88教案网

你的位置: 教案 > 高中教案 > 导航 > 2012届高三理科数学数列总复习

小学数学复习教案

发表时间:2020-11-24

2012届高三理科数学数列总复习。

一名优秀的教师就要对每一课堂负责,作为教师就要早早地准备好适合的教案课件。教案可以让学生能够听懂教师所讲的内容,帮助教师提前熟悉所教学的内容。那么怎么才能写出优秀的教案呢?下面是小编为大家整理的“2012届高三理科数学数列总复习”,相信您能找到对自己有用的内容。

第六章数列

高考导航

考试要求重难点击命题展望
1.数列的概念和简单表示法?
(1)了解数列的概念和几种简单的表示方法(列表、图象、通项公式);?(2)了解数列是自变量为正整数的一类函数.?
2.等差数列、等比数列?
(1)理解等差数列、等比数列的概念;?
(2)掌握等差数列、等比数列的通项公式与前n项和公式;?
(3)能在具体问题情境中识别数列的等差关系或等比关系,并能用有关知识解决相应的问题;?
(4)了解等差数列与一次函数、等比数列与指数函数的关系.本章重点:1.等差数列、等比数列的定义、通项公式和前n项和公式及有关性质;
2.注重提炼一些重要的思想和方法,如:观察法、累加法、累乘法、待定系数法、倒序相加求和法、错位相减求和法、裂项相消求和法、分组求和法、函数与方程思想、数学模型思想以及离散与连续的关系.?
本章难点:1.数列概念的理解;2.等差等比数列性质的运用;3.数列通项与求和方法的运用.仍然会以客观题考查等差数列与等比数列的通项公式和前n项和公式及性质,在解答题中,会保持以前的风格,注重数列与其他分支的综合能力的考查,在高考中,数列常考常新,其主要原因是它作为一个特殊函数,使它可以与函数、不等式、解析几何、三角函数等综合起来,命出开放性、探索性强的问题,更体现了知识交叉命题原则得以贯彻;又因为数列与生产、生活的联系,使数列应用题也倍受欢迎.

知识网络

6.1数列的概念与简单表示法

典例精析
题型一归纳、猜想法求数列通项
【例1】根据下列数列的前几项,分别写出它们的一个通项公式:
(1)7,77,777,7777,…
(2)23,-415,635,-863,…
(3)1,3,3,5,5,7,7,9,9,…
【解析】(1)将数列变形为79(10-1),79(102-1),79(103-1),…,79(10n-1),
故an=79(10n-1).
(2)分开观察,正负号由(-1)n+1确定,分子是偶数2n,分母是1×3,3×5,5×7,…,(2n-1)(2n+1),故数列的通项公式可写成an=(-1)n+1.
(3)将已知数列变为1+0,2+1,3+0,4+1,5+0,6+1,7+0,8+1,9+0,….
故数列的通项公式为an=n+.
【点拨】联想与转换是由已知认识未知的两种有效的思维方法,观察归纳是由特殊到一般的有效手段,本例的求解关键是通过分析、比较、联想、归纳、转换获得项与项序数的一般规律,从而求得通项.
【变式训练1】如下表定义函数f(x):
x12345
f(x)54312
对于数列{an},a1=4,an=f(an-1),n=2,3,4,…,则a2008的值是()
A.1B.2C.3D.4
【解析】a1=4,a2=1,a3=5,a4=2,a5=4,…,可得an+4=an.
所以a2008=a4=2,故选B.
题型二应用an=求数列通项
【例2】已知数列{an}的前n项和Sn,分别求其通项公式:
(1)Sn=3n-2;
(2)Sn=18(an+2)2(an>0).
【解析】(1)当n=1时,a1=S1=31-2=1,
当n≥2时,an=Sn-Sn-1=(3n-2)-(3n-1-2)=2×3n-1,
又a1=1不适合上式,
故an=
(2)当n=1时,a1=S1=18(a1+2)2,解得a1=2,
当n≥2时,an=Sn-Sn-1=18(an+2)2-18(an-1+2)2,
所以(an-2)2-(an-1+2)2=0,所以(an+an-1)(an-an-1-4)=0,
又an>0,所以an-an-1=4,
可知{an}为等差数列,公差为4,
所以an=a1+(n-1)d=2+(n-1)4=4n-2,
a1=2也适合上式,故an=4n-2.
【点拨】本例的关键是应用an=求数列的通项,特别要注意验证a1的值是否满足“n≥2”的一般性通项公式.
【变式训练2】已知a1=1,an=n(an+1-an)(n∈N*),则数列{an}的通项公式是()
A.2n-1B.(n+1n)n-1C.n2D.n
【解析】由an=n(an+1-an)an+1an=n+1n.
所以an=anan-1×an-1an-2×…×a2a1=nn-1×n-1n-2×…×32×21=n,故选D.
题型三利用递推关系求数列的通项
【例3】已知在数列{an}中a1=1,求满足下列条件的数列的通项公式:
(1)an+1=an1+2an;(2)an+1=2an+2n+1.
【解析】(1)因为对于一切n∈N*,an≠0,
因此由an+1=an1+2an得1an+1=1an+2,即1an+1-1an=2.
所以{1an}是等差数列,1an=1a1+(n-1)2=2n-1,即an=12n-1.
(2)根据已知条件得an+12n+1=an2n+1,即an+12n+1-an2n=1.
所以数列{an2n}是等差数列,an2n=12+(n-1)=2n-12,即an=(2n-1)2n-1.
【点拨】通项公式及递推关系是给出数列的常用方法,尤其是后者,可以通过进一步的计算,将其进行转化,构造新数列求通项,进而可以求得所求数列的通项公式.
【变式训练3】设{an}是首项为1的正项数列,且(n+1)a2n+1-na2n+an+1an=0(n=1,2,3,…),求an.
【解析】因为数列{an}是首项为1的正项数列,
所以anan+1≠0,所以(n+1)an+1an-nanan+1+1=0,
令an+1an=t,所以(n+1)t2+t-n=0,
所以[(n+1)t-n](t+1)=0,
得t=nn+1或t=-1(舍去),即an+1an=nn+1.
所以a2a1a3a2a4a3a5a4…anan-1=12233445…n-1n,所以an=1n.
总结提高
1.给出数列的前几项求通项时,常用特征分析法与化归法,所求通项不唯一.
2.由Sn求an时,要分n=1和n≥2两种情况.
3.给出Sn与an的递推关系,要求an,常用思路是:一是利用Sn-Sn-1=an(n≥2)转化为an的递推关系,再求其通项公式;二是转化为Sn的递推关系,先求出Sn与n之间的关系,再求an.

6.2等差数列

典例精析
题型一等差数列的判定与基本运算
【例1】已知数列{an}前n项和Sn=n2-9n.
(1)求证:{an}为等差数列;(2)记数列{|an|}的前n项和为Tn,求Tn的表达式.
【解析】(1)证明:n=1时,a1=S1=-8,
当n≥2时,an=Sn-Sn-1=n2-9n-[(n-1)2-9(n-1)]=2n-10,
当n=1时,也适合该式,所以an=2n-10(n∈N*).
当n≥2时,an-an-1=2,所以{an}为等差数列.
(2)因为n≤5时,an≤0,n≥6时,an>0.
所以当n≤5时,Tn=-Sn=9n-n2,
当n≥6时,Tn=a1+a2+…+a5+a6+…+an
=-a1-a2-…-a5+a6+a7+…+an
=Sn-2S5=n2-9n-2×(-20)=n2-9n+40,

所以,

【点拨】根据定义法判断数列为等差数列,灵活运用求和公式.
【变式训练1】已知等差数列{an}的前n项和为Sn,且S21=42,若记bn=,则数列{bn}()
A.是等差数列,但不是等比数列B.是等比数列,但不是等差数列
C.既是等差数列,又是等比数列D.既不是等差数列,又不是等比数列
【解析】本题考查了两类常见数列,特别是等差数列的性质.根据条件找出等差数列{an}的首项与公差之间的关系从而确定数列{bn}的通项是解决问题的突破口.{an}是等差数列,则S21=21a1+21×202d=42.
所以a1+10d=2,即a11=2.所以bn==22-(2a11)=20=1,即数列{bn}是非0常数列,既是等差数列又是等比数列.答案为C.
题型二公式的应用
【例2】设等差数列{an}的前n项和为Sn,已知a3=12,S12>0,S13<0.
(1)求公差d的取值范围;
(2)指出S1,S2,…,S12中哪一个值最大,并说明理由.
【解析】(1)依题意,有
S12=12a1+12×(12-1)d2>0,S13=13a1+13×(13-1)d2<0,

由a3=12,得a1=12-2d.③
将③分别代入①②式,得
所以-247<d<-3.
(2)方法一:由d<0可知a1>a2>a3>…>a12>a13,
因此,若在1≤n≤12中存在自然数n,使得an>0,an+1<0,
则Sn就是S1,S2,…,S12中的最大值.
由于S12=6(a6+a7)>0,S13=13a7<0,
即a6+a7>0,a7<0,因此a6>0,a7<0,
故在S1,S2,…,S12中,S6的值最大.
方法二:由d<0可知a1>a2>a3>…>a12>a13,
因此,若在1≤n≤12中存在自然数n,使得an>0,an+1<0,
则Sn就是S1,S2,…,S12中的最大值.
故在S1,S2,…,S12中,S6的值最大.
【变式训练2】在等差数列{an}中,公差d>0,a2008,a2009是方程x2-3x-5=0的两个根,Sn是数列{an}的前n项的和,那么满足条件Sn<0的最大自然数n=.
【解析】由题意知又因为公差d>0,所以a2008<0,a2009>0.当
n=4015时,S4015=a1+a40152×4015=a2008×4015<0;当n=4016时,S4016=a1+a40162×4016=a2008+a20092×4016>0.所以满足条件Sn<0的最大自然数n=4015.
题型三性质的应用
【例3】某地区2010年9月份曾发生流感,据统计,9月1日该地区流感病毒的新感染者有40人,此后,每天的新感染者人数比前一天增加40人;但从9月11日起,该地区医疗部门采取措施,使该种病毒的传播得到控制,每天的新感染者人数比前一天减少10人.
(1)分别求出该地区在9月10日和9月11日这两天的流感病毒的新感染者人数;
(2)该地区9月份(共30天)该病毒新感染者共有多少人?
【解析】(1)由题意知,该地区9月份前10天流感病毒的新感染者的人数构成一个首项为40,公差为40的等差数列.
所以9月10日的新感染者人数为40+(10-1)×40=400(人).
所以9月11日的新感染者人数为400-10=390(人).
(2)9月份前10天的新感染者人数和为S10=10(40+400)2=2200(人),
9月份后20天流感病毒的新感染者的人数,构成一个首项为390,公差为-10的等差数列.
所以后20天新感染者的人数和为T20=20×390+20(20-1)2×(-10)=5900(人).
所以该地区9月份流感病毒的新感染者共有2200+5900=8100(人).
【变式训练3】设等差数列{an}的前n项和为Sn,若S4≥10,S5≤15,则a4的最大值为
.
【解析】因为等差数列{an}的前n项和为Sn,且S4≥10,S5≤15,

所以5+3d2≤a4≤3+d,即5+3d≤6+2d,所以d≤1,
所以a4≤3+d≤3+1=4,故a4的最大值为4.
总结提高
1.在熟练应用基本公式的同时,还要会用变通的公式,如在等差数列中,am=an+(m-n)d.
2.在五个量a1、d、n、an、Sn中,知其中的三个量可求出其余两个量,要求选用公式要恰当,即善于减少运算量,达到快速、准确的目的.
3.已知三个或四个数成等差数列这类问题,要善于设元,目的仍在于减少运算量,如三个数成等差数列时,除了设a,a+d,a+2d外,还可设a-d,a,a+d;四个数成等差数列时,可设为a-3m,a-m,a+m,a+3m.
4.在求解数列问题时,要注意函数思想、方程思想、消元及整体消元的方法的应用.

6.3等比数列

典例精析
题型一等比数列的基本运算与判定
【例1】数列{an}的前n项和记为Sn,已知a1=1,an+1=n+2nSn(n=1,2,3,…).求证:
(1)数列{Snn}是等比数列;(2)Sn+1=4an.
【解析】(1)因为an+1=Sn+1-Sn,an+1=n+2nSn,
所以(n+2)Sn=n(Sn+1-Sn).
整理得nSn+1=2(n+1)Sn,所以Sn+1n+1=2Snn,
故{Snn}是以2为公比的等比数列.
(2)由(1)知Sn+1n+1=4Sn-1n-1=4ann+1(n≥2),
于是Sn+1=4(n+1)Sn-1n-1=4an(n≥2).
又a2=3S1=3,故S2=a1+a2=4.
因此对于任意正整数n≥1,都有Sn+1=4an.
【点拨】①运用等比数列的基本公式,将已知条件转化为关于等比数列的特征量a1、q的方程是求解等比数列问题的常用方法之一,同时应注意在使用等比数列前n项和公式时,应充分讨论公比q是否等于1;②应用定义判断数列是否是等比数列是最直接,最有依据的方法,也是通法,若判断一个数列是等比数列可用an+1an=q(常数)恒成立,也可用a2n+1=anan+2恒成立,若判定一个数列不是等比数列则只需举出反例即可,也可以用反证法.
【变式训练1】等比数列{an}中,a1=317,q=-12.记f(n)=a1a2…an,则当f(n)最大时,n的值为()
A.7B.8C.9D.10
【解析】an=317×(-12)n-1,易知a9=317×1256>1,a10<0,0<a11<1.又a1a2…a9>0,故f(9)=a1a2…a9的值最大,此时n=9.故选C.
题型二性质运用
【例2】在等比数列{an}中,a1+a6=33,a3a4=32,an>an+1(n∈N*).
(1)求an;
(2)若Tn=lga1+lga2+…+lgan,求Tn.
【解析】(1)由等比数列的性质可知a1a6=a3a4=32,
又a1+a6=33,a1>a6,解得a1=32,a6=1,
所以a6a1=132,即q5=132,所以q=12,
所以an=32(12)n-1=26-n.
(2)由等比数列的性质可知,{lgan}是等差数列,
因为lgan=lg26-n=(6-n)lg2,lga1=5lg2,
所以Tn=(lga1+lgan)n2=n(11-n)2lg2.
【点拨】历年高考对性质考查较多,主要是利用“等积性”,题目“小而巧”且背景不断更新,要熟练掌握.
【变式训练2】在等差数列{an}中,若a15=0,则有等式a1+a2+…+an=a1+a2+…+a29-n(n<29,n∈N*)成立,类比上述性质,相应地在等比数列{bn}中,若b19=1,能得到什么等式?
【解析】由题设可知,如果am=0,在等差数列中有
a1+a2+…+an=a1+a2+…+a2m-1-n(n<2m-1,n∈N*)成立,
我们知道,如果m+n=p+q,则am+an=ap+aq,
而对于等比数列{bn},则有若m+n=p+q,则aman=apaq,
所以可以得出结论:
若bm=1,则有b1b2…bn=b1b2…b2m-1-n(n<2m-1,n∈N*)成立.
在本题中则有b1b2…bn=b1b2…b37-n(n<37,n∈N*).
题型三综合运用
【例3】设数列{an}的前n项和为Sn,其中an≠0,a1为常数,且-a1,Sn,an+1成等差数列.
(1)求{an}的通项公式;
(2)设bn=1-Sn,问是否存在a1,使数列{bn}为等比数列?若存在,则求出a1的值;若不存在,说明理由.
【解析】(1)由题意可得2Sn=an+1-a1.
所以当n≥2时,有
两式相减得an+1=3an(n≥2).
又a2=2S1+a1=3a1,an≠0,
所以{an}是以首项为a1,公比为q=3的等比数列.
所以an=a13n-1.
(2)因为Sn=a1(1-qn)1-q=-12a1+12a13n,所以bn=1-Sn=1+12a1-12a13n.
要使{bn}为等比数列,当且仅当1+12a1=0,即a1=-2,此时bn=3n.
所以{bn}是首项为3,公比为q=3的等比数列.
所以{bn}能为等比数列,此时a1=-2.
【变式训练3】已知命题:若{an}为等差数列,且am=a,an=b(m<n,m、n∈N*),则am+n=bn-amn-m.现在已知数列{bn}(bn>0,n∈N*)为等比数列,且bm=a,bn=b(m<n,m,n∈N*),类比上述结论得bm+n=.
【解析】n-mbnam.
总结提高
1.方程思想,即等比数列{an}中五个量a1,n,q,an,Sn,一般可“知三求二”,通过求和与通项两公式列方程组求解.
2.对于已知数列{an}递推公式an与Sn的混合关系式,利用公式an=Sn-Sn-1(n≥2),再引入辅助数列,转化为等比数列问题求解.
3.分类讨论思想:当a1>0,q>1或a1<0,0<q<1时,等比数列{an}为递增数列;当a1>0,0<q<1或a1<0,q>1时,{an}为递减数列;q<0时,{an}为摆动数列;q=1时,{an}为常数列.

6.4数列求和

典例精析
题型一错位相减法求和
【例1】求和:Sn=1a+2a2+3a3+…+nan.
【解析】(1)a=1时,Sn=1+2+3+…+n=n(n+1)2.
(2)a≠1时,因为a≠0,
Sn=1a+2a2+3a3+…+nan,①
1aSn=1a2+2a3+…+n-1an+nan+1.②
由①-②得(1-1a)Sn=1a+1a2+…+1an-nan+1=1a(1-1an)1-1a-nan+1,
所以Sn=a(an-1)-n(a-1)an(a-1)2.
综上所述,Sn=
【点拨】(1)若数列{an}是等差数列,{bn}是等比数列,则求数列{anbn}的前n项和时,可采用错位相减法;
(2)当等比数列公比为字母时,应对字母是否为1进行讨论;
(3)当将Sn与qSn相减合并同类项时,注意错位及未合并项的正负号.
【变式训练1】数列{2n-32n-3}的前n项和为()
A.4-2n-12n-1B.4+2n-72n-2C.8-2n+12n-3D.6-3n+22n-1
【解析】取n=1,2n-32n-3=-4.故选C.
题型二分组并项求和法
【例2】求和Sn=1+(1+12)+(1+12+14)+…+(1+12+14+…+12n-1).
【解析】和式中第k项为ak=1+12+14+…+12k-1=1-(12)k1-12=2(1-12k).
所以Sn=2[(1-12)+(1-122)+…+(1-12n)]
=-(12+122+…+12n)]
=2[n-12(1-12n)1-12]=2[n-(1-12n)]=2n-2+12n-1.
【变式训练2】数列1,1+2,1+2+22,1+2+22+23,…,1+2+22+…+2n-1,…的前n项和为()
A.2n-1B.n2n-n
C.2n+1-nD.2n+1-n-2
【解析】an=1+2+22+…+2n-1=2n-1,
Sn=(21-1)+(22-1)+…+(2n-1)=2n+1-n-2.故选D.
题型三裂项相消法求和
【例3】数列{an}满足a1=8,a4=2,且an+2-2an+1+an=0(n∈N*).
(1)求数列{an}的通项公式;
(2)设bn=1n(14-an)(n∈N*),Tn=b1+b2+…+bn(n∈N*),若对任意非零自然数n,Tn>m32恒成立,求m的最大整数值.
【解析】(1)由an+2-2an+1+an=0,得an+2-an+1=an+1-an,
从而可知数列{an}为等差数列,设其公差为d,则d=a4-a14-1=-2,
所以an=8+(n-1)×(-2)=10-2n.
(2)bn=1n(14-an)=12n(n+2)=14(1n-1n+2),
所以Tn=b1+b2+…+bn=14[(11-13)+(12-14)+…+(1n-1n+2)]
=14(1+12-1n+1-1n+2)=38-14(n+1)-14(n+2)>m32,
上式对一切n∈N*恒成立.
所以m<12-8n+1-8n+2对一切n∈N*恒成立.
对n∈N*,(12-8n+1-8n+2)min=12-81+1-81+2=163,
所以m<163,故m的最大整数值为5.
【点拨】(1)若数列{an}的通项能转化为f(n+1)-f(n)的形式,常采用裂项相消法求和.
(2)使用裂项相消法求和时,要注意正负项相消时,消去了哪些项,保留了哪些项.
【变式训练3】已知数列{an},{bn}的前n项和为An,Bn,记cn=anBn+bnAn-anbn(n∈N*),则数列{cn}的前10项和为()
A.A10+B10B.A10+B102C.A10B10D.A10B10
【解析】n=1,c1=A1B1;n≥2,cn=AnBn-An-1Bn-1,即可推出{cn}的前10项和为A10B10,故选C.
总结提高
1.常用的基本求和法均对应数列通项的特殊结构特征,分析数列通项公式的特征联想相应的求和方法既是根本,也是关键.
2.数列求和实质就是求数列{Sn}的通项公式,它几乎涵盖了数列中所有的思想策略、方法和技巧,对学生的知识和思维有很高的要求,应充分重视并系统训练.

6.5数列的综合应用

典例精析
题型一函数与数列的综合问题
【例1】已知f(x)=logax(a>0且a≠1),设f(a1),f(a2),…,f(an)(n∈N*)是首项为4,公差为2的等差数列.
(1)设a是常数,求证:{an}成等比数列;
(2)若bn=anf(an),{bn}的前n项和是Sn,当a=2时,求Sn.
【解析】(1)f(an)=4+(n-1)×2=2n+2,即logaan=2n+2,所以an=a2n+2,
所以anan-1=a2n+2a2n=a2(n≥2)为定值,所以{an}为等比数列.
(2)bn=anf(an)=a2n+2logaa2n+2=(2n+2)a2n+2,
当a=2时,bn=(2n+2)(2)2n+2=(n+1)2n+2,
Sn=223+324+425+…+(n+1)2n+2,
2Sn=224+325+…+n2n+2+(n+1)2n+3,
两式相减得
-Sn=223+24+25+…+2n+2-(n+1)2n+3=16+24(1-2n-1)1-2-(n+1)2n+3,
所以Sn=n2n+3.
【点拨】本例是数列与函数综合的基本题型之一,特征是以函数为载体构建数列的递推关系,通过由函数的解析式获知数列的通项公式,从而问题得到求解.
【变式训练1】设函数f(x)=xm+ax的导函数f′(x)=2x+1,则数列{1f(n)}(n∈N*)的前n项和是()
A.nn+1B.n+2n+1C.nn+1D.n+1n
【解析】由f′(x)=mxm-1+a=2x+1得m=2,a=1.
所以f(x)=x2+x,则1f(n)=1n(n+1)=1n-1n+1.

所以Sn=1-12+12-13+13-14+…+1n-1n+1=1-1n+1=nn+1.故选C.
题型二数列模型实际应用问题
【例2】某县位于沙漠地带,人与自然长期进行着顽强的斗争,到2009年底全县的绿化率已达30%,从2010年开始,每年将出现这样的局面:原有沙漠面积的16%将被绿化,与此同时,由于各种原因,原有绿化面积的4%又被沙化.
(1)设全县面积为1,2009年底绿化面积为a1=310,经过n年绿化面积为an+1,求证:an+1=45an+425;
(2)至少需要多少年(取整数)的努力,才能使全县的绿化率达到60%?
【解析】(1)证明:由已知可得an确定后,an+1可表示为an+1=an(1-4%)+(1-an)16%,
即an+1=80%an+16%=45an+425.
(2)由an+1=45an+425有,an+1-45=45(an-45),
又a1-45=-12≠0,所以an+1-45=-12(45)n,即an+1=45-12(45)n,
若an+1≥35,则有45-12(45)n≥35,即(45)n-1≤12,(n-1)lg45≤-lg2,
(n-1)(2lg2-lg5)≤-lg2,即(n-1)(3lg2-1)≤-lg2,
所以n≥1+lg21-3lg2>4,n∈N*,
所以n取最小整数为5,故至少需要经过5年的努力,才能使全县的绿化率达到60%.
【点拨】解决此类问题的关键是如何把实际问题转化为数学问题,通过反复读题,列出有关信息,转化为数列的有关问题.
【变式训练2】规定一机器狗每秒钟只能前进或后退一步,现程序设计师让机器狗以“前进3步,然后再后退2步”的规律进行移动.如果将此机器狗放在数轴的原点,面向正方向,以1步的距离为1单位长移动,令P(n)表示第n秒时机器狗所在的位置坐标,且P(0)=0,则下列结论中错误的是()
A.P(2006)=402B.P(2007)=403
C.P(2008)=404D.P(2009)=405
【解析】考查数列的应用.构造数列{Pn},由题知P(0)=0,P(5)=1,P(10)=2,P(15)=3.所以P(2005)=401,P(2006)=401+1=402,P(2007)=401+1+1=403,P(2008)=401+
3=404,P(2009)=404-1=403.故D错.
题型三数列中的探索性问题
【例3】{an},{bn}为两个数列,点M(1,2),An(2,an),Bn(n-1n,2n)为直角坐标平面上的点.
(1)对n∈N*,若点M,An,Bn在同一直线上,求数列{an}的通项公式;
(2)若数列{bn}满足log2Cn=a1b1+a2b2+…+anbna1+a2+…+an,其中{Cn}是第三项为8,公比为4的等比数列,求证:点列(1,b1),(2,b2),…,(n,bn)在同一直线上,并求此直线方程.
【解析】(1)由an-22-1=2n-2n-1n-1,得an=2n.
(2)由已知有Cn=22n-3,由log2Cn的表达式可知:
2(b1+2b2+…+nbn)=n(n+1)(2n-3),①
所以2[b1+2b2+…+(n-1)bn-1]=(n-1)n(2n-5).②
①-②得bn=3n-4,所以{bn}为等差数列.
故点列(1,b1),(2,b2),…,(n,bn)共线,直线方程为y=3x-4.
【变式训练3】已知等差数列{an}的首项a1及公差d都是整数,前n项和为Sn(n∈N*).若a1>1,a4>3,S3≤9,则通项公式an=.
【解析】本题考查二元一次不等式的整数解以及等差数列的通项公式.
由a1>1,a4>3,S3≤9得
令x=a1,y=d得
在平面直角坐标系中画出可行域如图所示.符合要求的整数点只有(2,1),即a1=2,d=1.所以an=2+n-1=n+1.故答案填n+1.
总结提高
1.数列模型应用问题的求解策略
(1)认真审题,准确理解题意;
(2)依据问题情境,构造等差、等比数列,然后应用通项公式、前n项和公式以及性质求解,或通过探索、归纳构造递推数列求解;
(3)验证、反思结果与实际是否相符.
2.数列综合问题的求解策略
(1)数列与函数综合问题或应用数学思想解决数列问题,或以函数为载体构造数列,应用数列的知识求解;
(2)数列的几何型综合问题,探究几何性质和规律特征建立数列的递推关系式,然后求解问题.

相关阅读

2012届高三理科数学三角函数总复习教学案


一名优秀的教师在教学时都会提前最好准备,作为教师准备好教案是必不可少的一步。教案可以让学生能够在教学期间跟着互动起来,使教师有一个简单易懂的教学思路。教案的内容要写些什么更好呢?小编为此仔细地整理了以下内容《2012届高三理科数学三角函数总复习教学案》,欢迎您参考,希望对您有所助益!

2012届高三理科数学三角函数总复习教学案

高考导航

考试要求重难点击命题展望
1.了解任意角的概念和弧度制的概念,能进行弧度与角度的互化.
2.理解任意角三角函数(正弦、余弦、正切)的定义.
3.能利用单位圆中的三角函数线推导出,π±α的正弦、余弦、正切的诱导公式,能画出y=sinx,y=cosx,y=tanx的图象,了解三角函数的周期性.
4.理解正弦函数、余弦函数在[0,2π]上的性质(如单调性、最大值和最小值、图象与x轴的交点等),理解正切函数在(-,)上的单调性.
5.理解同角三角函数的基本关系式:sin2x+cos2x=1,=tanx.
6.了解函数y=Asin(ωx+φ)的物理意义,能画出函数y=Asin(ωx+φ)的图象,了解参数A,ω,φ对函数图象变化的影响.
7.会用三角函数解决一些简单实际问题,体会三角函数是描述周期变化现象的重要函数模型.
8.会用向量的数量积推导出两角差的余弦公式,会用两角差的余弦公式推导出两角和的正弦、余弦、正切公式和二倍角的正弦、余弦、正切公式,了解它们的内在联系,能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但不要求记忆).
9.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题,能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.本章重点:1.角的推广,三角函数的定义,诱导公式的运用;2.三角函数的图象与性质,y=Asin(ωx+)
(ω>0)的性质、图象及变换;3.用三角函数模型解决实际问题;4.以和、差、倍角公式为依据,提高推理、运算能力;5.正、余弦定理及应用.
本章难点:1.任意角的三角函数的几何表示,图象变换与函数解析式变换的内在联系;2.灵活运用三角公式化简、求值、证明;3.三角函数的奇偶性、单调性的判断,最值的求法;4.探索两角差的余弦公式;5.把实际问题转化为三角函数问题.三角函数是基本初等函数,是描述周期现象的重要数学模型.三角函数的概念、图象和性质是高考数学必考的基础知识之一.在高考中主要考查对三角函数概念的理解;运用函数公式进行恒等变形、化简、求值、证明三角函数的图象和性质以及图象变换、作图、识图等.解三角形的问题往往与其他知识(如立体几何、解析几何、向量等)相联系,考查考生的数学应用意识,体现以能力立意的高考命题原则.

知识网络

5.1任意角的三角函数的概念

典例精析
题型一象限角与终边相同的角
【例1】若α是第二象限角,试分别确定2α、的终边所在的象限.
【解析】因为α是第二象限角,
所以k360°+90°<α<k360°+180°(k∈Z).
因为2k360°+180°<2α<2k360°+360°(k∈Z),故2α是第三或第四象限角,或角的终边在y轴的负半轴上.
因为k180°+45°<α2<k180°+90°(k∈Z),
当k=2n(n∈Z)时,n360°+45°<α2<n360°+90°,
当k=2n+1(n∈Z)时,n360°+225°<α2<n360°+270°.
所以α2是第一或第三象限角.
【点拨】已知角α所在象限,应熟练地确定α2所在象限.
如果用α1、α2、α3、α4分别表示第一、二、三、四象限角,则α12、α22、α32、α42分布如图,即第一象限角的半角是第一或第三象限角(其余略),熟记右图,解有关问题就方便多了.
【变式训练1】若角2α的终边在x轴上方,那么角α是()
A.第一象限角B.第一或第二象限角
C.第一或第三象限角D.第一或第四象限角
【解析】由题意2kπ<2α<2kπ+π,k∈Z,
得kπ<α<kπ+π2,k∈Z.
当k是奇数时,α是第三象限角.
当k是偶数时,α是第一象限角.故选C.
题型二弧长公式,面积公式的应用
【例2】已知一扇形的中心角是α,所在圆的半径是R.
(1)若α=60°,R=10cm,求扇形的弧长及该弧所在的弓形的面积;
(2)若扇形的周长是一定值C(C>0),当α为多少弧度时,该扇形的面积有最大值?并求出这个最大值.
【解析】(1)设弧长为l,弓形面积为S弓,
因为α=60°=π3,R=10cm,所以l=10π3cm,
S弓=S扇-SΔ=12×10×10π3-12×102×sin60°=50(π3-32)cm2.
(2)因为C=2R+l=2R+αR,所以R=C2+α,
S扇=12αR2=12α(C2+α)2=C22αα2+4α+4=C221α+4α+4≤C216,
当且仅当α=4α时,即α=2(α=-2舍去)时,扇形的面积有最大值为C216.
【点拨】用弧长公式l=|α|R与扇形面积公式S=12lR=12R2|α|时,α的单位必须是弧度.
【变式训练2】已知一扇形的面积为定值S,当圆心角α为多少弧度时,该扇形的周长C有最小值?并求出最小值.
【解析】因为S=12Rl,所以Rl=2S,
所以周长C=l+2R≥22Rl=24S=4S,
当且仅当l=2R时,C=4S,
所以当α=lR=2时,周长C有最小值4S.

题型三三角函数的定义,三角函数线的应用
【例3】(1)已知角α的终边与函数y=2x的图象重合,求sinα;(2)求满足sinx≤32的角x的集合.
【解析】(1)由交点为(-55,-255)或(55,255),
所以sinα=±255.
(2)①找终边:在y轴正半轴上找出点(0,32),过该点作平行于x轴的平行线与单位圆分别交于P1、P2两点,连接OP1、OP2,则为角x的终边,并写出对应的角.
②画区域:画出角x的终边所在位置的阴影部分.
③写集合:所求角x的集合是{x|2kπ-4π3≤x≤2kπ+π3,k∈Z}.
【点拨】三角函数是用角α的终边与单位圆交点的坐标来定义的,因此,用定义求值,转化为求交点的问题.利用三角函数线证某些不等式或解某些三角不等式更简洁、直观.
【变式训练3】函数y=lgsinx+cosx-12的定义域为.
【解析】
2kπ<x≤2kπ+π3,k∈Z.
所以函数的定义域为{x|2kπ<x≤2kπ+π3,k∈Z}.
总结提高
1.确定一个角的象限位置,不仅要看角的三角函数值的符号,还要考虑它的函数值的大小.
2.在同一个式子中所采用的量角制度必须相一致,防止出现诸如k360°+π3的错误书写.
3.三角函数线具有较好的几何直观性,是研究和理解三角函数的一把钥匙.

5.2同角三角函数的关系、诱导公式

典例精析
题型一三角函数式的化简问题
【点拨】运用诱导公式的关键是符号,前提是将α视为锐角后,再判断所求角的象限.
【变式训练1】已知f(x)=1-x,θ∈(3π4,π),则f(sin2θ)+f(-sin2θ)=.
【解析】f(sin2θ)+f(-sin2θ)=1-sin2θ+1+sin2θ=(sinθ-cosθ)2+(sinθ+cosθ)2=|sinθ-cosθ|+|sinθ+cosθ|.
因为θ∈(3π4,π),所以sinθ-cosθ>0,sinθ+cosθ<0.
所以|sinθ-cosθ|+|sinθ+cosθ|=sinθ-cosθ-sinθ-cosθ=-2cosθ.
题型二三角函数式的求值问题
【例2】已知向量a=(sinθ,cosθ-2sinθ),b=(1,2).
(1)若a∥b,求tanθ的值;
(2)若|a|=|b|,0<θ<π,求θ的值.
【解析】(1)因为a∥b,所以2sinθ=cosθ-2sinθ,
于是4sinθ=cosθ,故tanθ=14.
(2)由|a|=|b|知,sin2θ+(cosθ-2sinθ)2=5,
所以1-2sin2θ+4sin2θ=5.
从而-2sin2θ+2(1-cos2θ)=4,即sin2θ+cos2θ=-1,
于是sin(2θ+π4)=-22.
又由0<θ<π知,π4<2θ+π4<9π4,
所以2θ+π4=5π4或2θ+π4=7π4.
因此θ=π2或θ=3π4.
【变式训练2】已知tanα=12,则2sinαcosα+cos2α等于()
A.45B.85C.65D.2
【解析】原式=2sinαcosα+cos2αsin2α+cos2α=2tanα+11+tan2α=85.故选B.
题型三三角函数式的简单应用问题
【例3】已知-π2<x<0且sinx+cosx=15,求:
(1)sinx-cosx的值;
(2)sin3(π2-x)+cos3(π2+x)的值.
【解析】(1)由已知得2sinxcosx=-2425,且sinx<0<cosx,
所以sinx-cosx=-(sinx-cosx)2=-1-2sinxcosx=-1+2425=-75.
(2)sin3(π2-x)+cos3(π2+x)=cos3x-sin3x=(cosx-sinx)(cos2x+cosxsinx+sin2x)
=75×(1-1225)=91125.
【点拨】求形如sinx±cosx的值,一般先平方后利用基本关系式,再求sinx±cosx取值符号.
【变式训练3】化简1-cos4α-sin4α1-cos6α-sin6α.
【解析】原式=1-[(cos2α+sin2α)2-2sin2αcos2α]1-[(cos2α+sin2α)(cos4α+sin4α-sin2αcos2α)]
=2sin2αcos2α1-[(cos2α+sin2α)2-3sin2αcos2α]=23.
总结提高
1.对于同角三角函数基本关系式中“同角”的含义,只要是“同一个角”,那么基本关系式就成立,如:sin2(-2α)+cos2(-2α)=1是恒成立的.
2.诱导公式的重要作用在于:它揭示了终边在不同象限且具有一定对称关系的角的三角函数间的内在联系,从而可化负为正,化复杂为简单.

5.3两角和与差、二倍角的三角函数

典例精析
题型一三角函数式的化简
【例1】化简(0<θ<π).
【解析】因为0<θ<π,所以0<θ2<π2,
所以原式=
==-cosθ.
【点拨】先从角度统一入手,将θ化成θ2,然后再观察结构特征,如此题中sin2θ2-cos2θ2=-cosθ.
【变式训练1】化简2cos4x-2cos2x+122tan(π4-x)sin2(π4+x).
【解析】原式=12(2cos2x-1)22tan(π4-x)cos2(π4-x)=cos22x4cos(π4-x)sin(π4-x)=cos22x2sin(π2-2x)=12cos2x.
题型二三角函数式的求值
【例2】已知sinx2-2cosx2=0.
(1)求tanx的值;
(2)求cos2x2cos(π4+x)sinx的值.
【解析】(1)由sinx2-2cosx2=0tanx2=2,所以tanx==2×21-22=-43.
(2)原式=cos2x-sin2x2(22cosx-22sinx)sinx
=(cosx-sinx)(cosx+sinx)(cosx-sinx)sinx=cosx+sinxsinx=1tanx+1=(-34)+1=14.
【变式训练2】2cos5°-sin25°sin65°=.
【解析】原式=2cos(30°-25°)-sin25°cos25°=3cos25°cos25°=3.
题型三已知三角函数值求解
【例3】已知tan(α-β)=12,tanβ=-17,且α,β∈(0,π),求2α-β的值.
【解析】因为tan2(α-β)=2tan(α-β)1-tan2(α-β)=43,
所以tan(2α-β)=tan[2(α-β)+β]=tan2(α-β)+tanβ1-tan2(α-β)tanβ=1,
又tanα=tan[(α-β)+β]=tan(α-β)+tanβ1-tan(α-β)tanβ=13,
因为α∈(0,π),所以0<α<π4,
又π2<β<π,所以-π<2α-β<0,所以2α-β=-3π4.
【点拨】由三角函数值求角时,要注意角度范围,有时要根据三角函数值的符号和大小将角的范围适当缩小.
【变式训练3】若α与β是两锐角,且sin(α+β)=2sinα,则α与β的大小关系是()
A.α=βB.α<β
C.α>βD.以上都有可能
【解析】方法一:因为2sinα=sin(α+β)≤1,所以sinα≤12,又α是锐角,所以α≤30°.
又当α=30°,β=60°时符合题意,故选B.
方法二:因为2sinα=sin(α+β)=sinαcosβ+cosαsinβ<sinα+sinβ,
所以sinα<sinβ.
又因为α、β是锐角,所以α<β,故选B.
总结提高
1.两角和与差的三角函数公式以及倍角公式等是三角函数恒等变形的主要工具.
(1)它能够解答三类基本题型:求值题,化简题,证明题;
(2)对公式会“正用”、“逆用”、“变形使用”;
(3)掌握角的演变规律,如“2α=(α+β)+(α-β)”等.
2.通过运用公式,实现对函数式中角的形式、升幂、降幂、和与差、函数名称的转化,以达到求解的目的,在运用公式时,注意公式成立的条件.

5.4三角恒等变换

典例精析
题型一三角函数的求值
【例1】已知0<α<π4,0<β<π4,3sinβ=sin(2α+β),4tanα2=1-tan2α2,求α+β的值.
【解析】由4tanα2=1-tan2α2,得tanα==12.
由3sinβ=sin(2α+β)得3sin[(α+β)-α]=sin[(α+β)+α],
所以3sin(α+β)cosα-3cos(α+β)sinα=sin(α+β)cosα+cos(α+β)sinα,
即2sin(α+β)cosα=4cos(α+β)sinα,所以tan(α+β)=2tanα=1.
又因为α、β∈(0,π4),所以α+β=π4.
【点拨】三角函数式的化简与求值的主要过程是三角变换,要善于抓住已知条件与目标之间的结构联系,找到解题的突破口与方向.
【变式训练1】如果tan(α+β)=35,tan(β-π4)=14,那么tan(α+π4)等于()
A.1318B.1322C.723D.318
【解析】因为α+π4=(α+β)-(β-π4),
所以tan(α+π4)=tan[(α+β)-(β-π4)]=tan(α+β)-tan(β-π4)1+tan(α+β)tan(β-π4)=723.
故选C.

题型二等式的证明
【例2】求证:sinβsinα=sin(2α+β)sinα-2cos(α+β).
【证明】证法一:
右边=sin[(α+β)+α]-2cos(α+β)sinαsinα=sin(α+β)cosα-cos(α+β)sinαsinα
=sin[(α+β)-α]sinα=sinβsinα=左边.
证法二:sin(2α+β)sinα-sinβsinα=sin(2α+β)-sinβsinα=2cos(α+β)sinαsinα=2cos(α+β),
所以sin(2α+β)sinα-2cos(α+β)=sinβsinα.
【点拨】证法一将2α+β写成(α+β)+α,使右端的角形式上一致,易于共同运算;证法二把握结构特征,用“变更问题法”证明,简捷而新颖.
【变式训练2】已知5sinα=3sin(α-2β),求证:tan(α-β)+4tanβ=0.
【证明】因为5sinα=3sin(α-2β),所以5sin[(α-β)+β]=3sin[(α-β)-β],
所以5sin(α-β)cosβ+5cos(α-β)sinβ=3sin(α-β)cosβ-3cos(α-β)sinβ,
所以2sin(α-β)cosβ+8cos(α-β)sinβ=0.
即tan(α-β)+4tanβ=0.
题型三三角恒等变换的应用
【例3】已知△ABC是非直角三角形.
(1)求证:tanA+tanB+tanC=tanAtanBtanC;
(2)若A>B且tanA=-2tanB,求证:tanC=sin2B3-cos2B;
(3)在(2)的条件下,求tanC的最大值.
【解析】(1)因为C=π-(A+B),
所以tanC=-tan(A+B)=-(tanA+tanB)1-tanAtanB,
所以tanC-tanAtanBtanC=-tanA-tanB,
即tanA+tanB+tanC=tanAtanBtanC.
(2)由(1)知tanC=-(tanA+tanB)1-tanAtanB=tanB1+2tan2B=sinBcosBcos2B+2sin2B=
=sin2B2(2-1+cos2B2)=sin2B3-cos2B.
(3)由(2)知tanC=tanB1+2tan2B=12tanB+1tanB≤122=24,
当且仅当2tanB=1tanB,即tanB=22时,等号成立.
所以tanC的最大值为24.
【点拨】熟练掌握三角变换公式并灵活地运用来解决与三角形有关的问题,要有较明确的目标意识.
【变式训练3】在△ABC中,tanB+tanC+3tanBtanC=3,3tanA+3tanB+1=tanAtanB,试判断△ABC的形状.
【解析】由已知得tanB+tanC=3(1-tanBtanC),
3(tanA+tanB)=-(1-tanAtanB),
即tanB+tanC1-tanBtanC=3,tanA+tanB1-tanAtanB=-33.
所以tan(B+C)=3,tan(A+B)=-33.
因为0<B+C<π,0<A+B<π,所以B+C=π3,A+B=5π6.
又A+B+C=π,故A=2π3,B=C=π6.
所以△ABC是顶角为2π3的等腰三角形.
总结提高
三角恒等式的证明,一般考虑三个“统一”:①统一角度,即化为同一个角的三角函数;②统一名称,即化为同一种三角函数;③统一结构形式.

5.5三角函数的图象和性质

典例精析
题型一三角函数的周期性与奇偶性
【例1】已知函数f(x)=2sinx4cosx4+3cosx2.
(1)求函数f(x)的最小正周期;
(2)令g(x)=f(x+π3),判断g(x)的奇偶性.
【解析】(1)f(x)=2sinx4cosx4+3cosx2=sinx2+3cosx2=2sin(x2+π3),
所以f(x)的最小正周期T=2π12=4π.
(2)g(x)=f(x+π3)=2sin[12(x+π3)+π3]=2sin(x2+π2)=2cosx2.
所以g(x)为偶函数.
【点拨】解决三角函数的有关性质问题,常常要化简三角函数.
【变式训练1】函数y=sin2x+sinxcosx的最小正周期T等于()
A.2πB.πC.π2D.π3
【解析】y=1-cos2x2+12sin2x=22(22sin2x-22cos2x)+12
=22sin(2x-π4)+12,所以T=2π2=π.故选B.
题型二求函数的值域
【例2】求下列函数的值域:
(1)f(x)=sin2xsinx1-cosx;
(2)f(x)=2cos(π3+x)+2cosx.
【解析】(1)f(x)=2sinxcosxsinx1-cosx=2cosx(1-cos2x)1-cosx=2cos2x+2cosx
=2(cosx+12)2-12,
当cosx=1时,f(x)max=4,但cosx≠1,所以f(x)<4,
当cosx=-12时,f(x)min=-12,所以函数的值域为[-12,4).
(2)f(x)=2(cosπ3cosx-sinπ3sinx)+2cosx
=3cosx-3sinx=23cos(x+π6),
所以函数的值域为[-23,23].
【点拨】求函数的值域是一个难点,分析函数式的特点,具体问题具体分析,是突破这一难点的关键.
【变式训练2】求y=sinx+cosx+sinxcosx的值域.
【解析】令t=sinx+cosx,则有t2=1+2sinxcosx,即sinxcosx=t2-12.
所以y=f(t)=t+t2-12=12(t+1)2-1.
又t=sinx+cosx=2sin(x+π4),所以-2≤t≤2.
故y=f(t)=12(t+1)2-1(-2≤t≤2),
从而f(-1)≤y≤f(2),即-1≤y≤2+12.
所以函数的值域为[-1,2+12].
题型三三角函数的单调性
【例3】已知函数f(x)=sin(ωx+φ)(φ>0,|φ|<π)的部分图象如图所示.
(1)求ω,φ的值;
(2)设g(x)=f(x)f(x-π4),求函数g(x)的单调递增区间.
【解析】(1)由图可知,T=4(π2-π4)=π,ω=2πT=2.
又由f(π2)=1知,sin(π+φ)=1,又f(0)=-1,所以sinφ=-1.
因为|φ|<π,所以φ=-π2.
(2)f(x)=sin(2x-π2)=-cos2x.
所以g(x)=(-cos2x)[-cos(2x-π2)]=cos2xsin2x=12sin4x.
所以当2kπ-π2≤4x≤2kπ+π2,即kπ2-π8≤x≤kπ2+π8(k∈Z)时g(x)单调递增.
故函数g(x)的单调增区间为[kπ2-π8,kπ2+π8](k∈Z).
【点拨】观察图象,获得T的值,然后再确定φ的值,体现了数形结合的思想与方法.
【变式训练3】使函数y=sin(π6-2x)(x∈[0,π])为增函数的区间是()
A.[0,π3]B.[π12,7π12]
C.[π3,5π6]D.[5π6,π]
【解析】利用复合函数单调性“同增异减”的原则判定,选C.
总结提高
1.求三角函数的定义域和值域应注意利用三角函数图象.
2.三角函数的最值都是在给定区间上得到的,因而特别要注意题设中所给的区间.
3.求三角函数的最小正周期时,要尽可能地化为三角函数的一般形式,要注意绝对值、定义域对周期的影响.
4.判断三角函数的奇偶性,应先判定函数定义域的对称性.

5.6函数y=Asin(ωx+)的图象和性质

典例精析
题型一“五点法”作函数图象
【例1】设函数f(x)=sinωx+3cosωx(ω>0)的周期为π.
(1)求它的振幅、初相;
(2)用五点法作出它在长度为一个周期的闭区间上的图象;
(3)说明函数f(x)的图象可由y=sinx的图象经过怎样的变换得到.
【解析】(1)f(x)=sinωx+3cosωx=2(12sinωx+32cosωx)=2sin(ωx+π3),
又因为T=π,所以2πω=π,即ω=2,所以f(x)=2sin(2x+π3),
所以函数f(x)=sinωx+3cosωx(ω>0)的振幅为2,初相为π3.
(2)列出下表,并描点画出图象如图所示.
(3)把y=sinx图象上的所有点向左平移π3个单位,得到y=sin(x+π3)的图象,再把
y=sin(x+π3)的图象上的所有点的横坐标缩短到原来的12(纵坐标不变),得到y=sin(2x+π3)的图象,然后把y=sin(2x+π3)的图象上的所有点的纵坐标伸长到原来的2倍(横坐标不变),即可得到y=2sin(2x+π3)的图象.
【点拨】用“五点法”作图,先将原函数化为y=Asin(ωx+φ)(A>0,ω>0)形式,再令ωx+φ=0,π2,π,3π2,2π求出相应的x值及相应的y值,就可以得到函数图象上一个周期内的五个点,用平滑的曲线连接五个点,再向两端延伸即可得到函数在整个定义域上的图象.

【变式训练1】函数

的图象如图所示,则()
A.k=12,ω=12,φ=π6
B.k=12,ω=12,φ=π3
C.k=12,ω=2,φ=π6
D.k=-2,ω=12,φ=π3
【解析】本题的函数是一个分段函数,其中一个是一次函数,其图象是一条直线,由图象可判断该直线的斜率k=12.另一个函数是三角函数,三角函数解析式中的参数ω由三角函数的周期决定,由图象可知函数的周期为T=4×(8π3-5π3)=4π,故ω=12.将点(5π3,0)代入解析式y=2sin(12x+φ),得12×5π3+φ=kπ,k∈Z,所以φ=kπ-5π6,k∈Z.结合各选项可知,选项A正确.
题型二三角函数的单调性与值域
【例2】已知函数f(x)=sin2ωx+3sinωxsin(ωx+π2)+2cos2ωx,x∈R(ω>0)在y轴右侧的第一个最高点的横坐标为π6.
(1)求ω的值;
(2)若将函数f(x)的图象向右平移π6个单位后,再将得到的图象上各点横坐标伸长到原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求函数g(x)的最大值及单调递减区间.
【解析】(1)f(x)=32sin2ωx+12cos2ωx+32=sin(2ωx+π6)+32.
令2ωx+π6=π2,将x=π6代入可得ω=1.
(2)由(1)得f(x)=sin(2x+π6)+32,经过题设的变化得到函数g(x)=sin(12x-π6)+32,
当x=4kπ+43π,k∈Z时,函数g(x)取得最大值52.
令2kπ+π2≤12x-π6≤2kπ+32π,
即[4kπ+4π3,4kπ+103π](k∈Z)为函数的单调递减区间.
【点拨】本题考查三角函数恒等变换公式的应用、三角函数图象性质及变换.
【变式训练2】若将函数y=2sin(3x+φ)的图象向右平移π4个单位后得到的图象关于点(π3,0)对称,则|φ|的最小值是()
A.π4B.π3C.π2D.3π4
【解析】将函数y=2sin(3x+φ)的图象向右平移π4个单位后得到y=2sin[3(x-π4)+φ]=2sin(3x-3π4+φ)的图象.
因为该函数的图象关于点(π3,0)对称,所以2sin(3×π3-3π4+φ)=2sin(π4+φ)=0,
故有π4+φ=kπ(k∈Z),解得φ=kπ-π4(k∈Z).
当k=0时,|φ|取得最小值π4,故选A.
题型三三角函数的综合应用
【例3】已知函数y=f(x)=Asin2(ωx+φ)(A>0,ω>0,0<φ<π2)的最大值为2,其图象相邻两对称轴间的距离为2,并过点(1,2).
(1)求φ的值;
(2)求f(1)+f(2)+…+f(2008).
【解析】(1)y=Asin2(ωx+φ)=A2-A2cos(2ωx+2φ),
因为y=f(x)的最大值为2,又A>0,
所以A2+A2=2,所以A=2,
又因为其图象相邻两对称轴间的距离为2,ω>0,
所以12×2π2ω=2,所以ω=π4.
所以f(x)=22-22cos(π2x+2φ)=1-cos(π2x+2φ),
因为y=f(x)过点(1,2),所以cos(π2+2φ)=-1.
所以π2+2φ=2kπ+π(k∈Z),
解得φ=kπ+π4(k∈Z),
又因为0<φ<π2,所以φ=π4.
(2)方法一:因为φ=π4,
所以y=1-cos(π2x+π2)=1+sinπ2x,
所以f(1)+f(2)+f(3)+f(4)=2+1+0+1=4,
又因为y=f(x)的周期为4,2008=4×502.
所以f(1)+f(2)+…+f(2008)=4×502=2008.
方法二:因为f(x)=2sin2(π4x+φ),
所以f(1)+f(3)=2sin2(π4+φ)+2sin2(3π4+φ)=2,
f(2)+f(4)=2sin2(π2+φ)+2sin2(π+φ)=2,
所以f(1)+f(2)+f(3)+f(4)=4,
又因为y=f(x)的周期为4,2008=4×502.
所以f(1)+f(2)+…+f(2008)=4×502=2008.
【点拨】函数y=Acos(ωx+φ)的对称轴由ωx+φ=kπ,可得x=kπ-φω,两相邻对称轴间的距离为周期的一半,解决该类问题可画出相应的三角函数的图象,借助数形结合的思想解决.
【变式训练3】已知函数f(x)=Acos2ωx+2(A>0,ω>0)的最大值为6,其相邻两条对称轴间的距离为4,则f(2)+f(4)+f(6)+…+f(20)=.
【解析】f(x)=Acos2ωx+2=A×1+cos2ωx2+2=Acos2ωx2+A2+2,则由题意知A+2=6,2π2ω=8,所以A=4,ω=π8,所以f(x)=2cosπ4x+4,所以f(2)=4,f(4)=2,f(6)=4,f(8)=6,f(10)=4,…观察周期性规律可知f(2)+f(4)+…+f(20)=2×(4+2+4+6)+4+2=38.
总结提高
1.用“五点法”作y=Asin(ωx+φ)的图象,关键是五个点的选取,一般令ωx+φ=0,π2,π,3π2,2π,即可得到作图所需的五个点的坐标,同时,若要求画出给定区间上的函数图象时,应适当调整ωx+φ的取值,以便列表时能使x在给定的区间内取值.
2.在图象变换时,要注意相位变换与周期变换的先后顺序改变后,图象平移的长度单位是不同的,这是因为变换总是对字母x本身而言的,无论沿x轴平移还是伸缩,变化的总是x.
3.在解决y=Asin(ωx+φ)的有关性质时,应将ωx+φ视为一个整体x后再与基本函数
y=sinx的性质对应求解.

5.7正弦定理和余弦定理

典例精析
题型一利用正、余弦定理解三角形
【例1】在△ABC中,AB=2,BC=1,cosC=34.
(1)求sinA的值;(2)求的值.
【解析】(1)由cosC=34得sinC=74.
所以sinA=BCsinCAB=1×742=148.
(2)由(1)知,cosA=528.
所以cosB=-cos(A+C)=-cosAcosC+sinAsinC
=-15232+7232=-24.
所以=(+)=+
=-1+1×2×cosB=-1-12=-32.
【点拨】在解三角形时,要注意灵活应用三角函数公式及正弦定理、余弦定理等有关知识.
【变式训练1】在△ABC中,已知a、b、c为它的三边,且三角形的面积为a2+b2-c24,则∠C=.
【解析】S=a2+b2-c24=12absinC.
所以sinC=a2+b2-c22ab=cosC.所以tanC=1,
又∠C∈(0,π),所以∠C=π4.
题型二利用正、余弦定理解三角形中的三角函数问题
【例2】设△ABC是锐角三角形,a、b、c分别是内角A、B、C所对的边长,并且sin2A=sin(π3+B)sin(π3-B)+sin2B.
(1)求角A的值;
(2)若=12,a=27,求b,c(其中b<c).
【解析】(1)因为sin2A=(32cosB+12sinB)(32cosB-12sinB)+sin2B=34cos2B-14sin2B+sin2B=34,所以sinA=±32.又A为锐角,所以A=π3.
(2)由=12可得cbcosA=12.①
由(1)知A=π3,所以cb=24.②
由余弦定理知a2=c2+b2-2cbcosA,将a=27及①代入得c2+b2=52.③
③+②×2,得(c+b)2=100,所以c+b=10.
因此,c,b是一元二次方程t2-10t+24=0的两个根.
又b<c,所以b=4,c=6.
【点拨】本小题考查两角和与差的正弦公式,同角三角函数的基本关系,特殊角的三角函数值,向量的数量积,利用余弦定理解三角形等有关知识,考查综合运算求解能力.
【变式训练2】在△ABC中,a、b、c分别是A、B、C的对边,且满足(2a-c)cosB=
bcosC.
(1)求角B的大小;
(2)若b=7,a+c=4,求△ABC的面积.
【解析】(1)在△ABC中,由正弦定理得
a=2RsinA,b=2RsinB,c=2RsinC,
代入(2a-c)cosB=bcosC,
整理得2sinAcosB=sinBcosC+sinCcosB,
即2sinAcosB=sin(B+C)=sinA,
在△ABC中,sinA>0,2cosB=1,
因为∠B是三角形的内角,所以B=60°.
(2)在△ABC中,由余弦定理得b2=a2+c2-2accosB
=(a+c)2-2ac-2accosB,
将b=7,a+c=4代入整理,得ac=3.
故S△ABC=12acsinB=32sin60°=334.
题型三正、余弦定理在实际问题中的应用
【例3】(2010陕西)如图所示,A,B是海面上位于东西方向相距5(3+3)海里的两个观测点.现位于A点北偏东45°,B点北偏西60°的D点有一艘轮船发出求救信号,位于B点南偏西60°且与B点相距203海里的C点的救援船立即前往营救,其航行速度为30海里/小时,则该救援船到达D点需要多长时间?
【解析】由题意知AB=5(3+3)(海里),∠DBA=90°-60°=30°,∠DAB=90°-45°=45°,所以∠ADB=180°-(45°+30°)=105°.
在△DAB中,由正弦定理得DBsin∠DAB=ABsin∠ADB,
所以DB==
==53(3+1)3+12=103(海里).
又∠DBC=∠DBA+∠ABC=30°+(90°-60°)=60°,BC=203海里,
在△DBC中,由余弦定理得
CD2=BD2+BC2-2BDBCcos∠DBC=300+1200-2×103×203×12=900,
所以CD=30(海里),则需要的时间t=3030=1(小时).
所以,救援船到达D点需要1小时.
【点拨】应用解三角形知识解决实际问题的基本步骤是:
(1)根据题意,抽象地构造出三角形;
(2)确定实际问题所涉及的数据以及要求解的结论与所构造的三角形的边与角的对应关系;
(3)选用正弦定理或余弦定理或者二者相结合求解;
(4)给出结论.
【变式训练3】如图,一船在海上由西向东航行,在A处测得某岛M的方位角为北偏东α角,前进mkm后在B处测得该岛的方位角为北偏东β角,已知该岛周围nkm范围内(包括边界)有暗礁,现该船继续东行,当α与β满足条件时,该船没有触礁危险.
【解析】由题可知,在△ABM中,根据正弦定理得BMsin(90°-α)=msin(α-β),解得BM=mcosαsin(α-β),要使船没有触礁危险需要BMsin(90°-β)=mcosαcosβsin(α-β)>n.所以α与β的关系满足mcosαcosβ>nsin(α-β)时,船没有触礁危险.
总结提高
1.正弦定理、余弦定理体现了三角形中角与边存在的一种内在联系,如证明两内角A>B与sinA>sinB是一种等价关系.
2.在判断三角形的形状时,一般将已知条件中的边角关系转化,统一转化为边的关系或统一转化为角的关系,再用恒等变形(如因式分解、配方)求解,注意等式两边的公因式不要随意约掉,否则会漏解.
3.用正弦定理求角的大小一定要根据题中所给的条件判断角的范围,以免增解或漏解.

5.8三角函数的综合应用

典例精析
题型一利用三角函数的性质解应用题
【例1】如图,ABCD是一块边长为100m的正方形地皮,其中AST是一半径为90m的扇形小山,其余部分都是平地.一开发商想在平地上建一个矩形停车场,使矩形的一个顶点P在上,相邻两边CQ、CR分别落在正方形的边BC、CD上,求矩形停车场PQCR面积的最大值和最小值.
【解析】如图,连接AP,过P作PM⊥AB于M.
设∠PAM=α,0≤α≤π2,
则PM=90sinα,AM=90cosα,
所以PQ=100-90cosα,PR=100-90sinα,
于是S四边形PQCR=PQPR
=(100-90cosα)(100-90sinα)
=8100sinαcosα-9000(sinα+cosα)+10000.
设t=sinα+cosα,则1≤t≤2,sinαcosα=t2-12.
S四边形PQCR=8100t2-12-9000t+10000
=4050(t-109)2+950(1≤t≤2).
当t=2时,(S四边形PQCR)max=14050-90002m2;
当t=109时,(S四边形PQCR)min=950m2.
【点拨】同时含有sinθcosθ,sinθ±cosθ的函数求最值时,可设sinθ±cosθ=t,把sinθcosθ用t表示,从而把问题转化成关于t的二次函数的最值问题.注意t的取值范围.
【变式训练1】若0<x<π2,则4x与sin3x的大小关系是()
A.4x>sin3xB.4x<sin3x
C.4x≥sin3xD.与x的值有关
【解析】令f(x)=4x-sin3x,则f′(x)=4-3cos3x.因为f′(x)=4-3cos3x>0,所以f(x)为增函数.又0<x<π2,所以f(x)>f(0)=0,即得4x-sin3x>0.所以4x>sin3x.故选A.
题型二函数y=Asin(ωx+φ)模型的应用
【例2】已知某海滨浴场的海浪高度y(米)是时间t(0≤t≤24,单位:小时)的函数,记作y=f(t).下表是某日各时的浪花高度数据.
经长期观测,y=f(t)的曲线可近似地看成是函数y=Acosωt+b.
(1)根据以上数据,求出函数y=Acosωt+b的最小正周期T、振幅A及函数表达式;
(2)依据规定,当海浪高度高于1米时才对冲浪爱好者开放.请依据(1)的结论,判断一天内的上午8:00至晚上20:00之间,有多少时间可供冲浪者进行运动?
【解析】(1)由表中数据知,周期T=12,所以ω=2πT=2π12=π6.
由t=0,y=1.5,得A+b=1.5,由t=3,y=1.0,得b=1.0,
所以A=0.5,b=1,所以振幅为12.所以y=12cosπ6t+1.
(2)由题知,当y>1时才可对冲浪者开放,
所以12cosπ6t+1>1,所以cosπ6t>0,
所以2kπ-π2<π6t<2kπ+π2,即12k-3<t<12k+3.①
因为0≤t≤24,故可令①中k分别为0,1,2,得0≤t<3或9<t<15或21<t≤24.
故在规定时间上午8:00至晚上20:00之间,有6个小时时间可供冲浪者运动,即上午9:00至下午15:00.
【点拨】用y=Asin(ωx+φ)模型解实际问题,关键在于根据题目所给数据准确求出函数解析式.
【变式训练2】如图,一个半径为10m的水轮按逆时针方向每分钟转4圈,记水轮上的点P到水面的距离为dm(P在水面下则d为负数),则d(m)与时间t(s)之间满足关系式:d=Asin(ωt+φ)+k(A>0,ω>0,-π2<φ<π2),且当点P从水面上浮现时开始计算时间,有以下四个结论:①A=10;②ω=2π15;③φ=π6;④k=5.其中正确结论的序号是.
【解析】①②④.
题型三正、余弦定理的应用
【例3】为了测量两山顶M、N间的距离,飞机沿水平方向在A、B两点进行测量,A、B、M、N在同一个铅垂平面内(如图所示),飞机能测量的数据有俯角和A、B之间的距离,请设计一个方案,包括:(1)指出需测量的数据(用字母表示,并在图中标示);(2)用文字和公式写出计算M、N间距离的步骤.
【解析】(1)如图所示:①测AB间的距离a;②测俯角∠MAB=φ,∠NAB=θ,∠MBA=β,∠NBA=γ.(2)在△ABM中,∠AMB=π-φ-β,由正弦定理得
BM=ABsinφsin∠AMB=asinφsin(φ+β),
同理在△BAN中,BN=ABsinθsin∠ANB=asinθsin(θ+γ),
所以在△BMN中,由余弦定理得
MN=
=a2sin2φsin2(φ+β)+a2sin2θsin2(θ+γ)-2a2sinθsinφcos(γ-β)sin(φ+β)sin(θ+γ).
【变式训练3】一船向正北方向匀速行驶,看见正西方向两座相距10海里的灯塔恰好与该船在同一直线上,继续航行半小时后,看见其中一座灯塔在南偏西60°方向上,另一灯塔在南偏西75°方向上,则该船的速度是海里/小时.
【解析】本题考查实际模型中的解三角形问题.依题意作出简图,易知AB=10,∠OCB=60°,∠OCA=75°.我们只需计算出OC的长,即可得出船速.在直角三角形OCA和OCB中,显然有OBOC=tan∠OCB=tan60°且OAOC=tan∠OCA=tan75°,
因此易得AB=OA-OB=OC(tan75°-tan60°),即有
OC=ABtan75°-tan60°=10tan75°-tan60°
=10tan(30°+45°)-tan60°
=10tan30°+tan45°1-tan30°tan45°-tan60°=1013+11-13-3=5.
由此可得船的速度为5海里÷0.5小时=10海里/小时.
总结提高
1.解三角形的应用题时应注意:
(1)生活中的常用名词,如仰角,俯角,方位角,坡比等;
(2)将所有已知条件化入同一个三角形中求解;
(3)方程思想在解题中的运用.
2.解三角函数的综合题时应注意:
(1)与已知基本函数对应求解,即将ωx+φ视为一个整体X;
(2)将已知三角函数化为同一个角的一种三角函数,如y=Asin(ωx+φ)+B或y=asin2x+bsinx+c;
(3)换元方法在解题中的运用.

2012届高三特长班数学等差数列总复习


俗话说,凡事预则立,不预则废。高中教师在教学前就要准备好教案,做好充分的准备。教案可以让学生能够听懂教师所讲的内容,帮助高中教师更好的完成实现教学目标。我们要如何写好一份值得称赞的高中教案呢?以下是小编收集整理的“2012届高三特长班数学等差数列总复习”,大家不妨来参考。希望您能喜欢!

高三特长班数学总复习——等差数列
一、知识梳理
1.数列:如果数列的第项与序号之间可以用一个式子表示,那么这个公式叫做这个数列的通项公式,即.如,则______,=______,1是该数列中的项么?如果是,是第几项?8是不是该数列的项?
2、数列中,,求则等于多少?
3.等差数列的概念:如果一个数列从第二项起,_______________等于同一个常数,这个数列叫做等差数列,常数称为等差数列的_____.
4.通项公式与前项和公式
⑴通项公式____________________⑵前项和公式________________或._________________
5.等差中项:是与的等差中项,,成等差数列.
6.等差数列的判定方法
⑴定义法:(,是常数)是等差数列;
⑵中项法:()是等差数列.
7.等差数列的常用性质
(1)(2)若,则_______________;
二、高考链接
1、.在等差数列中,,则
2、设是等差数列的前n项和,已知,,则等于()
A.13B.35C.49D.63
2、已知是等差数列,,其前10项和,则其公差()
A.B.C.D.
已知等差数列的前3项和为6,前8项和为-4。
(Ⅰ)求数列的通项公式;

三、抢分演练
1、若等差数列{}的前三项和且,则等于()
A.3B.4C.5D.6
2、等差数列的前项和为若()
A.12B.10C.8D.6
3、等差数列{an}中,a1=1,a3+a5=14,其前n项和Sn=100,则n=()
A.9B.10C.11D.12
4、已知等差数列的前项和为,若,则
5、已知是等差数列,,,则该数列前10项和等于()
A.64B.100C.110D.120
6、若等差数列的前5项和,且,则()
A.12B.13C.14D.15
7、设等差数列的前n项和为,若,则..
8、如果等差数列中,++=12,那么++…+=
(A)14(B)21(C)28(D)35
9、设数列的前n项和,则的值为
(A)15(B)16(C)49(D)64
10、等差数列{an}的前n项和为Sn,若()
A.12B.18C.24D.42
11、设等差数列的前项和为,若,,则()
A.63B.45C.36D.27
12、已知数列{}的前项和,则其通项;若它的第项满足,则.

2012届高三数学概率统计总复习


一名合格的教师要充分考虑学习的趣味性,作为教师就要好好准备好一份教案课件。教案可以让学生更好的消化课堂内容,帮助教师掌握上课时的教学节奏。您知道教案应该要怎么下笔吗?下面是小编为大家整理的“2012届高三数学概率统计总复习”,欢迎大家与身边的朋友分享吧!

高三特长班数学复习概率统计(一)
一、知识梳理
1.三种抽样方法的联系与区别:
类别共同点不同点相互联系适用范围
简单随机抽样都是等概率抽样从总体中逐个抽取总体中个体比较少
系统抽样将总体均匀分成若干部分;按事先确定的规则在各部分抽取在起始部分采用简单随机抽样总体中个体比较多
分层抽样将总体分成若干层,按个体个数的比例抽取在各层抽样时采用简单随机抽样或系统抽样总体中个体有明显差异
(1)从含有N个个体的总体中抽取n个个体的样本,每个个体被抽到的概率为
(2)系统抽样的步骤:①将总体中的个体随机编号;②将编号分段;③在第1段中用简单随机抽样确定起始的个体编号;④按照事先研究的规则抽取样本.
(3)分层抽样的步骤:①分层;②按比例确定每层抽取个体的个数;③各层抽样;④汇合成样本.
(4)要懂得从图表中提取有用信息
如:在频率分布直方图中①小矩形的面积=组距=频率②众数是最高矩形的中点的横坐标③中位数的左边与右边的直方图的面积相等,可以由此估计中位数的值
2.方差和标准差都是刻画数据波动大小的数字特征,一般地,设一组样本数据,,…,,其平均数为则方差,标准差
3.古典概型的概率公式:如果一次试验中可能出现的结果有个,而且所有结果都是等可能的,如果事件包含个结果,那么事件的概率P=
特别提醒:古典概型的两个共同特点:
○1,即试中有可能出现的基本事件只有有限个,即样本空间Ω中的元素个数是有限的;
○2,即每个基本事件出现的可能性相等。
4.几何概型的概率公式:P(A)=
特别提醒:几何概型的特点:试验的结果是无限不可数的;○2每个结果出现的可能性相等。
二、夯实基础
(1)某单位有职工160名,其中业务人员120名,管理人员16名,后勤人员24名.为了解职工的某种情况,要从中抽取一个容量为20的样本.若用分层抽样的方法,抽取的业务人员、管理人员、后勤人员的人数应分别为____________.
(2)某赛季,甲、乙两名篮球运动员都参加了
11场比赛,他们所有比赛得分的情况用如图2所示的茎叶图表示,
则甲、乙两名运动员得分的中位数分别为()
A.19、13B.13、19C.20、18D.18、20
(3)统计某校1000名学生的数学会考成绩,
得到样本频率分布直方图如右图示,规定不低于60分为
及格,不低于80分为优秀,则及格人数是;
优秀率为。
(4)在一次歌手大奖赛上,七位评委为歌手打出的分数如下:
9.48.49.49.99.69.49.7
去掉一个最高分和一个最低分后,所剩数据的平均值
和方差分别为()
A.9.4,0.484B.9.4,0.016C.9.5,0.04D.9.5,0.016
(5)将一颗骰子先后抛掷2次,观察向上的点数,则以第一次向上点数为横坐标x,第二次向上的点数为纵坐标y的点(x,y)在圆x2+y2=27的内部的概率________.
(6)在长为12cm的线段AB上任取一点M,并且以线段AM为边的正方形,则这正方形的面积介于36cm2与81cm2之间的概率为()
三、高考链接
07、某班50名学生在一次百米测试中,成绩全部介于13秒与19秒之间,将测试结果按如下方式分成六组:第一组,成绩大于等于13秒且小于14秒;第二组,成绩大于等于14秒且小于15秒
;第六组,成绩大于等于18秒且小于等于19秒.右图
是按上述分组方法得到的频率分布直方图.设成绩小于17秒
的学生人数占全班总人数的百分比为,成绩大于等于15秒
且小于17秒的学生人数为,则从频率分布直方图中可分析
出和分别为()
08、从某项综合能力测试中抽取100人的成绩,统计如表,则这100人成绩的标准差为()
分数54321
人数2010303010

09、在区间上随机取一个数x,的值介于0到之间的概率为().
08、现有8名奥运会志愿者,其中志愿者通晓日语,通晓俄语,通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.
(Ⅰ)求被选中的概率;(Ⅱ)求和不全被选中的概率.

2012届高三特长班数学复数总复习


古人云,工欲善其事,必先利其器。作为高中教师就要精心准备好合适的教案。教案可以让学生们有一个良好的课堂环境,帮助授课经验少的高中教师教学。那么一篇好的高中教案要怎么才能写好呢?小编收集并整理了“2012届高三特长班数学复数总复习”,供大家参考,希望能帮助到有需要的朋友。

高三特长班数学总复习——复数
一、知识梳理:
1、复数定义:,其中i满足。
2、复数a+bi(a,b∈R)与复平面内的点P一一对应,记向量是一一对应的.与虚轴上的点对应,与实轴上的点对应,复数对应的点到原点的距离叫做。
3、复数z=a+bi(a,b∈R)的共轭复数:
4、熟练记忆掌握运用以下结论:
(1)复数相等的充要条件:a+bi=c+di等价于。
(2)复数z=a+bi(a,b∈R)是实数的充要条件:,是纯虚数的充要条件:,是虚数的充要条件:,是零的充要条件:。
(3)复数z=a+bi(a,b∈R)的模记作。
5、复数运算:(1)复数加法:(a+bi)+(c+di)=
(2)复数减法:(a+bi)-(c+di)=
(3)乘法:(a+bi)(c+di)=
(a+bi)(a-bi)=(a+bi)2=(a-bi)2=
(4)除法:
牛刀小试:(6-5i)+(3+2i)(6-5i)-(3+2i)(6-5i)(3+2i)
二、高考链接
1、复数的实部是()A.-2B.2C.3D.4
2、设的共轭复数是,若,,则等于()
A.B.C.D.
3、复数等于()..
A.B.C.D.
4、已知(a,b∈R),其中i为虚数单位,则a+b=()
(A)-1(B)1(C)2(D)3
三、抢分演练:
1、下列n的取值中,使=1(i是虚数单位)的是()
A.n=2B.n=3C.n=4D.n=5
2、在复平面内,复数对应的点位于()
A.第一象限B.第二象限C.第三象限D.第四象限.
3.若i为虚数单位,图中复平面内点Z表示复数Z,则表示复数的点是()
A.EB.FC.GD.H
4、若复数为纯虚数,则实数的值为
A.B.C.D.或.
5、设(是虚数单位),则()
A.B.C.D.
6、i是虚数单位,i(1+i)等于()
A.1+iB.-1-iC.1-iD.-1+i
7、复数()
A.2B.-2C.D.
8、已知复数,那么=()
(A)(B)(C)(D)
9、是虚数单位,()
A、B、C、D、
10、已知是实数,是纯虚数,则=()
(A)1(B)-1(C)(D)-

11、i是虚数单位,若,则乘积的值是()()
(A)-15(B)-3(C)3(D)15
12、复数的实部是。
13、若复数z满足z(1+i)=1-i(I是虚数单位),则其共轭复数=__________________.