88教案网

你的位置: 教案 > 高中教案 > 导航 > 高考数学(理科)一轮复习双曲线学案含答案

高中生物一轮复习教案

发表时间:2020-12-01

高考数学(理科)一轮复习双曲线学案含答案。

一名优秀的教师在教学时都会提前最好准备,作为教师就要精心准备好合适的教案。教案可以让学生能够在教学期间跟着互动起来,让教师能够快速的解决各种教学问题。那么如何写好我们的教案呢?以下是小编为大家收集的“高考数学(理科)一轮复习双曲线学案含答案”欢迎您参考,希望对您有所助益!

学案52双曲线

导学目标:1.了解双曲线的定义、几何图形和标准方程,知道它们的简单几何性质.2.理解数形结合的思想.
自主梳理
1.双曲线的概念
平面内动点P与两个定点F1、F2(|F1F2|=2c0)的距离之差的绝对值为常数2a(2a2c),则点P的轨迹叫________.这两个定点叫双曲线的________,两焦点间的距离叫________.
集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a、c为常数且a0,c0;
(1)当________时,P点的轨迹是________;
(2)当________时,P点的轨迹是________;
(3)当________时,P点不存在.
2.双曲线的标准方程和几何性质
标准方程x2a2-y2b2=1(a0,b0)
y2a2-x2b2=1(a0,b0)

图形

性质范围x≥a或x≤-a,y∈Rx∈R,y≤-a或y≥a
对称性对称轴:坐标轴
对称中心:原点对称轴:坐标轴
对称中心:原点
顶点顶点坐标:
A1(-a,0),A2(a,0)顶点坐标:
A1(0,-a),A2(0,a)
渐近线y=±bax
y=±abx

离心率e=ca,e∈(1,+∞),其中c=a2+b2

实虚轴线段A1A2叫做双曲线的实轴,它的长|A1A2|=2a;线段B1B2叫做双曲线的虚轴,它的长|B1B2|=2b;a叫做双曲线的实半轴长,b叫做双曲线的虚半轴长
a、b、c的关系c2=a2+b2(ca0,cb0)
3.实轴长和虚轴长相等的双曲线为________________,其渐近线方程为________,离心率为________.
自我检测
1.(2011安徽)双曲线2x2-y2=8的实轴长是()
A.2B.22
C.4D.42
2.已知双曲线x22-y2b2=1(b0)的左、右焦点分别为F1、F2,其中一条渐近线方程为y=x,点P(3,y0)在该双曲线上,则PF1→PF2→等于()
A.-12B.-2
C.0D.4
3.(2011课标全国)设直线l过双曲线C的一个焦点,且与C的一条对称轴垂直,l与C交于A,B两点,|AB|为C的实轴长的2倍,则C的离心率为()
A.2B.3
C.2D.3
4.(2011武汉调研)已知点(m,n)在双曲线8x2-3y2=24上,则2m+4的范围是__________________.
5.已知A(1,4),F是双曲线x24-y212=1的左焦点,P是双曲线右支上的动点,求|PF|+|PA|的最小值.
探究点一双曲线的定义及应用
例1已知定点A(0,7),B(0,-7),C(12,2),以C为一个焦点作过A,B的椭圆,求另一焦点F的轨迹方程.

变式迁移1已知动圆M与圆C1:(x+4)2+y2=2外切,与圆C2:(x-4)2+y2=2内切,求动圆圆心M的轨迹方程.
探究点二求双曲线的标准方程
例2已知双曲线的一条渐近线方程是x-2y=0,且过点P(4,3),求双曲线的标准方程.

变式迁移2(2011安庆模拟)已知双曲线与椭圆x29+y225=1的焦点相同,且它们的离心率之和等于145,则双曲线的方程为____________.
探究点三双曲线几何性质的应用
例3已知双曲线的方程是16x2-9y2=144.
(1)求此双曲线的焦点坐标、离心率和渐近线方程;
(2)设F1和F2是双曲线的左、右焦点,点P在双曲线上,且|PF1||PF2|=32,求∠F1PF2的大小.

变式迁移3已知双曲线C:x22-y2=1.
(1)求双曲线C的渐近线方程;
(2)已知M点坐标为(0,1),设P是双曲线C上的点,Q是点P关于原点的对称点.记λ=MP→MQ→,求λ的取值范围.
方程思想的应用
例(12分)过双曲线x23-y26=1的右焦点F2且倾斜角为30°的直线交双曲线于A、B两点,O为坐标原点,F1为左焦点.
(1)求|AB|;
(2)求△AOB的面积;
(3)求证:|AF2|+|BF2|=|AF1|+|BF1|.
多角度审题(1)要求弦长|AB|需要A、B两点坐标或设而不求利用弦长公式,这就需要先求直线AB;(2)在(1)的基础上只要求点到直线的距离;(3)要充分联想到A、B两点在双曲线上这个条件.
【答题模板】
(1)解由双曲线的方程得a=3,b=6,
∴c=a2+b2=3,F1(-3,0),F2(3,0).
直线AB的方程为y=33(x-3).设A(x1,y1),B(x2,y2),
由y=33x-3x23-y26=1,得5x2+6x-27=0.[2分]
∴x1+x2=-65,x1x2=-275,
∴|AB|=1+k2|x1-x2|=1+332x1+x22-4x1x2=433625+1085=1635.[4分]
(2)解直线AB的方程变形为3x-3y-33=0.
∴原点O到直线AB的距离为d=|-33|32+-32=32.[6分]
∴S△AOB=12|AB|d=12×1635×32=1235.[8分]
(3)证明
如图,由双曲线的定义得
|AF2|-|AF1|=23,
|BF1|-|BF2|=23,[10分]
∴|AF2|-|AF1|=|BF1|-|BF2|,
即|AF2|+|BF2|=|AF1|+|BF1|.[12分]
【突破思维障碍】
写出直线方程,联立直线方程、双曲线方程,消元得关于x的一元二次方程,利用弦长公式求|AB|,再求点O到直线AB的距离从而求面积,最后利用双曲线的定义求证等式成立.
【易错点剖析】
在直线和双曲线相交的情况下解题时易忽视消元后的一元二次方程的判别式Δ0,而导致错解.
1.区分双曲线中的a,b,c大小关系与椭圆中a,b,c的大小关系,在椭圆中a2=b2+c2,而在双曲线中c2=a2+b2;双曲线的离心率大于1,而椭圆的离心率e∈(0,1).
2.双曲线x2a2-y2b2=1(a0,b0)的渐近线方程是y=±bax,y2a2-x2b2=1(a0,b0)的渐近线方程是y=±abx.
3.双曲线标准方程的求法:(1)定义法,根据题目的条件,判断是否满足双曲线的定义,若满足,求出相应的a、b、c,即可求得方程.(2)待定系数法,其步骤是:①定位:确定双曲线的焦点在哪个坐标轴上;②设方程:根据焦点的位置设出相应的双曲线方程;③定值:根据题目条件确定相关的系数.
(满分:75分)

一、选择题(每小题5分,共25分)
1.已知M(-2,0)、N(2,0),|PM|-|PN|=3,则动点P的轨迹是()
A.双曲线B.双曲线左边一支
C.双曲线右边一支D.一条射线
2.设点P在双曲线x29-y216=1上,若F1、F2为双曲线的两个焦点,且|PF1|∶|PF2|=1∶3,则△F1PF2的周长等于()
A.22B.16C.14D.12
3.(2011宁波高三调研)过双曲线x2a2-y2b2=1(a0,b0)的右焦点F作圆x2+y2=a2的切线FM(切点为M),交y轴于点P.若M为线段FP的中点,则双曲线的离心率为()
A.2B.3C.2D.5
4.双曲线x2a2-y2b2=1的左焦点为F1,左、右顶点分别为A1、A2,P是双曲线右支上的一点,则分别以PF1和A1A2为直径的两圆的位置关系是()
A.相交B.相离C.相切D.内含
5.(2011山东)已知双曲线x2a2-y2b2=1(a0,b0)的两条渐近线均和圆C:x2+y2-6x+5=0相切,且双曲线的右焦点为圆C的圆心,则该双曲线的方程为()
A.x25-y24=1B.x24-y25=1
C.x23-y26=1D.x26-y23=1
二、填空题(每小题4分,共12分)
6.(2011上海)设m是常数,若点F(0,5)是双曲线y2m-x29=1的一个焦点,则m=________.
7.设圆过双曲线x29-y216=1的一个顶点和一个焦点,圆心在此双曲线上,则此圆心到双曲线中心的距离为______.
8.(2011铜陵期末)已知以双曲线C的两个焦点及虚轴的两个端点为顶点的四边形中,有一个内角为60°,则双曲线C的离心率为________.
三、解答题(共38分)
9.(12分)根据下列条件,求双曲线方程:
(1)与双曲线x29-y216=1有共同的渐近线,且经过点(-3,23);
(2)与双曲线x216-y24=1有公共焦点,且过点(32,2).

10.(12分)(2011广东)设圆C与两圆(x+5)2+y2=4,(x-5)2+y2=4中的一个内切,另一个外切.
(1)求圆C的圆心轨迹L的方程;
(2)已知点M(355,455),F(5,0),且P为L上动点,求||MP|-|FP||的最大值及此时点P的坐标.wWW.JAB88.CoM

11.(14分)(2010四川)已知定点A(-1,0),F(2,0),定直线l:x=12,不在x轴上的动点P与点F的距离是它到直线l的距离的2倍.设点P的轨迹为E,过点F的直线交E于B、C两点,直线AB、AC分别交l于点M、N.
(1)求E的方程;
(2)试判断以线段MN为直径的圆是否过点F,并说明理由.

学案52双曲线
自主梳理
1.双曲线焦点焦距(1)ac双曲线(2)a=c两条射线(3)ac3.等轴双曲线y=±xe=2
自我检测
1.C[∵2x2-y2=8,∴x24-y28=1,
∴a=2,∴2a=4.]
2.C
3.B[设双曲线的标准方程为x2a2-y2b2=1(a0,b0),由于直线l过双曲线的焦点且与对称轴垂直,因此直线l的方程为l:x=c或x=-c,代入x2a2-y2b2=1得y2=b2(c2a2-1)=b4a2,∴y=±b2a,故|AB|=2b2a,依题意2b2a=4a,
∴b2a2=2,∴c2-a2a2=e2-1=2,∴e=3.]
4.(-∞,4-23]∪[4+23,+∞)
5.解设双曲线的右焦点为F1,则由双曲线的定义可知
|PF|=2a+|PF1|=4+|PF1|,
∴|PF|+|PA|=4+|PF1|+|PA|.
∴当满足|PF1|+|PA|最小时,|PF|+|PA|最小.
由双曲线的图象可知当点A、P、F1共线时,满足|PF1|+|PA|最小,易求得最小值为|AF1|=5,
故所求最小值为9.
课堂活动区
例1解题导引求曲线的轨迹方程时,应尽量地利用几何条件探求轨迹的曲线类型,从而再用待定系数法求出轨迹的方程,这样可以减少运算量,提高解题速度与质量.在运用双曲线的定义时,应特别注意定义中的条件“差的绝对值”,弄清所求轨迹是整条双曲线,还是双曲线的一支,若是一支,是哪一支,以确保轨迹的纯粹性和完备性.
解设F(x,y)为轨迹上的任意一点,
因为A,B两点在以C,F为焦点的椭圆上,
所以|FA|+|CA|=2a,|FB|+|CB|=2a
(其中a表示椭圆的长半轴).
所以|FA|+|CA|=|FB|+|CB|.
所以|FA|-|FB|=|CB|-|CA|=122+92-122+52=2.
所以|FA|-|FB|=2.
由双曲线的定义知,F点在以A,B为焦点,2为实轴长的双曲线的下半支上.
所以点F的轨迹方程是y2-x248=1(y≤-1).
变式迁移1解
设动圆M的半径为r,则由已知得,|MC1|=r+2,
|MC2|=r-2,
∴|MC1|-|MC2|=22,
又C1(-4,0),C2(4,0),
∴|C1C2|=8.∴22|C1C2|.
根据双曲线定义知,点M的轨迹是以
C1(-4,0)、C2(4,0)为焦点的双曲线的右支.
∵a=2,c=4,∴b2=c2-a2=14.
∴点M的轨迹方程是x22-y214=1(x≥2).
例2解题导引根据双曲线的某些几何性质求双曲线方程,一般用待定系数法转化为解方程(组),但要注意焦点的位置,从而正确选取方程的形式,当焦点不能定位时,则应分两种情况讨论.解决本题的方法有两种:一先定位,避免了讨论;二利用其渐近线的双曲线系,同样避免了对双曲线方程类型的讨论.在共渐近线的双曲线系x2a2-y2b2=λ(参数λ≠0)中,当λ0时,焦点在x轴上;当λ0时,焦点在y轴上.
解方法一∵双曲线的一条渐近线方程为x-2y=0,
当x=4时,y=2yp=3,
∴双曲线的焦点在y轴上.
从而有ab=12,∴b=2a.
设双曲线方程为y2a2-x24a2=1,
由于点P(4,3)在此双曲线上,
∴9a2-164a2=1,解得a2=5.
∴双曲线方程为y25-x220=1.
方法二∵双曲线的一条渐近线方程为x-2y=0,
即x2-y=0,
∴双曲线的渐近线方程为x24-y2=0.
设双曲线方程为x24-y2=λ(λ≠0),
∵双曲线过点P(4,3),∴424-32=λ,即λ=-5.
∴所求双曲线方程为x24-y2=-5,即y25-x220=1.
变式迁移2y24-x212=1
解析由于在椭圆x29+y225=1中,a2=25,b2=9,所以c2=16,c=4,又椭圆的焦点在y轴上,所以其焦点坐标为(0,±4),离心率e=45.根据题意知,双曲线的焦点也应在y轴上,坐标为(0,±4),且其离心率等于145-45=2.故设双曲线的方程为y2a2-x2b2=1(a0,b0),且c=4,所以a=12c=2,a2=4,b2=c2-a2=12,于是双曲线的方程为y24-x212=1.
例3解题导引双曲线问题与椭圆问题类似,因而研究方法也有许多相似之处,如利用“定义”“方程观点”“直接法或待定系数法求曲线方程”“数形结合”等.
解(1)由16x2-9y2=144,得x29-y216=1,
∴a=3,b=4,c=5.焦点坐标F1(-5,0),
F2(5,0),离心率e=53,
渐近线方程为y=±43x.
(2)||PF1|-|PF2||=6,
cos∠F1PF2=|PF1|2+|PF2|2-|F1F2|22|PF1||PF2|
=|PF1|-|PF2|2+2|PF1||PF2|-|F1F2|22|PF1||PF2|
=36+64-10064=0,
∴∠F1PF2=90°.
变式迁移3解(1)因为a=2,b=1,且焦点在x轴上,所以渐近线方程为y-22x=0,y+22x=0.
(2)设P点坐标为(x0,y0),则Q的坐标为(-x0,-y0),
λ=MP→MQ→=(x0,y0-1)(-x0,-y0-1)
=-x20-y20+1=-32x20+2.
∵|x0|≥2,∴λ的取值范围是(-∞,-1].
课后练习区
1.C2.A3.A4.C
5.A[∵双曲线x2a2-y2b2=1的渐近线方程为y=±bax,
圆C的标准方程为(x-3)2+y2=4,∴圆心为C(3,0).
又渐近线方程与圆C相切,
即直线bx-ay=0与圆C相切,
∴3ba2+b2=2,∴5b2=4a2.①
又∵x2a2-y2b2=1的右焦点F2(a2+b2,0)为圆心C(3,0),
∴a2+b2=9.②
由①②得a2=5,b2=4.
∴双曲线的标准方程为x25-y24=1.]
6.16
解析由已知条件有52=m+9,所以m=16.
7.1638.62
9.解(1)方法一由题意可知所求双曲线的焦点在x轴上,
(2分)
设双曲线的方程为x2a2-y2b2=1,
由题意,得ba=43,-32a2-232b2=1,
解得a2=94,b2=4.(4分)
所以双曲线的方程为49x2-y24=1.(6分)
方法二设所求双曲线方程x29-y216=λ(λ≠0),(2分)
将点(-3,23)代入得λ=14,(4分)
所以双曲线方程为x29-y216=14,
即49x2-y24=1.(6分)
(2)设双曲线方程为x2a2-y2b2=1.由题意c=25.(8分)
又双曲线过点(32,2),∴322a2-4b2=1.
又∵a2+b2=(25)2,
∴a2=12,b2=8.(10分)
故所求双曲线的方程为x212-y28=1.(12分)
10.解(1)设圆C的圆心坐标为(x,y),半径为r.
圆(x+5)2+y2=4的圆心为F1(-5,0),半径为2,
圆(x-5)2+y2=4的圆心为F(5,0),半径为2.
由题意得|CF1|=r+2,|CF|=r-2或|CF1|=r-2,|CF|=r+2,
∴||CF1|-|CF||=4.(4分)
∵|F1F|=254.
∴圆C的圆心轨迹是以F1(-5,0),F(5,0)为焦点的双曲线,其方程为x24-y2=1.(6分)
(2)由图知,||MP|-|FP||≤|MF|,
∴当M,P,F三点共线,且点P在MF延长线上时,|MP|-|FP|取得最大值|MF|,(8分)
且|MF|=355-52+455-02=2.(9分)
直线MF的方程为y=-2x+25,与双曲线方程联立得
y=-2x+25,x24-y2=1,整理得15x2-325x+84=0.
解得x1=14515(舍去),x2=655.
此时y=-255.(11分)
∴当||MP|-|FP||取得最大值2时,点P的坐标为(655,-255).(12分)
11.解(1)设P(x,y),
则x-22+y2=2x-12,
化简得x2-y23=1(y≠0).(5分)
(2)①当直线BC与x轴不垂直时,设BC的方程为y=k(x-2)(k≠0),与双曲线方程x2-y23=1联立消去y,
得(3-k2)x2+4k2x-(4k2+3)=0.
由题意知,3-k2≠0且Δ>0.(7分)
设B(x1,y1),C(x2,y2),
则x1+x2=4k2k2-3,x1x2=4k2+3k2-3,
y1y2=k2(x1-2)(x2-2)=k2x1x2-2x1+x2+4
=k24k2+3k2-3-8k2k2-3+4=-9k2k2-3.
因为x1,x2≠-1,
所以直线AB的方程为y=y1x1+1(x+1).
因此M点的坐标为12,3y12x1+1,
FM→=-32,3y12x1+1.
同理可得FN→=-32,3y22x2+1.
因此FM→FN→=-32×-32+9y1y24x1+1x2+1
=94+-81k2k2-344k2+3k2-3+4k2k2-3+1=0.(11分)
②当直线BC与x轴垂直时,其方程为x=2,则B(2,3),C(2,-3).
AB的方程为y=x+1,
因此M点的坐标为12,32,FM→=-32,32.
同理可得FN→=-32,-32.
因此FM→FN→=-32×-32+32×-32=0.(13分)
综上,FM→FN→=0,故FM⊥FN.
故以线段MN为直径的圆过点F.(14分)

延伸阅读

高考数学(理科)一轮复习幂函数学案含答案


学案9幂函数
导学目标:1.了解幂函数的概念.2.结合函数y=x,y=x2,y=x3,y=1x,y=x12的图象,了解它们的变化情况.
自主梳理
1.幂函数的概念
形如______的函数叫做幂函数,其中____是自变量,____是常数.
2.幂函数的性质
(1)五种常见幂函数的性质,列表如下:
定义域值域奇偶性单调性过定点
y=xRR奇?↗(1,1)
y=x2R[0,+∞)偶[0,+∞)↗
(-∞,0]↙
y=x3RR奇?↗
y=
[0,+∞)[0,+∞)非奇
非偶[0,+∞)↗
y=x-1(-∞,0)
∪(0,+∞)(-∞,0)
∪(0,+∞)奇(-∞,0)↙
(0,+∞)↙
(2)所有幂函数在________上都有定义,并且图象都过点(1,1),且在第____象限无图象.
(3)α0时,幂函数的图象通过点________________,并且在区间(0,+∞)上是________,α0时,幂函数在(0,+∞)上是减函数,图象________原点.
自我检测
1.(2011石家庄月考)如图中曲线是幂函数y=xn在第一象限的图象.已知n取±2,±12四个值,则相应于曲线C1,C2,C3,C4的n值依次为()
A.-2,-12,12,2
B.2,12,-12,-2
C.-12,-2,2,12
D.2,12,-2,-12
2.已知函数:①y=2x;②y=log2x;③y=x-1;④y=.则下列函数图象(在第一象限部分)从左到右依次与函数序号的正确对应顺序是()

A.②①③④B.②③①④
C.④①③②D.④③①②
3.(2011沧州模拟)设α∈{-1,1,12,3},则使函数y=xα的定义域为R且为奇函数的所有α值为()
A.1,3B.-1,1C.-1,3D.-1,1,3
4.与函数y=xx+1的图象形状一样的是()
A.y=2xB.y=log2xC.y=1xD.y=x+1
5.已知点(33,33)在幂函数f(x)的图象上,则f(x)的表达式是()
A.f(x)=x3B.f(x)=x-3
C.f(x)=D.f(x)=
探究点一幂函数的定义与图象
例1已知幂函数f(x)的图象过点(2,2),幂函数g(x)的图象过点(2,14).
(1)求f(x),g(x)的解析式;
(2)求当x为何值时:①f(x)g(x);②f(x)=g(x);③f(x)g(x).

变式迁移1若点(2,2)在幂函数f(x)的图象上,点(-2,14)在幂函数g(x)的图象上,定义h(x)=f(x),f(x)≤g(x),g(x),f(x)g(x),
试求函数h(x)的最大值以及单调区间.

探究点二幂函数的单调性
例2比较下列各题中值的大小.
(1),;(2),;
(3),;(4),和.

变式迁移2(1)比较下列各组值的大小:
①________;
②0.20.5________0.40.3.
(2)已知(0.71.3)m(1.30.7)m,则m的取值范围是__________________________.
探究点三幂函数的综合应用
例3(2011葫芦岛模拟)已知函数f(x)=(m∈N*)的图象关于y轴对称,且在(0,+∞)上是减函数,求满足的a的范围.

变式迁移3已知幂函数f(x)=(m∈N*)
(1)试确定该函数的定义域,并指明该函数在其定义域上的单调性;
(2)若该函数还经过点(2,2),试确定m的值,并求满足条件f(2-a)f(a-1)的实数a的取值范围.

1.幂函数y=xα(α∈R),其中α为常数,其本质特征是以幂的底x为自变量,指数α为常数,这是判断一个函数是否是幂函数的重要依据和唯一标准.
2.在(0,1)上,幂函数中指数越大,函数图象越靠近x轴(简记为“指大图低”),在(1,+∞)上,幂函数中指数越大,函数图象越远离x轴.幂函数的图象一定会出现在第一象限内,一定不会出现在第四象限内,至于是否出现在第二、三象限内,要看函数的奇偶性;幂函数的图象最多只能同时出现在两个象限内;如果幂函数的图象与坐标轴相交,则交点一定是原点.
(满分:75分)

一、选择题(每小题5分,共25分)
1.右图是函数y=(m,n∈N*,m、n互质)的图象,则()
A.m,n是奇数,且mn1
B.m是偶数,n是奇数,且mn1
C.m是偶数,n是奇数,且mn1
D.m是奇数,n是偶数,且mn1
2.(2010陕西)下列四类函数中,具有性质“对任意的x0,y0,函数f(x)满足f(x+y)=f(x)f(y)”的是()
A.幂函数B.对数函数
C.指数函数D.余弦函数
3.下列函数图象中,正确的是()
4.(2010安徽)设a=,b=,c=,则a,b,c的大小关系是()
A.acbB.abc
C.cabD.bca
5.下列命题中正确的是()
①幂函数的图象都经过点(1,1)和点(0,0);
②幂函数的图象不可能在第四象限;
③当n=0时,函数y=xn的图象是一条直线;
④幂函数y=xn当n0时是增函数;
⑤幂函数y=xn当n0时在第一象限内函数值随x值的增大而减小.
A.①和④B.④和⑤
C.②和③D.②和⑤
题号12345
答案
二、填空题(每小题4分,共12分)
6.(2011邯郸模拟)若幂函数y=的图象不经过原点,则实数m的值为________.
7.已知a=xα,b=,c=,x∈(0,1),α∈(0,1),则a,b,c的大小顺序是________.
8.已知函数f(x)=xα(0α1),对于下列命题:①若x1,则f(x)1;②若0x1,则0f(x)1;③当x0时,若f(x1)f(x2),则x1x2;④若0x1x2,则f(x1)x1f(x2)x2.
其中正确的命题序号是________.
三、解答题(共38分)
9.(12分)设f(x)是定义在R上以2为最小正周期的周期函数.当-1≤x1时,y=f(x)的表达式是幂函数,且经过点(12,18).求函数在[2k-1,2k+1)(k∈Z)上的表达式.

10.(12分)已知f(x)=(n=2k,k∈Z)的图象在[0,+∞)上单调递增,解不等式f(x2-x)f(x+3).

11.(14分)(2011荆州模拟)已知函数f(x)=(k∈Z)满足f(2)f(3).
(1)求k的值并求出相应的f(x)的解析式;
(2)对于(1)中得到的函数f(x),试判断是否存在q0,使函数g(x)=1-qf(x)+(2q-1)x在区间[-1,2]上的值域为[-4,178]?若存在,求出q;若不存在,请说明理由.

答案自主梳理
1.y=xαxα2.(2)(0,+∞)四(3)(0,0),(1,1)增函数不过
自我检测
1.B[方法一由幂函数的图象与性质,n0时不过原点,故C3,C4对应的n值均为负,C1,C2对应的n值均为正;
由增(减)快慢知n(C1)n(C2)n(C3)n(C4).
故C1,C2,C3,C4的n值依次为
2,12,-12,-2.
方法二作直线x=2分别交C1,C2,C3,C4于点A1,A2,A3,A4,则其对应点的纵坐标显然为22,,,2-2,故n值分别为2,12,-12,-2.]
2.D[第一个图象过点(0,0),与④对应;第二个图象为反比例函数图象,表达式为y=kx,③y=x-1恰好符合,
∴第二个图象对应③;
第三个图象为指数函数图象,表达式为y=ax,且a1,①y=2x恰好符合,∴第三个图象对应①;
第四个图象为对数函数图象,表达式为y=logax,且a1,②y=log2x恰好符合,∴第四个图象对应②.
∴四个函数图象与函数序号的对应顺序为④③①②.]
3.A4.C5.B
课堂活动区
例1解(1)设f(x)=xα,
∵图象过点(2,2),故2=(2)α,
解得α=2,∴f(x)=x2.
设g(x)=xβ,∵图象过点(2,14),
∴14=2β,解得β=-2.
∴g(x)=x-2.
(2)在同一坐标系下作出f(x)=x2与g(x)=x-2的图象,如图所示.

由图象可知,f(x),g(x)的图象均过点(-1,1)和(1,1).
∴①当x1,或x-1时,f(x)g(x);
②当x=1,或x=-1时,f(x)=g(x);
③当-1x1且x≠0时,f(x)g(x).
变式迁移1解求f(x),g(x)解析式及作出f(x),g(x)的图象同例1,
如例1图所示,
则有:h(x)=x-2,x-1或x1,x2,-1≤x≤1.
根据图象可知函数h(x)的最大值为1,单调增区间为(-∞,-1)和(0,1);单调减区间为(-1,0)和(1,+∞).
例2解题导引比较两个幂的大小关键是搞清楚是底数相同,还是指数相同,若底数相同,利用指数函数的性质;若指数相同,利用幂函数的性质;若底数、指数皆不相同,考虑用中间值法,常用0和1“搭桥”进行分组.
解(1)函数y=3x是增函数,∴30.830.7.
(2)函数y=x3是增函数,∴0.2130.233.
(3)∵,
∴.
(4)=1;0=1;
0,∴.
变式迁移2(1)①②
(2)m0
解析根据幂函数y=x1.3的图象,
当0x1时,0y1,∴00.71.31.
又根据幂函数y=x0.7的图象,
当x1时,y1,∴1.30.71.
于是有0.71.31.30.7.
对于幂函数y=xm,由(0.71.3)m(1.30.7)m知,当x0时,随着x的增大,函数值也增大,∴m0.
例3解∵函数f(x)在(0,+∞)上递减,
∴m2-2m-30,解得-1m3.
∵m∈N*,∴m=1,2.
又函数的图象关于y轴对称,
∴m2-2m-3是偶数,
而22-2×2-3=-3为奇数,
12-2×1-3=-4为偶数,
∴m=1.
而y=在(-∞,0),(0,+∞)上均为减函数,
∴等价于a+13-2a0,
或0a+13-2a,或a+103-2a,
解得a-1或23a32.
故a的范围为{a|a-1或23a32}.
变式迁移3解(1)m2+m=m(m+1),m∈N*,
而m与m+1中必有一个为偶数,
∴m(m+1)为偶数.
∴函数f(x)=(m∈N*)的定义域为[0,+∞),并且在定义域上为增函数.
(2)∵函数f(x)经过点(2,2),
∴2=,即.
∴m2+m=2.
解得m=1或m=-2.
又∵m∈N*,∴m=1.
由f(2-a)f(a-1)得2-a≥0,a-1≥02-aa-1.
解得1≤a32.
∴a的取值范围为[1,32).
课后练习区
1.C[由图象知,函数为偶函数,
∴m为偶数,n为奇数.
又函数图象在第一限内上凸,∴mn1.]
2.C[∵(x+y)α≠xαyα,
∴幂函数f(x)=xα不具有此性质.
∵loga(x+y)≠logaxlogay,
∴对数函数f(x)=logax不具有此性质.
∵ax+y=axay,∴指数函数f(x)=ax具有此性质.
∵cos(x+y)≠cosxcosy,
∴余弦函数y=cosx不具有此性质.]
3.C[对A、B,由y=x+a知a1,可知A、B图象不正确;
D中由y=x+a知0a1,∴y=logax应为减函数,D错.]
4.A[∵y=在x∈(0,+∞)递增,
∴,即ac,
∵y=(25)x在x∈(-∞,+∞)递减,
∴,即cb,
∴acb.]
5.D
6.1或2
解析由m2-3m+3=1m2-m-2≤0解得m=1或2.
经检验m=1或2都适合.
7.cab
解析∵α∈(0,1),∴1ααα2.
又∵x∈(0,1),∴xα,即cab.
8.①②③
解析作出y=xα(0α1)在第一象限内的图象,如图所示,
可判定①②③正确,
又fxx表示图象上的点与原点连线的斜率,
当0x1x2时应有fx1x1fx2x2,故④错.
9.解设在[-1,1)中,f(x)=xn,
由点(12,18)在函数图象上,求得n=3.……………………………………………………(4分)
令x∈[2k-1,2k+1),则x-2k∈[-1,1),
∴f(x-2k)=(x-2k)3.……………………………………………………………………(8分)
又f(x)周期为2,∴f(x)=f(x-2k)=(x-2k)3.
即f(x)=(x-2k)3(k∈Z).………………………………………………………………(12分)
10.解由条件知1-n2+2n+30,
-n2+2n+30,解得-1n3.…………………………………………………………(4分)
又n=2k,k∈Z,∴n=0,2.
当n=0,2时,f(x)=x13,
∴f(x)在R上单调递增.…………………………………………………………………(8分)
∴f(x2-x)f(x+3)转化为x2-xx+3.
解得x-1或x3.
∴原不等式的解集为(-∞,-1)∪(3,+∞).………………………………………(12分)
11.解(1)∵f(2)f(3),
∴f(x)在第一象限是增函数.
故-k2+k+20,解得-1k2.
又∵k∈Z,∴k=0或k=1.
当k=0或k=1时,-k2+k+2=2,
∴f(x)=x2.…………………………………………………………………………………(6分)
(2)假设存在q0满足题设,由(1)知
g(x)=-qx2+(2q-1)x+1,x∈[-1,2].
∵g(2)=-1,∴两个最值点只能在端点(-1,g(-1))和顶点(2q-12q,4q2+14q)处取得.
……………………………………………………………………………………………(8分)
而4q2+14q-g(-1)=4q2+14q-(2-3q)=4q-124q≥0,
∴g(x)max=4q2+14q=178,…………………………………………………………………(12分)
g(x)min=g(-1)=2-3q=-4.
解得q=2.∴存在q=2满足题意.……………………………………………………(14分)

高考数学(理科)一轮复习空间的垂直关系学案含答案


古人云,工欲善其事,必先利其器。作为高中教师就要早早地准备好适合的教案课件。教案可以让学生能够在教学期间跟着互动起来,让高中教师能够快速的解决各种教学问题。那么一篇好的高中教案要怎么才能写好呢?以下是小编为大家收集的“高考数学(理科)一轮复习空间的垂直关系学案含答案”希望对您的工作和生活有所帮助。

学案44空间的垂直关系

导学目标:1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面垂直的有关性质与判定定理.2.能运用公理、定理和已获得的结论证明一些空间图形的垂直关系的简单命题.
自主梳理
1.直线与平面垂直
(1)判定直线和平面垂直的方法
①定义法.
②利用判定定理:一条直线和一个平面内的两条______直线都垂直,则该直线与此平面垂直.
③推论:如果在两条平行直线中,有一条垂直于一个平面,那么另一条直线也______这个平面.
(2)直线和平面垂直的性质
①直线垂直于平面,则垂直于平面内______直线.
②垂直于同一个平面的两条直线______.
③垂直于同一直线的两个平面________.
2.直线与平面所成的角
平面的一条斜线和它在平面内的________所成的锐角,叫做这条直线和这个平面所成的角.
一直线垂直于平面,说它们所成角为________;直线l∥α或lα,则它们成________角.
3.平面与平面垂直
(1)平面与平面垂直的判定方法
①定义法.
②利用判定定理:一个平面过另一个平面的__________,则这两个平面垂直.
(2)平面与平面垂直的性质
两个平面垂直,则一个平面内垂直于________的直线与另一个平面垂直.
4.二面角的平面角
以二面角棱上的任一点为端点,在两个半平面内分别作与棱________的射线,则两射线所成的角叫做二面角的平面角.
自我检测
1.平面α⊥平面β的一个充分条件是()
A.存在一条直线l,l⊥α,l⊥β
B.存在一个平面γ,γ∥α,γ∥β
C.存在一个平面γ,γ⊥α,γ⊥β
D.存在一条直线l,l⊥α,l∥β
2.(2010浙江)设l,m是两条不同的直线,α是一个平面,则下列命题正确的是()
A.若l⊥m,mα,则l⊥α
B.若l⊥α,l∥m,则m⊥α
C.若l∥α,mα,则l∥m
D.若l∥α,m∥α,则l∥m
3.(2011长沙模拟)对于不重合的两个平面α与β,给定下列条件:
①存在平面γ,使得α,β都垂直于γ;
②存在平面γ,使得α,β都平行于γ;
③存在直线lα,直线mβ,使得l∥m;
④存在异面直线l、m,使得l∥α,l∥β,m∥α,m∥β.
其中,可以判定α与β平行的条件有()
A.1个B.2个
C.3个D.4个
4.(2011十堰月考)已知m,n是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的是()
A.若m∥α,n∥α,则m∥n
B.若α⊥γ,β⊥γ,则α∥β
C.若m∥α,m∥β,则α∥β
D.若m⊥α,n⊥α,则m∥n
5.(2011大纲全国)已知点E、F分别在正方体ABCD-A1B1C1D1的棱BB1、CC1上,且B1E=2EB,CF=2FC1,则面AEF与面ABC所成的二面角的正切值为________.
探究点一线面垂直的判定与性质
例1Rt△ABC所在平面外一点S,且SA=SB=SC,D为斜边AC的中点.
(1)求证:SD⊥平面ABC;

(2)若AB=BC.求证:BD⊥平面SAC.

变式迁移1
在四棱锥V—ABCD中,底面ABCD是正方形,侧面VAD是正三角形,平面VAD⊥底面ABCD.证明:AB⊥VD.

探究点二面面垂直的判定与性质

例2(2011邯郸月考)如图所示,已知四棱柱ABCD—A1B1C1D1的底面为正方形,O1、O分别为上、下底面的中心,且A1在底面ABCD内的射影是O.求证:平面O1DC⊥平面ABCD.
变式迁移2(2011江苏)如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E,F分别是AP,AD的中点.
求证:(1)直线EF∥平面PCD;
(2)平面BEF⊥平面PAD.

探究点三直线与平面,平面与平面所成的角
例3(2009湖北)如图,四棱锥S—ABCD的底面是正方形,SD⊥平面ABCD,SD=2a,AD=2a,点E是SD上的点,且DE=λa(0λ≤2).
(1)求证:对任意的λ∈(0,2],都有AC⊥BE;
(2)设二面角C—AE—D的大小为θ,直线BE与平面ABCD所成的角为φ,若tanθtanφ=1,求λ的值.

变式迁移3(2009北京)如图,在三棱锥P—ABC中,PA⊥底面ABC,PA=AB,∠ABC=60°,∠BCA=90°,点D、E分别在棱PB、PC上,且DE∥BC.
(1)求证:BC⊥平面PAC.
(2)当D为PB的中点时,求AD与平面PAC所成角的正弦值.
(3)是否存在点E使得二面角A—DE—P为直二面角?并说明理由.
转化与化归思想综合应用
例(12分)已知四棱锥P—ABCD,底面ABCD是∠A=60°的
菱形,又PD⊥底面ABCD,点M、N分别是棱AD、PC的中点.
(1)证明:DN∥平面PMB;
(2)证明:平面PMB⊥平面PAD.
多角度审题(1)在平面PMB内找到(或构造)一条直线与DN平行即可;(2)要证面PMB⊥面PAD,只需证明MB⊥面PAD即可.
【答题模板】
证明(1)
取PB中点Q,连接MQ、NQ,因为M、N分别是棱AD、PC的中点,所以QN∥BC∥MD,且QN=MD,故四边形QNDM是平行四边形,
于是DN∥MQ.
又∵MQ平面PMB,DN平面PMB
∴DN∥平面PMB.[6分]
(2)∵PD⊥平面ABCD,MB平面ABCD,∴PD⊥MB.
又因为底面ABCD是∠A=60°的菱形,且M为AD中点,
所以MB⊥AD.又AD∩PD=D,所以MB⊥平面PAD.
又∵MB平面PMB,∴平面PMB⊥平面PAD.[12分]
【突破思维障碍】
立体几何的证明问题充分体现线面关系的转化思想,其思路为:
1.证明线面垂直的方法:(1)线面垂直的定义:a与α内任何直线都垂直a⊥α;(2)判定定理1:m、nα,m∩n=Al⊥m,l⊥nl⊥α;(3)判定定理2:a∥b,a⊥αb⊥α;(4)面面平行的性质:α∥β,a⊥αa⊥β;(5)面面垂直的性质:α⊥β,α∩β=l,aα,a⊥la⊥β.
2.证明线线垂直的方法:(1)定义:两条直线的夹角为90°;(2)平面几何中证明线线垂直的方法;(3)线面垂直的性质:a⊥α,bαa⊥b;(4)线面垂直的性质:a⊥α,b∥αa⊥b.
3.证明面面垂直的方法:(1)利用定义:两个平面相交,所成的二面角是直二面角;(2)判定定理:aα,a⊥βα⊥β.
(满分:75分)

一、选择题(每小题5分,共25分)
1.(2011滨州月考)已知直线a,b和平面α,β,且a⊥α,b⊥β,那么α⊥β是a⊥b的()
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件
2.已知两个不同的平面α、β和两条不重合的直线m、n,有下列四个命题:
①若m∥n,m⊥α,则n⊥α;②若m⊥α,m⊥β,则α∥β;③若m⊥α,m∥n,nβ,则α⊥β;④若m∥α,α∩β=n,则m∥n.
其中正确命题的个数是()
A.0B.1C.2D.3
3.设α,β,γ是三个不重合的平面,l是直线,给出下列四个命题:
①若α⊥β,l⊥β,则l∥α;②若l⊥α,l∥β,则α⊥β;
③若l上有两点到α的距离相等,则l∥α;④若α⊥β,α∥γ,则γ⊥β.
其中正确命题的序号是()
A.①②B.①④C.②④D.③④
4.(2011浙江)下列命题中错误的是()
A.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面β
B.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β
C.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γ
D.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β
5.平面α的斜线AB交α于点B,过定点A的动直线l与AB垂直,且交α于点C,则动点C的轨迹是()
A.一条直线B.一个圆
C.一个椭圆D.双曲线的一支
二、填空题(每小题4分,共12分)
6.如图所示,四棱锥P—ABCD的底面ABCD是边长为a的正方形,侧棱PA=a,PB=PD=2a,则它的5个面中,互相垂直的面有________对.
7.(2011金华模拟)如图所示,正方体ABCD—A1B1C1D1的棱长是1,过A点作平面A1BD的垂线,
垂足为点H,有下列三个命题:
①点H是△A1BD的中心;
②AH垂直于平面CB1D1;③AC1与B1C所成的角是90°.其中正确命题的序号是____________.
8.正四棱锥S-ABCD底面边长为2,高为2,E是边BC的中点,动点P在表面上运动,并且总保持PE⊥AC,则动点P的轨迹的周长为________.
三、解答题(共38分)
9.(12分)(2010山东)在如图所示的
几何体中,四边形ABCD是正方形,MA⊥平面ABCD,PD∥MA,E、G、F分别为MB、PB、PC的中点,且AD=PD=2MA.
(1)求证:平面EFG⊥平面PDC;
(2)求三棱锥P-MAB与四棱锥P-ABCD的体积之比.

10.(12分)(2009天津)如图,
在四棱锥P—ABCD中,PD⊥平面ABCD,AD⊥CD,DB平分∠ADC,E为PC的中点,AD=CD=1,DB=22.
(1)证明:PA∥平面BDE;
(2)证明:AC⊥平面PBD;
(3)求直线BC与平面PBD所成的角的正切值.
11.(14分)(2011杭州调研)如图所示,已知正方体ABCD-A1B1C1D1中,E为AB的中点.
(1)求直线B1C与DE所成角的余弦值;
(2)求证:平面EB1D⊥平面B1CD;
(3)求二面角E-B1C-D的余弦值.
学案44空间的垂直关系
自主梳理
1.(1)②相交③垂直(2)①任意②平行③平行
2.射影直角0°3.(1)②一条垂线(2)交线4.垂直
自我检测
1.D2.B3.B4.D5.23
课堂活动区
例1解题导引线面垂直的判断方法是:证明直线垂直平面内的两条相交直线.即从“线线垂直”到“线面垂直”.
证明
(1)取AB中点E,连接SE,DE,在Rt△ABC中,D、E分别为AC、AB的中点,
故DE∥BC,且DE⊥AB,
∵SA=SB,
∴△SAB为等腰三角形,∴SE⊥AB.
∵SE⊥AB,DE⊥AB,SE∩DE=E,
∴AB⊥面SDE.而SD面SDE,∴AB⊥SD.
在△SAC中,SA=SC,D为AC的中点,∴SD⊥AC.
∵SD⊥AC,SD⊥AB,AC∩AB=A,
∴SD⊥平面ABC.
(2)若AB=BC,则BD⊥AC,
由(1)可知,SD⊥面ABC,而BD面ABC,
∴SD⊥BD.
∵SD⊥BD,BD⊥AC,SD∩AC=D,
∴BD⊥平面SAC.
变式迁移1证明∵平面VAD⊥平面ABCD,
AB⊥AD,AB平面ABCD,
AD=平面VAD∩平面ABCD,
∴AB⊥平面VAD.
∵VD平面VAD,∴AB⊥VD.
例2解题导引证明面面垂直,可先证线面垂直,即设法先找到其中一个平面的一条垂线,再证明这条垂线在另一个平面内或与另一个平面内的一条直线平行.
证明如图所示,连接AC,BD,A1C1,则O为AC,BD的交点,O1为A1C1,B1D1的交点.
由棱柱的性质知:
A1O1∥OC,且A1O1=OC,
∴四边形A1OCO1为平行四边形,
∴A1O∥O1C,
又A1O⊥平面ABCD,∴O1C⊥平面ABCD,
又O1C平面O1DC,
∴平面O1DC⊥平面ABCD.
变式迁移2
证明(1)如图,在△PAD中,因为E,F分别为AP,AD的中点,所以EF∥PD.又因为EF平面PCD,PD平面PCD,
所以直线EF∥平面PCD.
(2)连接BD.因为AB=AD,∠BAD=60°,所以△ABD为正三角形.
因为F是AD的中点,所以BF⊥AD.
因为平面PAD⊥平面ABCD,BF平面ABCD,
平面PAD∩平面ABCD=AD,所以BF⊥平面PAD.
又因为BF平面BEF,所以平面BEF⊥平面PAD.
例3解题导引高考中对直线与平面所成的角及二面角的考查是热点之一.有时在客观题中考查,更多的是在解答题中考查.
求这两种空间角的步骤:(几何法).
根据线面角的定义或二面角的平面角的定义,作(找)出该角,再解三角形求出该角,步骤是作(找)→认(指)→求.
(1)证明如图所示,连接BD,由底面ABCD是正方形可得AC⊥BD.
∵SD⊥平面ABCD,∴BD是BE在平面ABCD上的射影,∴AC⊥BE.
(2)解如图所示,由SD⊥平面ABCD,CD平面ABCD,
∴SD⊥CD.
又底面ABCD是正方形,
∴CD⊥AD.又SD∩AD=D,
∴CD⊥平面SAD.
过点D在平面SAD内作DF⊥AE于F,连接CF,则CF⊥AE,故∠CFD是二面角C—AE—D的平面角,即∠CFD=θ.
在Rt△BDE中,∵BD=2a,DE=λa,
∴tanφ=DEBD=λ2.
在Rt△ADE中,∵AD=2a=CD,DE=λa,
∴AE=aλ2+2,
从而DF=ADDEAE=2λaλ2+2.
在Rt△CDF中,tanθ=CDDF=λ2+2λ,
由tanθtanφ=1,得
λ2+2λλ2=1λ2+2=2λ2=2.
由λ∈(0,2],解得λ=2,即为所求.
变式迁移3(1)证明∵PA⊥底面ABC,∴PA⊥BC.
又∠BCA=90°,∴AC⊥BC.又AC∩PA=A,
∴BC⊥平面PAC.
(2)解∵D为PB的中点,DE∥BC,∴DE=12BC.
又由(1)知,BC⊥平面PAC,
∴DE⊥平面PAC,垂足为点E.
∴∠DAE是AD与平面PAC所成的角.
∵PA⊥底面ABC,∴PA⊥AB.
又PA=AB,∴△ABP为等腰直角三角形.
∴AD=22AB.
在Rt△ABC中,∠ABC=60°,∴BC=12AB.
∴在Rt△ADE中,sin∠DAE=DEAD=BC2AD=24.
∴AD与平面PAC所成的角的正弦值为24.
(3)解∵DE∥BC,又由(1)知,BC⊥平面PAC,
∴DE⊥平面PAC.
又∵AE平面PAC,PE平面PAC,
∴DE⊥AE,DE⊥PE.
∴∠AEP为二面角A—DE—P的平面角.
∵PA⊥底面ABC,∴PA⊥AC,∴∠PAC=90°.
∴在棱PC上存在一点E,使得AE⊥PC.
这时,∠AEP=90°,
故存在点E使得二面角A—DE—P是直二面角.
课后练习区
1.C2.D3.C
4.D[两个平面α,β垂直时,设交线为l,则在平面α内与l平行的直线都平行于平面β,故A正确;如果平面α内存在直线垂直于平面β,那么由面面垂直的判定定理知α⊥β,故B正确;两个平面都与第三个平面垂直时,易证交线与第三个平面垂直,故C正确;两个平面α,β垂直时,平面α内与交线平行的直线与β平行,故D错误.]
5.A
6.5
解析面PAB⊥面PAD,
面PAB⊥面ABCD,面PAB⊥面PBC,
面PAD⊥面ABCD,面PAD⊥面PCD.
7.①②③
解析由于ABCD—A1B1C1D1是正方体,所以A—A1BD是一个正三棱锥,因此A点在平面A1BD上的射影H是三角形A1BD的中心,故①正确;又因为平面CB1D1与平面A1BD平行,所以AH⊥平面CB1D1,故②正确;从而可得AC1⊥平面CB1D1,即AC1与B1C垂直,所成的角等于90°.
8.6+2
解析如图取CD的中点F,SC的中点G,连接EF,GF,GE.
则AC⊥平面GEF,故动点P的轨迹是△EFG的三边.
又EF=12DB=2,
GE=GF=12SB=62,
∴EF+FG+GE=6+2.
9.(1)证明因为MA⊥平面ABCD,
PD∥MA,所以PD⊥平面ABCD.
又BC平面ABCD,所以PD⊥BC.(2分)
因为四边形ABCD为正方形,
所以BC⊥DC.
又PD∩DC=D,所以BC⊥平面PDC.(4分)
在△PBC中,因为G、F分别为PB、PC的中点,
所以GF∥BC,所以GF⊥平面PDC.又GF平面EFG,
所以平面EFG⊥平面PDC.(6分)
(2)解因为PD⊥平面ABCD,四边形ABCD为正方形,不妨设MA=1,
则PD=AD=2,
所以VP-ABCD=13S正方形ABCDPD=83.(8分)
由题意可知,DA⊥平面MAB,且PD∥MA,
所以DA即为点P到平面MAB的距离,
所以VP-MAB=13×12×1×2×2=23.(10分)
所以VP-MAB∶VP-ABCD=1∶4.(12分)
10.(1)证明
设AC∩BD=H,连接EH.在△ADC中,因为AD=CD,且DB平分∠ADC,所以H为AC的中点,又由题设,知E为PC的中点,故EH∥PA.又EH平面BDE,且PA平面BDE,
所以PA∥平面BDE.(4分)
(2)证明因为PD⊥平面ABCD,AC平面ABCD,所以PD⊥AC.由(Ⅰ)可得,DB⊥AC.又PD∩DB=D,
故AC⊥平面PBD.(8分)
(3)解由AC⊥平面PBD可知,BH为BC在平面PBD内的射影,所以∠CBH为直线BC与平面PBD所成的角.
由AD⊥CD,AD=CD=1,DB=22,可得DH=CH=22,BH=322.
在Rt△BHC中,tan∠CBH=CHBH=13.
所以直线BC与平面PBD所成的角的正切值为13.
(12分)
11.(1)解连接A1D,则由A1D∥B1C知,B1C与DE所成角即为A1D与DE所成角.(2分)
连接A1E,可设正方体ABCD-A1B1C1D1的棱长为a,
则A1D=2a,
A1E=DE=52a,
∴cos∠A1DE=
A1D2+DE2-A1E22A1DDE=105.
∴直线B1C与DE所成角的余弦值是105.(6分)
(2)证明取B1C的中点F,B1D的中点G,
连接BF,EG,GF.∵CD⊥平面BCC1B1,
且BF平面BCC1B1,∴CD⊥BF.
又∵BF⊥B1C,CD∩B1C=C,
∴BF⊥平面B1CD.(8分)
又∵GF綊12CD,BE綊12CD,
∴GF綊BE,∴四边形BFGE是平行四边形,
∴BF∥GE,∴GE⊥平面B1CD.
∵GE平面EB1D,
∴平面EB1D⊥B1CD.(10分)
(3)解连接EF.
∵CD⊥B1C,GF∥CD,∴GF⊥B1C.
又∵GE⊥平面B1CD,∴GE⊥B1C.
又∵GE∩GF=G,∴B1C⊥平面GEF,∴EF⊥B1C,
∴∠EFG是二面角E-B1C-D的平面角.(12分)
设正方体的棱长为a,则在△EFG中,
GF=12a,EF=32a,GE⊥GF,∴cos∠EFG=GFEF=33,
∴二面角E-B1C-D的余弦值为33.(14分)

高考数学(理科)一轮复习椭圆学案带答案


一名优秀的教师在教学方面无论做什么事都有计划和准备,作为高中教师就要精心准备好合适的教案。教案可以更好的帮助学生们打好基础,帮助高中教师能够更轻松的上课教学。那么一篇好的高中教案要怎么才能写好呢?以下是小编为大家精心整理的“高考数学(理科)一轮复习椭圆学案带答案”,但愿对您的学习工作带来帮助。

学案51椭圆

导学目标:1.了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用.2.掌握椭圆的定义,几何图形、标准方程及其简单几何性质.
自主梳理
1.椭圆的概念
在平面内与两个定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做________.这两定点叫做椭圆的________,两焦点间的距离叫________.
集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a0,c0,且a,c为常数:
(1)若________,则集合P为椭圆;
(2)若________,则集合P为线段;
(3)若________,则集合P为空集.
2.椭圆的标准方程和几何性质

标准方程x2a2+y2b2=1
(ab0)y2a2+x2b2=1
(ab0)
图形


质范围-a≤x≤a
-b≤y≤b-b≤x≤b
-a≤y≤a
对称性对称轴:坐标轴对称中心:原点
顶点A1(-a,0),A2(a,0)
B1(0,-b),B2(0,b)A1(0,-a),A2(0,a)
B1(-b,0),B2(b,0)
轴长轴A1A2的长为2a;短轴B1B2的长为2b
焦距|F1F2|=2c
离心率e=ca∈(0,1)

a,b,c
的关系c2=a2-b2

自我检测
1.已知△ABC的顶点B、C在椭圆x23+y2=1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ABC的周长是()
A.23B.6C.43D.12
2.(2011揭阳调研)“mn0”是方程“mx2+ny2=1表示焦点在y轴上的椭圆”的()
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件
3.已知椭圆x2sinα-y2cosα=1(0≤α2π)的焦点在y轴上,则α的取值范围是()
A.3π4,πB.π4,3π4
C.π2,πD.π2,3π4
4.椭圆x212+y23=1的焦点为F1和F2,点P在椭圆上,如果线段PF1的中点在y轴上,那么|PF1|是|PF2|的()
A.7倍B.5倍C.4倍D.3倍
5.(2011开封模拟)椭圆5x2+ky2=5的一个焦点是(0,2),那么k等于()
A.-1B.1C.5D.-5
探究点一椭圆的定义及应用
例1(教材改编)一动圆与已知圆O1:(x+3)2+y2=1外切,与圆O2:(x-3)2+y2=81内切,试求动圆圆心的轨迹方程.
变式迁移1求过点A(2,0)且与圆x2+4x+y2-32=0内切的圆的圆心的轨迹方程.
探究点二求椭圆的标准方程
例2求满足下列各条件的椭圆的标准方程:
(1)长轴是短轴的3倍且经过点A(3,0);
(2)经过两点A(0,2)和B12,3.

变式迁移2(1)已知椭圆过(3,0),离心率e=63,求椭圆的标准方程;
(2)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点P1(6,1)、P2(-3,-2),求椭圆的标准方程.

探究点三椭圆的几何性质
例3(2011安阳模拟)已知F1、F2是椭圆的两个焦点,P为椭圆上一点,∠F1PF2=60°.
(1)求椭圆离心率的范围;
(2)求证:△F1PF2的面积只与椭圆的短轴长有关.

变式迁移3已知椭圆x2a2+y2b2=1(ab0)的长、短轴端点分别为A、B,从此椭圆上一点M(在x轴上方)向x轴作垂线,恰好通过椭圆的左焦点F1,AB∥OM.
(1)求椭圆的离心率e;
(2)设Q是椭圆上任意一点,F1、F2分别是左、右焦点,求∠F1QF2的取值范围.
方程思想的应用
例(12分)(2011北京朝阳区模拟)已知中心在原点,焦点在x轴上的椭圆C的离心率为12,且经过点M(1,32),过点P(2,1)的直线l与椭圆C相交于不同的两点A,B.
(1)求椭圆C的方程;
(2)是否存在直线l,满足PA→PB→=PM→2?若存在,求出直线l的方程;若不存在,请说明理由.
【答题模板】
解(1)设椭圆C的方程为x2a2+y2b2=1(ab0),
由题意得1a2+94b2=1,ca=12,a2=b2+c2.解得a2=4,b2=3.故椭圆C的方程为x24+y23=1.[4分]
(2)若存在直线l满足条件,由题意可设直线l的方程为y=k(x-2)+1,由x24+y23=1,y=kx-2+1,
得(3+4k2)x2-8k(2k-1)x+16k2-16k-8=0.[6分]
因为直线l与椭圆C相交于不同的两点A,B,
设A,B两点的坐标分别为(x1,y1),(x2,y2),
所以Δ=[-8k(2k-1)]2-4(3+4k2)(16k2-16k-8)0.
整理得32(6k+3)0,解得k-12.[7分]
又x1+x2=8k2k-13+4k2,x1x2=16k2-16k-83+4k2,
且PA→PB→=PM→2,
即(x1-2)(x2-2)+(y1-1)(y2-1)=54,
所以(x1-2)(x2-2)(1+k2)=54,
即[x1x2-2(x1+x2)+4](1+k2)=54.[9分]
所以[16k2-16k-83+4k2-2×8k2k-13+4k2+4](1+k2)=4+4k23+4k2=54,
解得k=±12.[11分]
所以k=12.于是存在直线l满足条件,
其方程为y=12x.[12分]
【突破思维障碍】
直线与椭圆的位置关系主要是指公共点问题、相交弦问题及其他综合问题.反映在代数上,就是直线与椭圆方程联立的方程组有无实数解及实数解的个数的问题,它体现了方程思想的应用,当直线与椭圆相交时,要注意判别式大
于零这一隐含条件,它可以用来检验所求参数的值是否有意义,也可通过该不等式来求参数的范围.对直线与椭圆的位置关系的考查往往结合平面向量进行求解,与向量相结合的题目,大都与共线、垂直和夹角有关,若能转化为向量的坐标运算往往更容易实现解题功能,所以在复习过程中要格外重视.
1.求椭圆的标准方程,除了直接根据定义外,常用待定系数法(先定性,后定型,再定参).当椭圆的焦点位置不明确而无法确定其标准方程时,可设方程为x2m+y2n=1(m0,n0且m≠n),可以避免讨论和繁杂的计算,也可以设为Ax2+By2=1(A0,B0且A≠B),这种形式在解题中更简便.
2.椭圆的几何性质分为两类:一是与坐标轴无关的椭圆本身固有的性质,如:长轴长、短轴长、焦距、离心率等;另一类是与坐标系有关的性质,如:顶点坐标,焦点坐标等.第一类性质是常数,不因坐标系的变化而变化,第二类性质是随坐标系变化而相应改变.
3.直线与椭圆的位置关系问题.它是高考的热点,通常涉及椭圆的性质、最值的求法和直线的基础知识、线段的中点、弦长、垂直问题等,分析此类问题时,要充分利用数形结合法、设而不求法、弦长公式及根与系数的关系去解决.
(满分:75分)

一、选择题(每小题5分,共25分)
1.(2011温州模拟)若△ABC的两个顶点坐标分别为A(-4,0)、B(4,0),△ABC的周长为18,则顶点C的轨迹方程为()
A.x225+y29=1(y≠0)B.y225+x29=1(y≠0)
C.x216+y29=1(y≠0)D.y216+x29=1(y≠0)
2.已知椭圆x210-m+y2m-2=1,长轴在y轴上,若焦距为4,则m等于()
A.4B.5C.7D.8
3.已知F1、F2是椭圆的两个焦点,过F1且与椭圆长轴垂直的直线交椭圆于A、B两点,若△ABF2是等腰直角三角形,则这个椭圆的离心率是()
A.32B.22C.2-1D.2
4.(2011天门期末)已知圆(x+2)2+y2=36的圆心为M,设A为圆上任一点,N(2,0),线段AN的垂直平分线交MA于点P,则动点P的轨迹是()
A.圆B.椭圆
C.双曲线D.抛物线
5.椭圆x225+y29=1上一点M到焦点F1的距离为2,N是MF1的中点,则|ON|等于()
A.2B.4C.8D.32
二、填空题(每小题4分,共12分)
6.已知椭圆G的中心在坐标原点,长轴在x轴上,离心率为32,且G上一点到G的两个焦点的距离之和为12,则椭圆G的方程为______________.
7.(2011唐山调研)椭圆x29+y22=1的焦点为F1、F2,点P在椭圆上.若|PF1|=4,则|PF2|=________;∠F1PF2的大小为________.
8.
如图,已知点P是以F1、F2为焦点的椭圆x2a2+y2b2=1(ab0)上一点,若PF1⊥PF2,tan∠PF1F2=12,则此椭圆的离心率是______.
三、解答题(共38分)
9.(12分)已知方向向量为v=(1,3)的直线l过点(0,-23)和椭圆C:x2a2+y2b2=1(ab0)的右焦点,且椭圆的离心率为63.
(1)求椭圆C的方程;
(2)若已知点D(3,0),点M,N是椭圆C上不重合的两点,且DM→=λDN→,求实数λ的取值范围.
10.(12分)(2011烟台模拟)椭圆ax2+by2=1与直线x+y-1=0相交于A,B两点,C是AB的中点,若|AB|=22,OC的斜率为22,求椭圆的方程.

11.(14分)(2010福建)已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点.
(1)求椭圆C的方程.
(2)是否存在平行于OA的直线l,使得直线l与椭圆C有公共点,且直线OA与l的距离等于4?若存在,求出直线l的方程;若不存在,说明理由.

学案51椭圆
自主梳理
1.椭圆焦点焦距(1)ac(2)a=c(3)ac
自我检测
1.C2.C3.D4.A5.B
课堂活动区
例1解如图所示,设动圆的圆心为C,半径为r.
则由圆相切的性质知,
|CO1|=1+r,|CO2|=9-r,
∴|CO1|+|CO2|=10,
而|O1O2|=6,
∴点C的轨迹是以O1、O2为焦点的椭圆,其中2a=10,2c=6,b=4.
∴动圆圆心的轨迹方程为
x225+y216=1.
变式迁移1解将圆的方程化为标准形式为:
(x+2)2+y2=62,圆心B(-2,0),r=6.
设动圆圆心M的坐标为(x,y),
动圆与已知圆的切点为C.
则|BC|-|MC|=|BM|,
而|BC|=6,
∴|BM|+|CM|=6.
又|CM|=|AM|,
∴|BM|+|AM|=6|AB|=4.
∴点M的轨迹是以点B(-2,0)、A(2,0)为焦点、线段AB中点(0,0)为中心的椭圆.
a=3,c=2,b=5.
∴所求轨迹方程为x29+y25=1.
例2解题导引确定一个椭圆的标准方程,必须要有一个定位条件(即确定焦点的位置)和两个定形条件(即确定a,b的大小).当焦点的位置不确定时,应设椭圆的标准方程为x2a2+y2b2=1(ab0)或y2a2+x2b2=1(ab0),或者不必考虑焦点位置,直接设椭圆的方程为mx2+ny2=1(m0,n0,且m≠n).
解(1)若椭圆的焦点在x轴上,
设方程为x2a2+y2b2=1(ab0).
∵椭圆过点A(3,0),∴9a2=1,
∴a=3,又2a=32b,∴b=1,∴方程为x29+y2=1.
若椭圆的焦点在y轴上,设方程为y2a2+x2b2=1(ab0).
∵椭圆过点A(3,0),∴9b2=1,
∴b=3,又2a=32b,
∴a=9,∴方程为y281+x29=1.
综上可知椭圆的方程为x29+y2=1或y281+x29=1.
(2)设经过两点A(0,2),B12,3的椭圆标准方程为mx2+ny2=1,将A,B坐标代入方程得4n=114m+3n=1m=1n=14,∴所求椭圆方程为x2+y24=1.
变式迁移2解(1)当椭圆的焦点在x轴上时,∵a=3,ca=63,∴c=6,从而b2=a2-c2=9-6=3,
∴椭圆的标准方程为x29+y23=1.
当椭圆的焦点在y轴上时,
∵b=3,ca=63,∴a2-b2a=63,∴a2=27.
∴椭圆的标准方程为x29+y227=1.
∴所求椭圆的标准方程为x29+y23=1或x29+y227=1.
(2)设椭圆方程为mx2+ny2=1(m0,n0且m≠n).
∵椭圆经过P1、P2点,∴P1、P2点坐标适合椭圆方程,
则6m+n=1,①3m+2n=1,②
①②两式联立,解得m=19,n=13.
∴所求椭圆方程为x29+y23=1.
例3解题导引(1)椭圆上一点与两焦点构成的三角形,称为椭圆的焦点三角形,与焦点三角形有关的计算或证明常利用正弦定理、余弦定理、|PF1|+|PF2|=2a,得到a、c的关系.
(2)对△F1PF2的处理方法定义式的平方余弦定理面积公式
|PF1|+|PF2|2=2a2,4c2=|PF1|2+|PF2|2-2|PF1||PF2|cosθ,S△=12|PF1||PF2|sinθ.
(1)解设椭圆方程为x2a2+y2b2=1(ab0),
|PF1|=m,|PF2|=n.
在△PF1F2中,由余弦定理可知,
4c2=m2+n2-2mncos60°.
∵m+n=2a,∴m2+n2=(m+n)2-2mn=4a2-2mn.
∴4c2=4a2-3mn,即3mn=4a2-4c2.
又mn≤m+n22=a2(当且仅当m=n时取等号),
∴4a2-4c2≤3a2.∴c2a2≥14,即e≥12.
∴e的取值范围是12,1.
(2)证明由(1)知mn=43b2,∴S△PF1F2=12mnsin60°=33b2,
即△PF1F2的面积只与短轴长有关.
变式迁移3解(1)∵F1(-c,0),则xM=-c,yM=b2a,
∴kOM=-b2ac.∵kAB=-ba,OM∥AB,
∴-b2ac=-ba,∴b=c,故e=ca=22.
(2)设|F1Q|=r1,|F2Q|=r2,∠F1QF2=θ,
∴r1+r2=2a,|F1F2|=2c,
cosθ=r21+r22-4c22r1r2=r1+r22-2r1r2-4c22r1r2
=a2r1r2-1≥a2r1+r222-1=0,
当且仅当r1=r2时,cosθ=0,∴θ∈[0,π2].
课后练习区
1.A2.D3.C4.B5.B
6.x236+y29=17.2120°8.53
9.解(1)∵直线l的方向向量为v=(1,3),
∴直线l的斜率为k=3.
又∵直线l过点(0,-23),
∴直线l的方程为y+23=3x.
∵ab,∴椭圆的焦点为直线l与x轴的交点.
∴c=2.又∵e=ca=63,∴a=6.∴b2=a2-c2=2.
∴椭圆方程为x26+y22=1.(6分)
(2)若直线MN⊥y轴,则M、N是椭圆的左、右顶点,
λ=3+63-6或λ=3-63+6,即λ=5+26或5-26.
若MN与y轴不垂直,设直线MN的方程为x=my+3(m≠0).由x26+y22=1,x=my+3得(m2+3)y2+6my+3=0.
设M、N坐标分别为(x1,y1),(x2,y2),
则y1+y2=-6mm2+3,①
y1y2=3m2+3,②
Δ=36m2-12(m2+3)=24m2-360,∴m232.
∵DM→=(x1-3,y1),DN→=(x2-3,y2),DM→=λDN→,显然λ0,且λ≠1,
∴(x1-3,y1)=λ(x2-3,y2).∴y1=λy2.
代入①②,得λ+1λ=12m2m2+3-2=10-36m2+3.
∵m232,得2λ+1λ10,即λ2-2λ+10,λ2-10λ+10,
解得5-26λ5+26且λ≠1.
综上所述,λ的取值范围是5-26≤λ≤5+26,
且λ≠1.(12分)
10.解方法一设A(x1,y1)、B(x2,y2),
代入椭圆方程并作差得
a(x1+x2)(x1-x2)+b(y1+y2)(y1-y2)=0.
而y1-y2x1-x2=-1,y1+y2x1+x2=kOC=22,
代入上式可得b=2a.(4分)
由方程组ax2+by2=1x+y-1=0,得(a+b)x2-2bx+b-1=0,
∴x1+x2=2ba+b,x1x2=b-1a+b,
再由|AB|=1+k2|x2-x1|=2|x2-x1|=22,
得2ba+b2-4b-1a+b=4,(8分)
将b=2a代入得a=13,∴b=23.
∴所求椭圆的方程是x23+2y23=1.(12分)
方法二由ax2+by2=1,x+y=1
得(a+b)x2-2bx+b-1=0.(2分)
设A(x1,y1)、B(x2,y2),
则|AB|=k2+1x1-x22=24b2-4a+bb-1a+b2.
∵|AB|=22,∴a+b-aba+b=1.①(6分)
设C(x,y),则x=x1+x22=ba+b,y=1-x=aa+b,
∵OC的斜率为22,∴ab=22.(9分)
代入①,得a=13,b=23.
∴椭圆方程为x23+2y23=1.(12分)
11.解方法一(1)依题意,可设椭圆C的方程为x2a2+y2b2=1(ab0),且可知其左焦点为F′(-2,0).
从而有c=2,2a=|AF|+|AF′|=3+5=8,
解得c=2,a=4.又a2=b2+c2,所以b2=12,
故椭圆C的方程为x216+y212=1.(5分)
(2)假设存在符合题意的直线l,设其方程为y=32x+t.
由y=32x+t,x216+y212=1,得3x2+3tx+t2-12=0.(7分)
因为直线l与椭圆C有公共点,
所以Δ=(3t)2-4×3×(t2-12)≥0,
解得-43≤t≤43.(9分)
另一方面,由直线OA与l的距离d=4,
得|t|94+1=4,解得t=±213.(12分)
由于±213[-43,43],所以符合题意的直线l不存在.(14分)
方法二(1)依题意,可设椭圆C的方程为x2a2+y2b2=1(ab0),
且有4a2+9b2=1,a2-b2=4.解得b2=12或b2=-3(舍去).
从而a2=16.(3分)
所以椭圆C的方程为x216+y212=1.(5分)
(2)同方法一.

高考数学(理科)一轮复习函数的单调性与最值学案含答案


学案5函数的单调性与最值
导学目标:1.理解函数的单调性、最大值、最小值及其几何意义.2.会用定义判断函数的单调性,会求函数的单调区间及会用单调性求函数的最值.
自主梳理
1.单调性
(1)定义:一般地,设函数y=f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量x1,x2,当x1x2时,都有f(x1)f(x2)(f(x1)f(x2)),那么就说f(x)在区间D上是______________.
(2)单调性的定义的等价形式:设x1,x2∈[a,b],那么(x1-x2)(f(x1)-f(x2))0fx1-fx2x1-x20f(x)在[a,b]上是________;(x1-x2)(f(x1)-f(x2))0fx1-fx2x1-x20f(x)在[a,b]上是________.
(3)单调区间:如果函数y=f(x)在某个区间上是增函数或减函数,那么说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的__________.
(4)函数y=x+ax(a0)在(-∞,-a),(a,+∞)上是单调________;在(-a,0),(0,a)上是单调______________;函数y=x+ax(a0)在______________上单调递增.
2.最值
一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:①对于任意的x∈I,都有f(x)≤M(f(x)≥M);②存在x0∈I,使得f(x0)=M.那么,称M是函数y=f(x)的____________.
自我检测
1.(2011杭州模拟)若函数y=ax与y=-bx在(0,+∞)上都是减函数,则y=ax2+bx在(0,+∞)上是()
A.增函数B.减函数
C.先增后减D.先减后增
2.设f(x)是(-∞,+∞)上的增函数,a为实数,则有()
A.f(a)f(2a)B.f(a2)f(a)
C.f(a2+a)f(a)D.f(a2+1)f(a)
3.下列函数在(0,1)上是增函数的是()
A.y=1-2xB.y=x-1
C.y=-x2+2xD.y=5
4.(2011合肥月考)设(a,b),(c,d)都是函数f(x)的单调增区间,且x1∈(a,b),x2∈(c,d),x1x2,则f(x1)与f(x2)的大小关系是()
A.f(x1)f(x2)B.f(x1)f(x2)
C.f(x1)=f(x2)D.不能确定
5.当x∈[0,5]时,函数f(x)=3x2-4x+c的值域为()
A.[c,55+c]B.[-43+c,c]
C.[-43+c,55+c]D.[c,20+c]

探究点一函数单调性的判定及证明
例1设函数f(x)=x+ax+b(ab0),求f(x)的单调区间,并说明f(x)在其单调区间上的单调性.

变式迁移1已知f(x)是定义在R上的增函数,对x∈R有f(x)0,且f(5)=1,设F(x)=f(x)+1fx,讨论F(x)的单调性,并证明你的结论.

探究点二函数的单调性与最值
例2(2011烟台模拟)已知函数f(x)=x2+2x+ax,x∈[1,+∞).
(1)当a=12时,求函数f(x)的最小值;
(2)若对任意x∈[1,+∞),f(x)0恒成立,试求实数a的取值范围.

变式迁移2已知函数f(x)=x-ax+a2在(1,+∞)上是增函数,求实数a的取值范围.
探究点三抽象函数的单调性
例3(2011厦门模拟)已知函数f(x)对于任意x,y∈R,总有f(x)+f(y)=f(x+y),且当x0时,f(x)0,f(1)=-23.
(1)求证:f(x)在R上是减函数;
(2)求f(x)在[-3,3]上的最大值和最小值.

变式迁移3已知定义在区间(0,+∞)上的函数f(x)满足f(x1x2)=f(x1)-f(x2),且当x1时,f(x)0.
(1)求f(1)的值;
(2)判断f(x)的单调性;
(3)若f(3)=-1,解不等式f(|x|)-2.
分类讨论及数形结合思想
例(12分)求f(x)=x2-2ax-1在区间[0,2]上的最大值和最小值.
【答题模板】
解f(x)=(x-a)2-1-a2,对称轴为x=a.
(1)当a0时,由图①可知,f(x)min=f(0)=-1,f(x)max=f(2)=3-4a.[3分]

(2)当0≤a1时,由图②可知,f(x)min=f(a)=-1-a2,f(x)max=f(2)=3-4a.[6分]
(3)当1a≤2时,由图③可知,f(x)min=f(a)=-1-a2,f(x)max=f(0)=-1.[9分]
(4)当a2时,由图④可知,f(x)min=f(2)=3-4a,f(x)max=f(0)=-1.
综上,(1)当a0时,f(x)min=-1,f(x)max=3-4a;
(2)当0≤a1时,f(x)min=-1-a2,f(x)max=3-4a;
(3)当1a≤2时,f(x)min=-1-a2,f(x)max=-1;
(4)当a2时,f(x)min=3-4a,f(x)max=-1.[12分]
【突破思维障碍】
(1)二次函数的单调区间是由图象的对称轴确定的.故只需确定对称轴与区间的关系.由于对称轴是x=a,而a的取值不定,从而导致了分类讨论.
(2)不是应该分a0,0≤a≤2,a2三种情况讨论吗?为什么成了四种情况?这是由于抛物线的对称轴在区间[0,2]所对应的区域时,最小值是在顶点处取得,但最大值却有可能是f(0),也有可能是f(2).
1.函数的单调性的判定与单调区间的确定常用方法有:
(1)定义法;(2)导数法;(3)图象法;(4)单调性的运算性质.
2.若函数f(x),g(x)在区间D上具有单调性,则在区间D上具有以下性质:
(1)f(x)与f(x)+C具有相同的单调性.
(2)f(x)与af(x),当a0时,具有相同的单调性,当a0时,具有相反的单调性.
(3)当f(x)恒不等于零时,f(x)与1fx具有相反的单调性.
(4)当f(x),g(x)都是增(减)函数时,则f(x)+g(x)是增(减)函数.
(5)当f(x),g(x)都是增(减)函数时,则f(x)g(x)当两者都恒大于零时,是增(减)函数;当两者都恒小于零时,是减(增)函数.
(满分:75分)

一、选择题(每小题5分,共25分)
1.(2011泉州模拟)“a=1”是“函数f(x)=x2-2ax+3在区间[1,+∞)上为增函数”的()
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
2.(2009天津)已知函数f(x)=x2+4x,x≥0,4x-x2,x0,若f(2-a2)f(a),则实数a的取值范围是()
A.(-∞,-1)∪(2,+∞)
B.(-1,2)
C.(-2,1)
D.(-∞,-2)∪(1,+∞)
3.(2009宁夏,海南)用min{a,b,c}表示a,b,c三个数中的最小值.设f(x)=min{2x,x+2,10-x}(x≥0),则f(x)的最大值为()
A.4B.5C.6D.7
4.(2011丹东月考)若f(x)=-x2+2ax与g(x)=ax+1在区间[1,2]上都是减函数,则a的取值范围是()
A.(-1,0)∪(0,1)B.(-1,0)∪(0,1]
C.(0,1)D.(0,1]
5.(2011葫芦岛模拟)已知定义在R上的增函数f(x),满足f(-x)+f(x)=0,x1,x2,x3∈R,且x1+x20,x2+x30,x3+x10,则f(x1)+f(x2)+f(x3)的值()
A.一定大于0B.一定小于0
C.等于0D.正负都有可能
题号12345
答案
二、填空题(每小题4分,共12分)
6.函数y=-(x-3)|x|的递增区间是________.
7.设f(x)是增函数,则下列结论一定正确的是________(填序号).
①y=[f(x)]2是增函数;
②y=1fx是减函数;
③y=-f(x)是减函数;
④y=|f(x)|是增函数.
8.设0x1,则函数y=1x+11-x的最小值是________.
三、解答题(共38分)
9.(12分)(2011湖州模拟)已知函数f(x)=a-1|x|.
(1)求证:函数y=f(x)在(0,+∞)上是增函数;
(2)若f(x)2x在(1,+∞)上恒成立,求实数a的取值范围.

10.(12分)已知f(x)=x2+ax+3-a,若x∈[-2,2]时,f(x)≥0恒成立,求a的取值范围.

11.(14分)(2011鞍山模拟)已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若a,b∈
[-1,1],a+b≠0时,有fa+fba+b0成立.
(1)判断f(x)在[-1,1]上的单调性,并证明它;
(2)解不等式:f(x+12)f(1x-1);
(3)若f(x)≤m2-2am+1对所有的a∈[-1,1]恒成立,求实数m的取值范围.

答案自主梳理
1.(1)增函数(减函数)(2)增函数减函数(3)单调区间(4)递增递减(-∞,0),(0,+∞)2.最大(小)值
自我检测
1.B[由已知得a0,b0.所以二次函数对称轴为直线x=-b2a0,且图象开口向下.]
2.D[∵a2+1a,f(x)在R上单调递增,
∴f(a2+1)f(a).]
3.C[常数函数不具有单调性.]
4.D[在本题中,x1,x2不在同一单调区间内,故无法比较f(x1)与f(x2)的大小.]
5.C[∵f(x)=3(x-23)2-43+c,x∈[0,5],∴当x=23时,f(x)min=-43+c;当x=5时,f(x)max=55+c.]
课堂活动区
例1解题导引对于给出具体解析式的函数,判断或证明其在某区间上的单调性问题,可以结合定义(基本步骤为:取点,作差或作商,变形,判断)来求解.可导函数则可以利用导数求解.有些函数可以转化为两个或多个基本初等函数,利用其单调性可以方便求解.
解在定义域内任取x1,x2,且使x1x2,
则Δx=x2-x10,
Δy=f(x2)-f(x1)=x2+ax2+b-x1+ax1+b
=x2+ax1+b-x2+bx1+ax1+bx2+b
=b-ax2-x1x1+bx2+b.
∵ab0,∴b-a0,∴(b-a)(x2-x1)0,
又∵x∈(-∞,-b)∪(-b,+∞),
∴只有当x1x2-b,或-bx1x2时,函数才单调.
当x1x2-b,或-bx1x2时,f(x2)-f(x1)0,即Δy0.
∴y=f(x)在(-∞,-b)上是单调减函数,在(-b,+∞)上也是单调减函数.
变式迁移1解在R上任取x1、x2,设x1x2,∴f(x2)f(x1),F(x2)-F(x1)=[f(x2)+1fx2]-[f(x1)+1fx1]=[f(x2)-f(x1)][1-1fx1fx2],
∵f(x)是R上的增函数,且f(5)=1,
∴当x5时,0f(x)1,而当x5时f(x)1;
①若x1x25,则0f(x1)f(x2)1,
∴0f(x1)f(x2)1,∴1-1fx1fx20,
∴F(x2)F(x1);
②若x2x15,则f(x2)f(x1)1,
∴f(x1)f(x2)1,∴1-1fx1fx20,
∴F(x2)F(x1).
综上,F(x)在(-∞,5)为减函数,在(5,+∞)为增函数.
例2解(1)当a=12时,f(x)=x+12x+2,
设x1,x2∈[1,+∞)且x1x2,
f(x1)-f(x2)=x1+12x1-x2-12x2
=(x1-x2)(1-12x1x2)
∵x1x2,∴x1-x20,又∵1x1x2,
∴1-12x1x20,
∴f(x1)-f(x2)0,∴f(x1)f(x2)
∴f(x)在区间[1,+∞)上为增函数,
∴f(x)在区间[1,+∞)上的最小值为f(1)=72.
(2)方法一在区间[1,+∞)上,f(x)=x2+2x+ax0恒成立,等价于x2+2x+a0恒成立.
设y=x2+2x+a,x∈[1,+∞),
y=x2+2x+a=(x+1)2+a-1递增,
∴当x=1时,ymin=3+a,
于是当且仅当ymin=3+a0时,函数f(x)恒成立,
故a-3.
方法二f(x)=x+ax+2,x∈[1,+∞),
当a≥0时,函数f(x)的值恒为正,满足题意,当a0时,函数f(x)递增;
当x=1时,f(x)min=3+a,于是当且仅当f(x)min=3+a0时,函数f(x)0恒成立,
故a-3.
方法三在区间[1,+∞)上f(x)=x2+2x+ax0恒成立等价于x2+2x+a0恒成立.
即a-x2-2x恒成立.
又∵x∈[1,+∞),a-x2-2x恒成立,
∴a应大于函数u=-x2-2x,x∈[1,+∞)的最大值.
∴a-x2-2x=-(x+1)2+1.
当x=1时,u取得最大值-3,∴a-3.
变式迁移2解设1x1x2.
∵函数f(x)在(1,+∞)上是增函数,
∴f(x1)-f(x2)=x1-ax1+a2-(x2-ax2+a2)
=(x1-x2)(1+ax1x2)0.
又∵x1-x20,∴1+ax1x20,即a-x1x2恒成立.
∵1x1x2,x1x21,-x1x2-1.
∴a≥-1,∴a的取值范围是[-1,+∞).
例3解题导引(1)对于抽象函数的问题要根据题设及所求的结论来适当取特殊值说明抽象函数的特点.证明f(x)为单调减函数,首选方法是用单调性的定义来证.(2)用函数的单调性求最值.
(1)证明设x1x2,
则f(x1)-f(x2)
=f(x1-x2+x2)-f(x2)
=f(x1-x2)+f(x2)-f(x2)
=f(x1-x2)
又∵x0时,f(x)0.
而x1-x20,∴f(x1-x2)0,
即f(x1)f(x2),∴f(x)在R上为减函数.
(2)解∵f(x)在R上是减函数,
∴f(x)在[-3,3]上也是减函数,
∴f(x)在[-3,3]上的最大值和最小值分别为f(-3)与f(3).
又∵f(3)=f(2+1)=f(2)+f(1)=f(1)+f(1)+f(1)
∴f(3)=3f(1)=-2,f(-3)=-f(3)=2.
∴f(x)在[-3,3]上的最大值为2,最小值为-2.
变式迁移3解(1)令x1=x20,
代入得f(1)=f(x1)-f(x1)=0,故f(1)=0.
(2)任取x1,x2∈(0,+∞),且x1x2,则x1x21,
由于当x1时,f(x)0,
∴f(x1x2)0,即f(x1)-f(x2)0,∴f(x1)f(x2),
∴函数f(x)在区间(0,+∞)上是单调递减函数.
(3)由f(x1x2)=f(x1)-f(x2)得
f(93)=f(9)-f(3),而f(3)=-1,∴f(9)=-2.
由于函数f(x)在区间(0,+∞)上是单调递减函数,
∴当x0时,由f(|x|)-2,得f(x)f(9),∴x9;
当x0时,由f(|x|)-2,得f(-x)f(9),
∴-x9,故x-9,
∴不等式的解集为{x|x9或x-9}.
课后练习区
1.A[f(x)对称轴x=a,当a≤1时f(x)在[1,+∞)上单调递增.∴“a=1”为f(x)在[1,+∞)上递增的充分不必要条件.]
2.C[由题知f(x)在R上是增函数,由题得2-a2a,解得-2a1.]
3.C[
由题意知函数f(x)是三个函数y1=2x,y2=x+2,y3=10-x中的较小者,作出三个函数在同一坐标系之下的图象(如图中实线部分为f(x)的图象)可知A(4,6)为函数f(x)图象的最高点.]
4.D[f(x)在[a,+∞)上是减函数,对于g(x),只有当a0时,它有两个减区间为(-∞,-1)和(-1,+∞),故只需区间[1,2]是f(x)和g(x)的减区间的子集即可,则a的取值范围是0a≤1.]
5.A[∵f(-x)+f(x)=0,∴f(-x)=-f(x).
又∵x1+x20,x2+x30,x3+x10,
∴x1-x2,x2-x3,x3-x1.
又∵f(x1)f(-x2)=-f(x2),
f(x2)f(-x3)=-f(x3),
f(x3)f(-x1)=-f(x1),
∴f(x1)+f(x2)+f(x3)-f(x2)-f(x3)-f(x1).
∴f(x1)+f(x2)+f(x3)0.]
6.[0,32]
解析y=-x-3xx≥0x-3xx0.
画图象如图所示:
可知递增区间为[0,32].
7.③
解析举例:设f(x)=x,易知①②④均不正确.
8.4
解析y=1x+11-x=1x1-x,当0x1时,x(1-x)=-(x-12)2+14≤14.
∴y≥4.
9.(1)证明当x∈(0,+∞)时,
f(x)=a-1x,
设0x1x2,则x1x20,x2-x10.
f(x1)-f(x2)=(a-1x1)-(a-1x2)
=1x2-1x1=x1-x2x1x20.………………………………………………………………………(5分)
∴f(x1)f(x2),即f(x)在(0,+∞)上是增函数.
……………………………………………………………………………………………(6分)
(2)解由题意a-1x2x在(1,+∞)上恒成立,
设h(x)=2x+1x,则ah(x)在(1,+∞)上恒成立.
……………………………………………………………………………………………(8分)
∵h′(x)=2-1x2,x∈(1,+∞),∴2-1x20,
∴h(x)在(1,+∞)上单调递增.…………………………………………………………(10分)
故a≤h(1),即a≤3.
∴a的取值范围为(-∞,3].…………………………………………………………(12分)
10.解设f(x)的最小值为g(a),则只需g(a)≥0,
由题意知,f(x)的对称轴为-a2.
(1)当-a2-2,即a4时,
g(a)=f(-2)=7-3a≥0,得a≤73.
又a4,故此时的a不存在.……………………………………………………………(4分)
(2)当-a2∈[-2,2],即-4≤a≤4时,
g(a)=f(-a2)=3-a-a24≥0得-6≤a≤2.
又-4≤a≤4,故-4≤a≤2.……………………………………………………………(8分)
(3)当-a22,即a-4时,
g(a)=f(2)=7+a≥0得a≥-7.
又a-4,故-7≤a-4.
综上得所求a的取值范围是-7≤a≤2.………………………………………………(12分)
11.解(1)任取x1,x2∈[-1,1],且x1x2,
则-x2∈[-1,1],∵f(x)为奇函数,
∴f(x1)-f(x2)=f(x1)+f(-x2)
=fx1+f-x2x1+-x2(x1-x2),
由已知得fx1+f-x2x1+-x20,x1-x20,
∴f(x1)-f(x2)0,即f(x1)f(x2).
∴f(x)在[-1,1]上单调递增.……………………………………………………………(4分)
(2)∵f(x)在[-1,1]上单调递增,
∴x+121x-1,-1≤x+12≤1,-1≤1x-11.………………………………8分
∴-32≤x-1.……………………………………………………………………………(9分)
(3)∵f(1)=1,f(x)在[-1,1]上单调递增.
∴在[-1,1]上,f(x)≤1.…………………………………………………………………(10分)
问题转化为m2-2am+1≥1,
即m2-2am≥0,对a∈[-1,1]成立.
下面来求m的取值范围.
设g(a)=-2ma+m2≥0.
①若m=0,则g(a)=0≥0,自然对a∈[-1,1]恒成立.
②若m≠0,则g(a)为a的一次函数,若g(a)≥0,对a∈[-1,1]恒成立,必须g(-1)≥0,且g(1)≥0,
∴m≤-2,或m≥2.
∴m的取值范围是m=0或|m|≥2.……………………………………………………(14分)