n-1n+2),
所以Tn=b1+b2+…+bn=14[(11-13)+(12-14)+…+(1n-1n+2)]
=14(1+12-1n+1-1n+2)=38-14(n+1)-14(n+2)>m32,
上式对一切n∈N*恒成立.
所以m<12-8n+1-8n+2对一切n∈N*恒成立.
对n∈N*,(12-8n+1-8n+2)min=12-81+1-81+2=163,
所以m<163,故m的最大整数值为5.
【点拨】(1)若数列{an}的通项能转化为f(n+1)-f(n)的形式,常采用裂项相消法求和.
(2)使用裂项相消法求和时,要注意正负项相消时,消去了哪些项,保留了哪些项.
【变式训练3】已知数列{an},{bn}的前n项和为An,Bn,记cn=anBn+bnAn-anbn(n∈N*),则数列{cn}的前10项和为()
A.A10+B10B.A10+B102C.A10B10D.A10B10
【解析】n=1,c1=A1B1;n≥2,cn=AnBn-An-1Bn-1,即可推出{cn}的前10项和为A10B10,故选C.
总结提高
1.常用的基本求和法均对应数列通项的特殊结构特征,分析数列通项公式的特征联想相应的求和方法既是根本,也是关键.
2.数列求和实质就是求数列{Sn}的通项公式,它几乎涵盖了数列中所有的思想策略、方法和技巧,对学生的知识和思维有很高的要求,应充分重视并系统训练.
6.5数列的综合应用
典例精析
题型一函数与数列的综合问题
【例1】已知f(x)=logax(a>0且a≠1),设f(a1),f(a2),…,f(an)(n∈N*)是首项为4,公差为2的等差数列.
(1)设a是常数,求证:{an}成等比数列;
(2)若bn=anf(an),{bn}的前n项和是Sn,当a=2时,求Sn.
【解析】(1)f(an)=4+(n-1)×2=2n+2,即logaan=2n+2,所以an=a2n+2,
所以anan-1=a2n+2a2n=a2(n≥2)为定值,所以{an}为等比数列.
(2)bn=anf(an)=a2n+2logaa2n+2=(2n+2)a2n+2,
当a=2时,bn=(2n+2)(2)2n+2=(n+1)2n+2,
Sn=223+324+425+…+(n+1)2n+2,
2Sn=224+325+…+n2n+2+(n+1)2n+3,
两式相减得
-Sn=223+24+25+…+2n+2-(n+1)2n+3=16+24(1-2n-1)1-2-(n+1)2n+3,
所以Sn=n2n+3.
【点拨】本例是数列与函数综合的基本题型之一,特征是以函数为载体构建数列的递推关系,通过由函数的解析式获知数列的通项公式,从而问题得到求解.
【变式训练1】设函数f(x)=xm+ax的导函数f′(x)=2x+1,则数列{1f(n)}(n∈N*)的前n项和是()
A.nn+1B.n+2n+1C.nn+1D.n+1n
【解析】由f′(x)=mxm-1+a=2x+1得m=2,a=1.
所以f(x)=x2+x,则1f(n)=1n(n+1)=1n-1n+1.
所以Sn=1-12+12-13+13-14+…+1n-1n+1=1-1n+1=nn+1.故选C.
题型二数列模型实际应用问题
【例2】某县位于沙漠地带,人与自然长期进行着顽强的斗争,到2009年底全县的绿化率已达30%,从2010年开始,每年将出现这样的局面:原有沙漠面积的16%将被绿化,与此同时,由于各种原因,原有绿化面积的4%又被沙化.
(1)设全县面积为1,2009年底绿化面积为a1=310,经过n年绿化面积为an+1,求证:an+1=45an+425;
(2)至少需要多少年(取整数)的努力,才能使全县的绿化率达到60%?
【解析】(1)证明:由已知可得an确定后,an+1可表示为an+1=an(1-4%)+(1-an)16%,
即an+1=80%an+16%=45an+425.
(2)由an+1=45an+425有,an+1-45=45(an-45),
又a1-45=-12≠0,所以an+1-45=-12(45)n,即an+1=45-12(45)n,
若an+1≥35,则有45-12(45)n≥35,即(45)n-1≤12,(n-1)lg45≤-lg2,
(n-1)(2lg2-lg5)≤-lg2,即(n-1)(3lg2-1)≤-lg2,
所以n≥1+lg21-3lg2>4,n∈N*,
所以n取最小整数为5,故至少需要经过5年的努力,才能使全县的绿化率达到60%.
【点拨】解决此类问题的关键是如何把实际问题转化为数学问题,通过反复读题,列出有关信息,转化为数列的有关问题.
【变式训练2】规定一机器狗每秒钟只能前进或后退一步,现程序设计师让机器狗以“前进3步,然后再后退2步”的规律进行移动.如果将此机器狗放在数轴的原点,面向正方向,以1步的距离为1单位长移动,令P(n)表示第n秒时机器狗所在的位置坐标,且P(0)=0,则下列结论中错误的是()
A.P(2006)=402B.P(2007)=403
C.P(2008)=404D.P(2009)=405
【解析】考查数列的应用.构造数列{Pn},由题知P(0)=0,P(5)=1,P(10)=2,P(15)=3.所以P(2005)=401,P(2006)=401+1=402,P(2007)=401+1+1=403,P(2008)=401+
3=404,P(2009)=404-1=403.故D错.
题型三数列中的探索性问题
【例3】{an},{bn}为两个数列,点M(1,2),An(2,an),Bn(n-1n,2n)为直角坐标平面上的点.
(1)对n∈N*,若点M,An,Bn在同一直线上,求数列{an}的通项公式;
(2)若数列{bn}满足log2Cn=a1b1+a2b2+…+anbna1+a2+…+an,其中{Cn}是第三项为8,公比为4的等比数列,求证:点列(1,b1),(2,b2),…,(n,bn)在同一直线上,并求此直线方程.
【解析】(1)由an-22-1=2n-2n-1n-1,得an=2n.
(2)由已知有Cn=22n-3,由log2Cn的表达式可知:
2(b1+2b2+…+nbn)=n(n+1)(2n-3),①
所以2[b1+2b2+…+(n-1)bn-1]=(n-1)n(2n-5).②
①-②得bn=3n-4,所以{bn}为等差数列.
故点列(1,b1),(2,b2),…,(n,bn)共线,直线方程为y=3x-4.
【变式训练3】已知等差数列{an}的首项a1及公差d都是整数,前n项和为Sn(n∈N*).若a1>1,a4>3,S3≤9,则通项公式an=.
【解析】本题考查二元一次不等式的整数解以及等差数列的通项公式.
由a1>1,a4>3,S3≤9得
令x=a1,y=d得
在平面直角坐标系中画出可行域如图所示.符合要求的整数点只有(2,1),即a1=2,d=1.所以an=2+n-1=n+1.故答案填n+1.
总结提高
1.数列模型应用问题的求解策略
(1)认真审题,准确理解题意;
(2)依据问题情境,构造等差、等比数列,然后应用通项公式、前n项和公式以及性质求解,或通过探索、归纳构造递推数列求解;
(3)验证、反思结果与实际是否相符.
2.数列综合问题的求解策略
(1)数列与函数综合问题或应用数学思想解决数列问题,或以函数为载体构造数列,应用数列的知识求解;
(2)数列的几何型综合问题,探究几何性质和规律特征建立数列的递推关系式,然后求解问题.
2012届高三数学概率统计总复习
一名合格的教师要充分考虑学习的趣味性,作为教师就要好好准备好一份教案课件。教案可以让学生更好的消化课堂内容,帮助教师掌握上课时的教学节奏。您知道教案应该要怎么下笔吗?下面是小编为大家整理的“2012届高三数学概率统计总复习”,欢迎大家与身边的朋友分享吧!
高三特长班数学复习概率统计(一)
一、知识梳理
1.三种抽样方法的联系与区别:
类别共同点不同点相互联系适用范围
简单随机抽样都是等概率抽样从总体中逐个抽取总体中个体比较少
系统抽样将总体均匀分成若干部分;按事先确定的规则在各部分抽取在起始部分采用简单随机抽样总体中个体比较多
分层抽样将总体分成若干层,按个体个数的比例抽取在各层抽样时采用简单随机抽样或系统抽样总体中个体有明显差异
(1)从含有N个个体的总体中抽取n个个体的样本,每个个体被抽到的概率为
(2)系统抽样的步骤:①将总体中的个体随机编号;②将编号分段;③在第1段中用简单随机抽样确定起始的个体编号;④按照事先研究的规则抽取样本.
(3)分层抽样的步骤:①分层;②按比例确定每层抽取个体的个数;③各层抽样;④汇合成样本.
(4)要懂得从图表中提取有用信息
如:在频率分布直方图中①小矩形的面积=组距=频率②众数是最高矩形的中点的横坐标③中位数的左边与右边的直方图的面积相等,可以由此估计中位数的值
2.方差和标准差都是刻画数据波动大小的数字特征,一般地,设一组样本数据,,…,,其平均数为则方差,标准差
3.古典概型的概率公式:如果一次试验中可能出现的结果有个,而且所有结果都是等可能的,如果事件包含个结果,那么事件的概率P=
特别提醒:古典概型的两个共同特点:
○1,即试中有可能出现的基本事件只有有限个,即样本空间Ω中的元素个数是有限的;
○2,即每个基本事件出现的可能性相等。
4.几何概型的概率公式:P(A)=
特别提醒:几何概型的特点:试验的结果是无限不可数的;○2每个结果出现的可能性相等。
二、夯实基础
(1)某单位有职工160名,其中业务人员120名,管理人员16名,后勤人员24名.为了解职工的某种情况,要从中抽取一个容量为20的样本.若用分层抽样的方法,抽取的业务人员、管理人员、后勤人员的人数应分别为____________.
(2)某赛季,甲、乙两名篮球运动员都参加了
11场比赛,他们所有比赛得分的情况用如图2所示的茎叶图表示,
则甲、乙两名运动员得分的中位数分别为()
A.19、13B.13、19C.20、18D.18、20
(3)统计某校1000名学生的数学会考成绩,
得到样本频率分布直方图如右图示,规定不低于60分为
及格,不低于80分为优秀,则及格人数是;
优秀率为。
(4)在一次歌手大奖赛上,七位评委为歌手打出的分数如下:
9.48.49.49.99.69.49.7
去掉一个最高分和一个最低分后,所剩数据的平均值
和方差分别为()
A.9.4,0.484B.9.4,0.016C.9.5,0.04D.9.5,0.016
(5)将一颗骰子先后抛掷2次,观察向上的点数,则以第一次向上点数为横坐标x,第二次向上的点数为纵坐标y的点(x,y)在圆x2+y2=27的内部的概率________.
(6)在长为12cm的线段AB上任取一点M,并且以线段AM为边的正方形,则这正方形的面积介于36cm2与81cm2之间的概率为()
三、高考链接
07、某班50名学生在一次百米测试中,成绩全部介于13秒与19秒之间,将测试结果按如下方式分成六组:第一组,成绩大于等于13秒且小于14秒;第二组,成绩大于等于14秒且小于15秒
;第六组,成绩大于等于18秒且小于等于19秒.右图
是按上述分组方法得到的频率分布直方图.设成绩小于17秒
的学生人数占全班总人数的百分比为,成绩大于等于15秒
且小于17秒的学生人数为,则从频率分布直方图中可分析
出和分别为()
08、从某项综合能力测试中抽取100人的成绩,统计如表,则这100人成绩的标准差为()
分数54321
人数2010303010
09、在区间上随机取一个数x,的值介于0到之间的概率为().
08、现有8名奥运会志愿者,其中志愿者通晓日语,通晓俄语,通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.
(Ⅰ)求被选中的概率;(Ⅱ)求和不全被选中的概率.
高三理科数学复数总复习教学案
一位优秀的教师不打无准备之仗,会提前做好准备,作为教师准备好教案是必不可少的一步。教案可以让学生们充分体会到学习的快乐,帮助教师缓解教学的压力,提高教学质量。优秀有创意的教案要怎样写呢?为了让您在使用时更加简单方便,下面是小编整理的“高三理科数学复数总复习教学案”,希望能为您提供更多的参考。
第十五章复数
高考导航
考试要求重难点击命题展望
1.理解复数的基本概念、复数相等的充要条件.
2.了解复数的代数表示法及其几何意义.
3.会进行复数代数形式的四则运算.了解复数的代数形式的加、减运算及其运算的几何意义.
4.了解从自然数系到复数系的关系及扩充的基本思想,体会理性思维在数系扩充中的作用.本章重点:1.复数的有关概念;2.复数代数形式的四则运算.
本章难点:运用复数的有关概念解题.近几年高考对复数的考查无论是试题的难度,还是试题在试卷中所占比例都是呈下降趋势,常以选择题、填空题形式出现,多为容易题.在复习过程中,应将复数的概念及运算放在首位.
知识网络
15.1复数的概念及其运算
典例精析
题型一复数的概念
【例1】(1)如果复数(m2+i)(1+mi)是实数,则实数m=;
(2)在复平面内,复数1+ii对应的点位于第象限;
(3)复数z=3i+1的共轭复数为z=.
【解析】(1)(m2+i)(1+mi)=m2-m+(1+m3)i是实数1+m3=0m=-1.
(2)因为1+ii=i(1+i)i2=1-i,所以在复平面内对应的点为(1,-1),位于第四象限.
(3)因为z=1+3i,所以z=1-3i.
【点拨】运算此类题目需注意复数的代数形式z=a+bi(a,b∈R),并注意复数分为实数、虚数、纯虚数,复数的几何意义,共轭复数等概念.
【变式训练1】(1)如果z=1-ai1+ai为纯虚数,则实数a等于()
A.0B.-1C.1D.-1或1
(2)在复平面内,复数z=1-ii(i是虚数单位)对应的点位于()
A.第一象限B.第二象限C.第三象限D.第四象限
【解析】(1)设z=xi,x≠0,则
xi=1-ai1+ai1+ax-(a+x)i=0或故选D.
(2)z=1-ii=(1-i)(-i)=-1-i,该复数对应的点位于第三象限.故选C.
题型二复数的相等
【例2】(1)已知复数z0=3+2i,复数z满足zz0=3z+z0,则复数z=;
(2)已知m1+i=1-ni,其中m,n是实数,i是虚数单位,则m+ni=;
(3)已知关于x的方程x2+(k+2i)x+2+ki=0有实根,则这个实根为,实数k的值为.
【解析】(1)设z=x+yi(x,y∈R),又z0=3+2i,
代入zz0=3z+z0得(x+yi)(3+2i)=3(x+yi)+3+2i,
整理得(2y+3)+(2-2x)i=0,
则由复数相等的条件得
解得所以z=1-.
(2)由已知得m=(1-ni)(1+i)=(1+n)+(1-n)i.
则由复数相等的条件得
所以m+ni=2+i.
(3)设x=x0是方程的实根,代入方程并整理得
由复数相等的充要条件得
解得或
所以方程的实根为x=2或x=-2,
相应的k值为k=-22或k=22.
【点拨】复数相等须先化为z=a+bi(a,b∈R)的形式,再由相等得实部与实部相等、虚部与虚部相等.
【变式训练2】(1)设i是虚数单位,若1+2i1+i=a+bi(a,b∈R),则a+b的值是()
A.-12B.-2C.2D.12
(2)若(a-2i)i=b+i,其中a,b∈R,i为虚数单位,则a+b=.
【解析】(1)C.1+2i1+i=(1+2i)(1-i)(1+i)(1-i)=3+i2,于是a+b=32+12=2.
(2)3.2+ai=b+ia=1,b=2.
题型三复数的运算
【例3】(1)若复数z=-12+32i,则1+z+z2+z3+…+z2008=;
(2)设复数z满足z+|z|=2+i,那么z=.
【解析】(1)由已知得z2=-12-32i,z3=1,z4=-12+32i=z.
所以zn具有周期性,在一个周期内的和为0,且周期为3.
所以1+z+z2+z3+…+z2008
=1+z+(z2+z3+z4)+…+(z2006+z2007+z2008)
=1+z=12+32i.
(2)设z=x+yi(x,y∈R),则x+yi+x2+y2=2+i,
所以解得所以z=+i.
【点拨】解(1)时要注意x3=1(x-1)(x2+x+1)=0的三个根为1,ω,ω-,
其中ω=-12+32i,ω-=-12-32i,则
1+ω+ω2=0,1+ω-+ω-2=0,ω3=1,ω-3=1,ωω-=1,ω2=ω-,ω-2=ω.
解(2)时要注意|z|∈R,所以须令z=x+yi.
【变式训练3】(1)复数11+i+i2等于()
A.1+i2B.1-i2C.-12D.12
(2)(2010江西鹰潭)已知复数z=23-i1+23i+(21-i)2010,则复数z等于()
A.0B.2C.-2iD.2i
【解析】(1)D.计算容易有11+i+i2=12.
(2)A.
总结提高
复数的代数运算是重点,是每年必考内容之一,复数代数形式的运算:①加减法按合并同类项法则进行;②乘法展开、除法须分母实数化.因此,一些复数问题只需设z=a+bi(a,b∈R)代入原式后,就可以将复数问题化归为实数问题来解决.
2012届高三理科数学圆锥曲线与方程总复习
俗话说,凡事预则立,不预则废。高中教师要准备好教案,这是高中教师需要精心准备的。教案可以让学生能够在教学期间跟着互动起来,帮助高中教师能够井然有序的进行教学。关于好的高中教案要怎么样去写呢?为了让您在使用时更加简单方便,下面是小编整理的“2012届高三理科数学圆锥曲线与方程总复习”,仅供参考,大家一起来看看吧。
第九章圆锥曲线与方程
高考导航
考试要求重难点击命题展望
1.了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用;
2.掌握椭圆、抛物线的定义、几何图形、标准方程及简单性质;
3.了解双曲线的定义、几何图形和标准方程,知道它的简单几何性质;
4.了解圆锥曲线的简单应用;
5.理解数形结合的思想;
6.了解方程的曲线与曲线的方程的对应关系.本章重点:1.椭圆、双曲线、抛物线的定义、几何图形、标准方程及简单性质;2.直线与圆锥曲线的位置关系问题;3.求曲线的方程或曲线的轨迹;4.数形结合的思想,方程的思想,函数的思想,坐标法.
本章难点:1.对圆锥曲线的定义及性质的理解和应用;2.直线与圆锥曲线的位置关系问题;3.曲线与方程的对应关系.圆锥曲线与函数、方程、不等式、三角形、平面向量等知识结合是高考常考题型.极有可能以一小一大的形式出现,小题主要考查圆锥曲线的标准方程及几何性质等基础知识、基本技能和基本方法运用;解答题常作为数学高考的把关题或压轴题,综合考查学生在数形结合、等价转换、分类讨论、逻辑推理等方面的能力.
知识网络
9.1椭圆
典例精析
题型一求椭圆的标准方程
【例1】已知点P在以坐标轴为对称轴的椭圆上,点P到两焦点的距离分别为453和
253,过P作长轴的垂线恰好过椭圆的一个焦点,求椭圆的方程.
【解析】由椭圆的定义知,2a=453+253=25,故a=5,
由勾股定理得,(453)2-(253)2=4c2,所以c2=53,b2=a2-c2=103,
故所求方程为x25+3y210=1或3x210+y25=1.
【点拨】(1)在求椭圆的标准方程时,常用待定系数法,但是当焦点所在坐标轴不确定时,需要考虑两种情形,有时也可设椭圆的统一方程形式:mx2+ny2=1(m>0,n>0且m≠n);
(2)在求椭圆中的a、b、c时,经常用到椭圆的定义及解三角形的知识.
【变式训练1】已知椭圆C1的中心在原点、焦点在x轴上,抛物线C2的顶点在原点、焦点在x轴上.小明从曲线C1,C2上各取若干个点(每条曲线上至少取两个点),并记录其坐标(x,y).由于记录失误,使得其中恰有一个点既不在椭圆C1上,也不在抛物线C2上.小明的记录如下:
据此,可推断椭圆C1的方程为.
【解析】方法一:先将题目中的点描出来,如图,A(-2,2),B(-2,0),C(0,6),D(2,-22),E(22,2),F(3,-23).
通过观察可知道点F,O,D可能是抛物线上的点.而A,C,E是椭圆上的点,这时正好点B既不在椭圆上,也不在抛物线上.
显然半焦距b=6,则不妨设椭圆的方程是x2m+y26=1,则将点
A(-2,2)代入可得m=12,故该椭圆的方程是x212+y26=1.
方法二:欲求椭圆的解析式,我们应先求出抛物线的解析式,因为抛物线的解析式形式比椭圆简单一些.
不妨设有两点y21=2px1,①y22=2px2,②y21y22=x1x2,
则可知B(-2,0),C(0,6)不是抛物线上的点.
而D(2,-22),F(3,-23)正好符合.
又因为椭圆的交点在x轴上,故B(-2,0),C(0,6)不可能同时出现.故选用A(-2,2),E(22,2)这两个点代入,可得椭圆的方程是x212+y26=1.
题型二椭圆的几何性质的运用
【例2】已知F1、F2是椭圆的两个焦点,P为椭圆上一点,∠F1PF2=60°.
(1)求椭圆离心率的范围;
(2)求证:△F1PF2的面积只与椭圆的短轴长有关.
【解析】(1)设椭圆的方程为x2a2+y2b2=1(a>b>0),|PF1|=m,|PF2|=n,在△F1PF2中,
由余弦定理可知4c2=m2+n2-2mncos60°,
因为m+n=2a,所以m2+n2=(m+n)2-2mn=4a2-2mn,
所以4c2=4a2-3mn,即3mn=4a2-4c2.
又mn≤(m+n2)2=a2(当且仅当m=n时取等号),
所以4a2-4c2≤3a2,所以c2a2≥14,
即e≥12,所以e的取值范围是[12,1).
(2)由(1)知mn=43b2,所以=12mnsin60°=33b2,
即△F1PF2的面积只与椭圆的短轴长有关.
【点拨】椭圆中△F1PF2往往称为焦点三角形,求解有关问题时,要注意正、余弦定理,面积公式的使用;求范围时,要特别注意椭圆定义(或性质)与不等式的联合使用,如|PF1||PF2|≤(|PF1|+|PF2|2)2,|PF1|≥a-c.
【变式训练2】已知P是椭圆x225+y29=1上的一点,Q,R分别是圆(x+4)2+y2=14和圆
(x-4)2+y2=14上的点,则|PQ|+|PR|的最小值是.
【解析】设F1,F2为椭圆左、右焦点,则F1,F2分别为两已知圆的圆心,
则|PQ|+|PR|≥(|PF1|-12)+(|PF2|-12)=|PF1|+|PF2|-1=9.
所以|PQ|+|PR|的最小值为9.
题型三有关椭圆的综合问题
【例3】(2010全国新课标)设F1,F2分别是椭圆E:x2a2+y2b2=1(a>b>0)的左、右焦点,过F1斜率为1的直线l与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列.
(1)求E的离心率;
(2)设点P(0,-1)满足|PA|=|PB|,求E的方程.
【解析】(1)由椭圆定义知|AF2|+|BF2|+|AB|=4a,
又2|AB|=|AF2|+|BF2|,得|AB|=43a.
l的方程为y=x+c,其中c=a2-b2.
设A(x1,y1),B(x2,y2),则A,B两点坐标满足方程组
化简得(a2+b2)x2+2a2cx+a2(c2-b2)=0,
则x1+x2=-2a2ca2+b2,x1x2=a2(c2-b2)a2+b2.
因为直线AB斜率为1,所以|AB|=2|x2-x1|=2[(x1+x2)2-4x1x2],
即43a=4ab2a2+b2,故a2=2b2,
所以E的离心率e=ca=a2-b2a=22.
(2)设AB的中点为N(x0,y0),由(1)知x0=x1+x22=-a2ca2+b2=-23c,y0=x0+c=c3.
由|PA|=|PB|kPN=-1,即y0+1x0=-1c=3.
从而a=32,b=3,故E的方程为x218+y29=1.
【变式训练3】已知椭圆x2a2+y2b2=1(a>b>0)的离心率为e,两焦点为F1,F2,抛物线以F1为顶点,F2为焦点,P为两曲线的一个交点,若|PF1||PF2|=e,则e的值是()
A.32B.33C.22D.63
【解析】设F1(-c,0),F2(c,0),P(x0,y0),则椭圆左准线x=-a2c,抛物线准线为x=
-3c,x0-(-a2c)=x0-(-3c)c2a2=13e=33.故选B.
总结提高
1.椭圆的标准方程有两种形式,其结构简单,形式对称且系数的几何意义明确,在解题时要防止遗漏.确定椭圆需要三个条件,要确定焦点在哪条坐标轴上(即定位),还要确定a、b的值(即定量),若定位条件不足应分类讨论,或设方程为mx2+ny2=1(m>0,n>0,m≠n)求解.
2.充分利用定义解题,一方面,会根据定义判定动点的轨迹是椭圆,另一方面,会利用椭圆上的点到两焦点的距离和为常数进行计算推理.
3.焦点三角形包含着很多关系,解题时要多从椭圆定义和三角形的几何条件入手,且不可顾此失彼,另外一定要注意椭圆离心率的范围.
9.2双曲线
典例精析
题型一双曲线的定义与标准方程
【例1】已知动圆E与圆A:(x+4)2+y2=2外切,与圆B:(x-4)2+y2=2内切,求动圆圆心E的轨迹方程.
【解析】设动圆E的半径为r,则由已知|AE|=r+2,|BE|=r-2,
所以|AE|-|BE|=22,又A(-4,0),B(4,0),所以|AB|=8,22<|AB|.
根据双曲线定义知,点E的轨迹是以A、B为焦点的双曲线的右支.
因为a=2,c=4,所以b2=c2-a2=14,
故点E的轨迹方程是x22-y214=1(x≥2).
【点拨】利用两圆内、外切圆心距与两圆半径的关系找出E点满足的几何条件,结合双曲线定义求解,要特别注意轨迹是否为双曲线的两支.
【变式训练1】P为双曲线x29-y216=1的右支上一点,M,N分别是圆(x+5)2+y2=4和
(x-5)2+y2=1上的点,则|PM|-|PN|的最大值为()
A.6B.7C.8D.9
【解析】选D.
题型二双曲线几何性质的运用
【例2】双曲线C:x2a2-y2b2=1(a>0,b>0)的右顶点为A,x轴上有一点Q(2a,0),若C上存在一点P,使=0,求此双曲线离心率的取值范围.
【解析】设P(x,y),则由=0,得AP⊥PQ,则P在以AQ为直径的圆上,
即(x-3a2)2+y2=(a2)2,①
又P在双曲线上,得x2a2-y2b2=1,②
由①②消去y,得(a2+b2)x2-3a3x+2a4-a2b2=0,
即[(a2+b2)x-(2a3-ab2)](x-a)=0,
当x=a时,P与A重合,不符合题意,舍去;
当x=2a3-ab2a2+b2时,满足题意的点P存在,需x=2a3-ab2a2+b2>a,
化简得a2>2b2,即3a2>2c2,ca<62,
所以离心率的取值范围是(1,62).
【点拨】根据双曲线上的点的范围或者焦半径的最小值建立不等式,是求离心率的取值范围的常用方法.
【变式训练2】设离心率为e的双曲线C:x2a2-y2b2=1(a>0,b>0)的右焦点为F,直线l过焦点F,且斜率为k,则直线l与双曲线C的左、右两支都相交的充要条件是()
A.k2-e2>1B.k2-e2<1
C.e2-k2>1D.e2-k2<1
【解析】由双曲线的图象和渐近线的几何意义,可知直线的斜率k只需满足-ba<k<ba,即k2<b2a2=c2-a2a2=e2-1,故选C.
题型三有关双曲线的综合问题
【例3】(2010广东)已知双曲线x22-y2=1的左、右顶点分别为A1、A2,点P(x1,y1),Q(x1,-y1)是双曲线上不同的两个动点.
(1)求直线A1P与A2Q交点的轨迹E的方程;
(2)若过点H(0,h)(h>1)的两条直线l1和l2与轨迹E都只有一个交点,且l1⊥l2,求h的值.
【解析】(1)由题意知|x1|>2,A1(-2,0),A2(2,0),则有
直线A1P的方程为y=y1x1+2(x+2),①
直线A2Q的方程为y=-y1x1-2(x-2).②
方法一:联立①②解得交点坐标为x=2x1,y=2y1x1,即x1=2x,y1=2yx,③
则x≠0,|x|<2.
而点P(x1,y1)在双曲线x22-y2=1上,所以x212-y21=1.
将③代入上式,整理得所求轨迹E的方程为x22+y2=1,x≠0且x≠±2.
方法二:设点M(x,y)是A1P与A2Q的交点,①×②得y2=-y21x21-2(x2-2).③
又点P(x1,y1)在双曲线上,因此x212-y21=1,即y21=x212-1.
代入③式整理得x22+y2=1.
因为点P,Q是双曲线上的不同两点,所以它们与点A1,A2均不重合.故点A1和A2均不在轨迹E上.过点(0,1)及A2(2,0)的直线l的方程为x+2y-2=0.
解方程组得x=2,y=0.所以直线l与双曲线只有唯一交点A2.
故轨迹E不过点(0,1).同理轨迹E也不过点(0,-1).
综上分析,轨迹E的方程为x22+y2=1,x≠0且x≠±2.
(2)设过点H(0,h)的直线为y=kx+h(h>1),
联立x22+y2=1得(1+2k2)x2+4khx+2h2-2=0.
令Δ=16k2h2-4(1+2k2)(2h2-2)=0,得h2-1-2k2=0,
解得k1=h2-12,k2=-h2-12.
由于l1⊥l2,则k1k2=-h2-12=-1,故h=3.
过点A1,A2分别引直线l1,l2通过y轴上的点H(0,h),且使l1⊥l2,因此A1H⊥A2H,由h2×(-h2)=-1,得h=2.
此时,l1,l2的方程分别为y=x+2与y=-x+2,
它们与轨迹E分别仅有一个交点(-23,223)与(23,223).
所以,符合条件的h的值为3或2.
【变式训练3】双曲线x2a2-y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,离心率为e,过F2的直线与双曲线的右支交于A,B两点,若△F1AB是以A为直角顶点的等腰直角三角形,则e2等于()
A.1+22B.3+22
C.4-22D.5-22
【解析】本题考查双曲线定义的应用及基本量的求解.
据题意设|AF1|=x,则|AB|=x,|BF1|=2x.
由双曲线定义有|AF1|-|AF2|=2a,|BF1|-|BF2|=2a
(|AF1|+|BF1|)-(|AF2|+|BF2|)=(2+1)x-x=4a,即x=22a=|AF1|.
故在Rt△AF1F2中可求得|AF2|=|F1F2|2-|AF1|2=4c2-8a2.
又由定义可得|AF2|=|AF1|-2a=22a-2a,即4c2-8a2=22-2a,
两边平方整理得c2=a2(5-22)c2a2=e2=5-22,故选D.
总结提高
1.要与椭圆类比来理解、掌握双曲线的定义、标准方程和几何性质,但应特别注意不同点,如a,b,c的关系、渐近线等.
2.要深刻理解双曲线的定义,注意其中的隐含条件.当||PF1|-|PF2||=2a<|F1F2|时,P的轨迹是双曲线;当||PF1|-|PF2||=2a=|F1F2|时,P的轨迹是以F1或F2为端点的射线;当
||PF1|-|PF2||=2a>|F1F2|时,P无轨迹.
3.双曲线是具有渐近线的曲线,画双曲线草图时,一般先画出渐近线,要掌握以下两个问题:
(1)已知双曲线方程,求它的渐近线;
(2)求已知渐近线的双曲线的方程.如已知双曲线渐近线y=±bax,可将双曲线方程设为x2a2-y2b2=λ(λ≠0),再利用其他条件确定λ的值,求法的实质是待定系数法.
9.3抛物线
典例精析
题型一抛物线定义的运用
【例1】根据下列条件,求抛物线的标准方程.
(1)抛物线过点P(2,-4);
(2)抛物线焦点F在x轴上,直线y=-3与抛物线交于点A,|AF|=5.
【解析】(1)设方程为y2=mx或x2=ny.
将点P坐标代入得y2=8x或x2=-y.
(2)设A(m,-3),所求焦点在x轴上的抛物线为y2=2px(p≠0),
由定义得5=|AF|=|m+p2|,又(-3)2=2pm,所以p=±1或±9,
所求方程为y2=±2x或y2=±18x.
【变式训练1】已知P是抛物线y2=2x上的一点,另一点A(a,0)(a>0)满足|PA|=d,试求d的最小值.
【解析】设P(x0,y0)(x0≥0),则y20=2x0,
所以d=|PA|=(x0-a)2+y20=(x0-a)2+2x0=[x0+(1-a)]2+2a-1.
因为a>0,x0≥0,
所以当0<a<1时,此时有x0=0,dmin=(1-a)2+2a-1=a;
当a≥1时,此时有x0=a-1,dmin=2a-1.
题型二直线与抛物线位置讨论
【例2】(2010湖北)已知一条曲线C在y轴右侧,C上每一点到点F(1,0)的距离减去它到y轴距离的差都是1.
(1)求曲线C的方程;
(2)是否存在正数m,对于过点M(m,0)且与曲线C有两个交点A,B的任一直线,都有<0?若存在,求出m的取值范围;若不存在,请说明理由.
【解析】(1)设P(x,y)是曲线C上任意一点,那么点P(x,y)满足:
(x-1)2+y2-x=1(x>0).
化简得y2=4x(x>0).
(2)设过点M(m,0)(m>0)的直线l与曲线C的交点为A(x1,y1),B(x2,y2).
设l的方程为x=ty+m,由得y2-4ty-4m=0,
Δ=16(t2+m)>0,于是①
又=(x1-1,y1),=(x2-1,y2).
<0(x1-1)(x2-1)+y1y2=x1x2-(x1+x2)+1+y1y2<0.②
又x=y24,于是不等式②等价于y214y224+y1y2-(y214+y224)+1<0
(y1y2)216+y1y2-14[(y1+y2)2-2y1y2]+1<0.③
由①式,不等式③等价于m2-6m+1<4t2.④
对任意实数t,4t2的最小值为0,所以不等式④对于一切t成立等价于m2-6m+1<0,即3-22<m<3+22.
由此可知,存在正数m,对于过点M(m,0)且与曲线C有两个交点A,B的任一直线,都有<0,且m的取值范围是(3-22,3+22).
【变式训练2】已知抛物线y2=4x的一条弦AB,A(x1,y1),B(x2,y2),AB所在直线与y轴的交点坐标为(0,2),则1y1+1y2=.
【解析】y2-4my+8m=0,
所以1y1+1y2=y1+y2y1y2=12.
题型三有关抛物线的综合问题
【例3】已知抛物线C:y=2x2,直线y=kx+2交C于A,B两点,M是线段AB的中点,过M作x轴的垂线交C于点N.
(1)求证:抛物线C在点N处的切线与AB平行;
(2)是否存在实数k使=0?若存在,求k的值;若不存在,说明理由.
【解析】(1)证明:如图,设A(x1,2x21),B(x2,2x22),
把y=kx+2代入y=2x2,得2x2-kx-2=0,
由韦达定理得x1+x2=k2,x1x2=-1,
所以xN=xM=x1+x22=k4,所以点N的坐标为(k4,k28).
设抛物线在点N处的切线l的方程为y-k28=m(x-k4),
将y=2x2代入上式,得2x2-mx+mk4-k28=0,
因为直线l与抛物线C相切,
所以Δ=m2-8(mk4-k28)=m2-2mk+k2=(m-k)2=0,
所以m=k,即l∥AB.
(2)假设存在实数k,使=0,则NA⊥NB,
又因为M是AB的中点,所以|MN|=|AB|.
由(1)知yM=12(y1+y2)=12(kx1+2+kx2+2)=12[k(x1+x2)+4]=12(k22+4)=k24+2.
因为MN⊥x轴,所以|MN|=|yM-yN|=k24+2-k28=k2+168.
又|AB|=1+k2|x1-x2|=1+k2(x1+x2)2-4x1x2
=1+k2(k2)2-4×(-1)=12k2+1k2+16.
所以k2+168=14k2+1k2+16,解得k=±2.
即存在k=±2,使=0.
【点拨】直线与抛物线的位置关系,一般要用到根与系数的关系;有关抛物线的弦长问题,要注意弦是否过焦点,若过抛物线的焦点,可直接使用公式|AB|=x1+x2+p,若不过焦点,则必须使用一般弦长公式.
【变式训练3】已知P是抛物线y2=2x上的一个动点,过点P作圆(x-3)2+y2=1的切线,切点分别为M、N,则|MN|的最小值是.
【解析】455.
总结提高
1.在抛物线定义中,焦点F不在准线l上,这是一个重要的隐含条件,若F在l上,则抛物线退化为一条直线.
2.掌握抛物线本身固有的一些性质:(1)顶点、焦点在对称轴上;(2)准线垂直于对称轴;(3)焦点到准线的距离为p;(4)过焦点垂直于对称轴的弦(通径)长为2p.
3.抛物线的标准方程有四种形式,要掌握抛物线的方程与图形的对应关系.求抛物线方程时,若由已知条件可知曲线的类型,可采用待定系数法.
4.抛物线的几何性质,只要与椭圆、双曲线加以对照,很容易把握.但由于抛物线的离心率为1,所以抛物线的焦点有很多重要性质,而且应用广泛,例如:已知过抛物线y2=2px(p>0)的焦点的直线交抛物线于A、B两点,设A(x1,y1),B(x2,y2),则有下列性质:|AB|=x1+x2+p或|AB|=2psin2α(α为AB的倾斜角),y1y2=-p2,x1x2=p24等.
9.4直线与圆锥曲线的位置关系
典例精析
题型一直线与圆锥曲线交点问题
【例1】若曲线y2=ax与直线y=(a+1)x-1恰有一个公共点,求实数a的值.
【解析】联立方程组
(1)当a=0时,方程组恰有一组解为
(2)当a≠0时,消去x得a+1ay2-y-1=0,
①若a+1a=0,即a=-1,方程变为一元一次方程-y-1=0,
方程组恰有一组解
②若a+1a≠0,即a≠-1,令Δ=0,即1+4(a+1)a=0,解得a=-45,这时直线与曲线相切,只有一个公共点.
综上所述,a=0或a=-1或a=-45.
【点拨】本题设计了一个思维“陷阱”,即审题中误认为a≠0,解答过程中的失误就是不讨论二次项系数=0,即a=-1的可能性,从而漏掉两解.本题用代数方法解完后,应从几何上验证一下:①当a=0时,曲线y2=ax,即直线y=0,此时与已知直线y=x-1恰有交点(1,0);②当a=-1时,直线y=-1与抛物线的对称轴平行,恰有一个交点(代数特征是消元后得到的一元二次方程中二次项系数为零);③当a=-45时直线与抛物线相切.
【变式训练1】若直线y=kx-1与双曲线x2-y2=4有且只有一个公共点,则实数k的取值范围为()
A.{1,-1,52,-52}B.(-∞,-52]∪[52,+∞)
C.(-∞,-1]∪[1,+∞)D.(-∞,-1)∪[52,+∞)
【解析】由(1-k2)x2-2kx-5=0,
k=±52,结合直线过定点(0,-1),且渐近线斜率为±1,可知答案为A.
题型二直线与圆锥曲线的相交弦问题
【例2】(2010辽宁)设椭圆C:x2a2+y2b2=1(a>b>0)的右焦点为F,过F的直线l与椭圆C相交于A,B两点,直线l的倾斜角为60°,=2.
(1)求椭圆C的离心率;
(2)如果|AB|=154,求椭圆C的方程.
【解析】设A(x1,y1),B(x2,y2),由题意知y1<0,y2>0.
(1)直线l的方程为y=3(x-c),其中c=a2-b2.
联立
得(3a2+b2)y2+23b2cy-3b4=0.
解得y1=-3b2(c+2a)3a2+b2,y2=-3b2(c-2a)3a2+b2.
因为=2,所以-y1=2y2,即3b2(c+2a)3a2+b2=2-3b2(c-2a)3a2+b2.
解得离心率e=ca=23.
(2)因为|AB|=1+13|y2-y1|,所以2343ab23a2+b2=154.
由ca=23得b=53a,所以54a=154,即a=3,b=5.
所以椭圆的方程为x29+y25=1.
【点拨】本题考查直线与圆锥曲线相交及相交弦的弦长问题,以及用待定系数法求椭圆方程.
【变式训练2】椭圆ax2+by2=1与直线y=1-x交于A,B两点,过原点与线段AB中点的直线的斜率为32,则ab的值为.
【解析】设直线与椭圆交于A、B两点的坐标分别为(x1,y1),(x2,y2),弦中点坐标为(x0,y0),代入椭圆方程两式相减得a(x1-x2)(x1+x2)+b(y1-y2)(y1+y2)=0
2ax0+2by0y1-y2x1-x2=0ax0-by0=0.
故ab=y0x0=32.
题型三对称问题
【例3】在抛物线y2=4x上存在两个不同的点关于直线l:y=kx+3对称,求k的取值范围.
【解析】设A(x1,y1)、B(x2、y2)是抛物线上关于直线l对称的两点,由题意知k≠0.
设直线AB的方程为y=-1kx+b,
联立消去x,得14ky2+y-b=0,
由题意有Δ=12+414kb>0,即bk+1>0.(*)
且y1+y2=-4k.又y1+y22=-1kx1+x22+b.所以x1+x22=k(2k+b).
故AB的中点为E(k(2k+b),-2k).
因为l过E,所以-2k=k2(2k+b)+3,即b=-2k-3k2-2k.
代入(*)式,得-2k-3k3-2+1>0k3+2k+3k3<0
k(k+1)(k2-k+3)<0-1<k<0,故k的取值范围为(-1,0).
【点拨】(1)本题的关键是对称条件的转化.A(x1,y1)、B(x2,y2)关于直线l对称,则满足直线l与AB垂直,且线段AB的中点坐标满足l的方程;
(2)对于圆锥曲线上存在两点关于某一直线对称,求有关参数的范围问题,利用对称条件求出过这两点的直线方程,利用判别式大于零建立不等式求解;或者用参数表示弦中点的坐标,利用中点在曲线内部的条件建立不等式求参数的取值范围.
【变式训练3】已知抛物线y=-x2+3上存在关于x+y=0对称的两点A,B,则|AB|等于()
A.3B.4C.32D.42
【解析】设AB方程:y=x+b,代入y=-x2+3,得x2+x+b-3=0,
所以xA+xB=-1,故AB中点为(-12,-12+b).
它又在x+y=0上,所以b=1,所以|AB|=32,故选C.
总结提高
1.本节内容的重点是研究直线与圆锥曲线位置关系的判别式方法及弦中点问题的处理方法.
2.直线与圆锥曲线的位置关系的研究可以转化为相应方程组的解的讨论,即联立方程组
通过消去y(也可以消去x)得到x的方程ax2+bx+c=0进行讨论.这时要注意考虑a=0和a≠0两种情况,对双曲线和抛物线而言,一个公共点的情况除a≠0,Δ=0外,直线与双曲线的渐近线平行或直线与抛物线的对称轴平行时,都只有一个交点(此时直线与双曲线、抛物线属相交情况).由此可见,直线与圆锥曲线只有一个公共点,并不是直线与圆锥曲线相切的充要条件.
3.弦中点问题的处理既可以用判别式法,也可以用点差法;使用点差法时,要特别注意验证“相交”的情形.
9.5圆锥曲线综合问题
典例精析
题型一求轨迹方程
【例1】已知抛物线的方程为x2=2y,F是抛物线的焦点,过点F的直线l与抛物线交于A、B两点,分别过点A、B作抛物线的两条切线l1和l2,记l1和l2交于点M.
(1)求证:l1⊥l2;
(2)求点M的轨迹方程.
【解析】(1)依题意,直线l的斜率存在,设直线l的方程为y=kx+12.
联立消去y整理得x2-2kx-1=0.设A的坐标为(x1,y1),B的坐标为(x2,y2),则有x1x2=-1,将抛物线方程改写为y=12x2,求导得y′=x.
所以过点A的切线l1的斜率是k1=x1,过点B的切线l2的斜率是k2=x2.
因为k1k2=x1x2=-1,所以l1⊥l2.
(2)直线l1的方程为y-y1=k1(x-x1),即y-x212=x1(x-x1).
同理直线l2的方程为y-x222=x2(x-x2).
联立这两个方程消去y得x212-x222=x2(x-x2)-x1(x-x1),
整理得(x1-x2)(x-x1+x22)=0,
注意到x1≠x2,所以x=x1+x22.
此时y=x212+x1(x-x1)=x212+x1(x1+x22-x1)=x1x22=-12.
由(1)知x1+x2=2k,所以x=x1+x22=k∈R.
所以点M的轨迹方程是y=-12.
【点拨】直接法是求轨迹方程最重要的方法之一,本题用的就是直接法.要注意“求轨迹方程”和“求轨迹”是两个不同概念,“求轨迹”除了首先要求我们求出方程,还要说明方程轨迹的形状,这就需要我们对各种基本曲线方程和它的形态的对应关系了如指掌.
【变式训练1】已知△ABC的顶点为A(-5,0),B(5,0),△ABC的内切圆圆心在直线x=3上,则顶点C的轨迹方程是()
A.x29-y216=1B.x216-y29=1
C.x29-y216=1(x>3)D.x216-y29=1(x>4)
【解析】如图,|AD|=|AE|=8,|BF|=|BE|=2,|CD|=|CF|,
所以|CA|-|CB|=8-2=6,
根据双曲线定义,所求轨迹是以A、B为焦点,实轴长为6的双曲线的右支,方程为x29-y216=1(x>3),故选C.
题型二圆锥曲线的有关最值
【例2】已知菱形ABCD的顶点A、C在椭圆x2+3y2=4上,对角线BD所在直线的斜率为1.当∠ABC=60°时,求菱形ABCD面积的最大值.
【解析】因为四边形ABCD为菱形,所以AC⊥BD.
于是可设直线AC的方程为y=-x+n.
由得4x2-6nx+3n2-4=0.
因为A,C在椭圆上,所以Δ=-12n2+64>0,解得-433<n<433.
设A,C两点坐标分别为(x1,y1),(x2,y2),则x1+x2=3n2,x1x2=3n2-44,
y1=-x1+n,y2=-x2+n.所以y1+y2=n2.
因为四边形ABCD为菱形,且∠ABC=60°,所以|AB|=|BC|=|CA|.
所以菱形ABCD的面积S=32|AC|2.
又|AC|2=(x1-x2)2+(y1-y2)2=-3n2+162,所以S=34(-3n2+16)(-433<n<433).
所以当n=0时,菱形ABCD的面积取得最大值43.
【点拨】建立“目标函数”,借助代数方法求最值,要特别注意自变量的取值范围.在考试中很多考生没有利用判别式求出n的取值范围,虽然也能得出答案,但是得分损失不少.
【变式训练2】已知抛物线y=x2-1上有一定点B(-1,0)和两个动点P、Q,若BP⊥PQ,则点Q横坐标的取值范围是.
【解析】如图,B(-1,0),设P(xP,x2P-1),Q(xQ,x2Q-1),
由kBPkPQ=-1,得x2P-1xP+1x2Q-x2PxQ-xP=-1.
所以xQ=-xP-1xP-1=-(xP-1)-1xP-1-1.
因为|xP-1+1xP-1|≥2,所以xQ≥1或xQ≤-3.
题型三求参数的取值范围及最值的综合题
【例3】(2010浙江)已知m>1,直线l:x-my-m22=0,椭圆C:x2m2+y2=1,F1,F2分别为椭圆C的左、右焦点.
(1)当直线l过右焦点F2时,求直线l的方程;
(2)设直线l与椭圆C交于A,B两点,△AF1F2,△BF1F2的重心分别为G,H.若原点O在以线段GH为直径的圆内,求实数m的取值范围.
【解析】(1)因为直线l:x-my-m22=0经过F2(m2-1,0),
所以m2-1=m22,解得m2=2,
又因为m>1,所以m=2.
故直线l的方程为x-2y-1=0.
(2)A(x1,y1),B(x2,y2),
由消去x得2y2+my+m24-1=0,
则由Δ=m2-8(m24-1)=-m2+8>0知m2<8,
且有y1+y2=-m2,y1y2=m28-12.
由于F1(-c,0),F2(c,0),故O为F1F2的中点,
由=2,=2,得G(x13,y13),H(x23,y23),
|GH|2=(x1-x2)29+(y1-y2)29.
设M是GH的中点,则M(x1+x26,y1+y26),
由题意可知,2|MO|<|GH|,即4[(x1+x26)2+(y1+y26)2]<(x1-x2)29+(y1-y2)29,
即x1x2+y1y2<0.
而x1x2+y1y2=(my1+m22)(my2+m22)+y1y2=(m2+1)(m28-12).
所以m28-12<0,即m2<4.
又因为m>1且Δ>0,所以1<m<2.
所以m的取值范围是(1,2).
【点拨】本题主要考查椭圆的几何性质,直线与椭圆、点与圆的位置关系等基础知识,同时考查解析几何的基本思想方法和综合解题能力.
【变式训练3】若双曲线x2-ay2=1的右支上存在三点A、B、C使△ABC为正三角形,其中一个顶点A与双曲线右顶点重合,则a的取值范围为.
【解析】设B(m,m2-1a),则C(m,-m2-1a)(m>1),
又A(1,0),由AB=BC得(m-1)2+m2-1a=(2m2-1a)2,
所以a=3m+1m-1=3(1+2m-1)>3,即a的取值范围为(3,+∞).
总结提高
1.求曲线的轨迹方程是解析几何的两个基本问题之一.求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,用“坐标法”将其转化为寻求变量间的关系.这类问题除了考查学生对圆锥曲线的定义、性质等基础知识的掌握,还充分考查了各种数学思想方法及一定的推理能力和运算能力,因此这类问题成为高考命题的热点,也是同学们的一大难点.求曲线的轨迹方程常采用的方法有直接法、定义法、代入法、参数法、待定系数法.
2.最值问题的代数解法,是从动态角度去研究解析几何中的数学问题的主要内容,其解法是设变量、建立目标函数、转化为求函数的最值.其中,自变量的取值范围由直线和圆锥曲线的位置关系(即判别式与0的关系)确定.
3.范围问题,主要是根据条件,建立含有参变量的函数关系式或不等式,然后确定参数的取值范围.其解法主要有运用圆锥曲线上点的坐标的取值范围,运用求函数的值域、最值以及二次方程实根的分布等知识.