88教案网

你的位置: 教案 > 高中教案 > 导航 > 高考数学(理科)一轮复习直线及其方程学案带答案

高中生物一轮复习教案

发表时间:2020-12-01

高考数学(理科)一轮复习直线及其方程学案带答案。

一名优秀负责的教师就要对每一位学生尽职尽责,作为高中教师就要在上课前做好适合自己的教案。教案可以让学生能够在教学期间跟着互动起来,帮助高中教师更好的完成实现教学目标。那么如何写好我们的高中教案呢?急您所急,小编为朋友们了收集和编辑了“高考数学(理科)一轮复习直线及其方程学案带答案”,希望能为您提供更多的参考。

第九章解析几何
学案47直线及其方程

导学目标:1.在平面直角坐标系中,结合具体图形,确定直线位置的几何要素.2.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.3.掌握确定直线位置的几何要素,掌握直线方程的几种形式,了解斜截式与一次函数的关系.
自主梳理
1.直线的倾斜角与斜率
(1)直线的倾斜角
①定义:当直线l与x轴相交时,我们取x轴作为基准,x轴________与直线l________方向之间所成的角α叫做直线l的倾斜角.当直线l与x轴平行或重合时,规定它的倾斜角为________.
②倾斜角的范围为______________.
(2)直线的斜率
①定义:一条直线的倾斜角α的________叫做这条直线的斜率,斜率常用小写字母k表示,即k=________,倾斜角是90°的直线斜率不存在.
②过两点的直线的斜率公式:
经过两点P1(x1,y1),P2(x2,y2)(x1≠x2)的直线的斜率公式为k=______________________.
2.直线的方向向量
经过两点P1(x1,y1),P2(x2,y2)的直线的一个方向向量为P1P2→,其坐标为________________,当斜率k存在时,方向向量的坐标可记为(1,k).
3.直线的方程和方程的直线
已知二元一次方程Ax+By+C=0(A2+B2≠0)和坐标平面上的直线l,如果直线l上任意一点的坐标都是方程____________的解,并且以方程Ax+By+C=0的任意一个解作为点的坐标都在__________,就称直线l是方程Ax+By+C=0的直线,称方程Ax+By+C=0是直线l的方程.
4.直线方程的五种基本形式
名称方程适用范围
点斜式不含直线x=x0
斜截式不含垂直于x轴的直线
两点式不含直线x=x1(x1≠x2)和直线y=y1(y1≠y2)
截距式不含垂直于坐标轴和过原点的直线
一般式平面直角坐标系内的直线都适用
5.线段的中点坐标公式
若点P1,P2的坐标分别为(x1,y1),(x2,y2),且线段P1P2的中点M的坐标为(x,y),则x=,y=,此公式为线段P1P2的中点坐标公式.
自我检测
1.(2011银川调研)若A(-2,3),B(3,-2),C12,m三点共线,则m的值为()
A.12B.-12C.-2D.2
2.直线l与两条直线x-y-7=0,y=1分别交于P、Q两点,线段PQ的中点为(1,-1),则直线l的斜率为()
A.-32B.32C.23D.-23
3.下列四个命题中,假命题是()
A.经过定点P(x0,y0)的直线不一定都可以用方程y-y0=k(x-x0)表示
B.经过两个不同的点P1(x1,y1)、P2(x2,y2)的直线都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)来表示
C.与两条坐标轴都相交的直线不一定可以用方程xa+yb=1表示
D.经过点Q(0,b)的直线都可以表示为y=kx+b
4.(2011商丘期末)如果AC0,且BC0,那么直线Ax+By+C=0不通过()
A.第一象限B.第二象限
C.第三象限D.第四象限
5.已知直线l的方向向量与向量a=(1,2)垂直,且直线l过点A(1,1),则直线l的方程为()
A.x-2y-1=0B.2x+y-3=0
C.x+2y+1=0D.x+2y-3=0
探究点一倾斜角与斜率

例1已知两点A(-1,-5)、B(3,-2),直线l的倾斜角是直线AB倾斜角的一半,求l的斜率.

变式迁移1直线xsinα-y+1=0的倾斜角的变化范围是()
A.0,π2B.(0,π)
C.-π4,π4D.0,π4∪3π4,π
探究点二直线的方程
例2(2011武汉模拟)过点M(0,1)作直线,使它被两直线l1:x-3y+10=0,l2:2x+y-8=0所截得的线段恰好被M所平分,求此直线方程.

变式迁移2求适合下列条件的直线方程:
(1)经过点P(3,2)且在两坐标轴上的截距相等;
(2)经过点A(-1,-3),倾斜角等于直线y=3x的倾斜角的2倍.

探究点三直线方程的应用

例3过点P(2,1)的直线l交x轴、y轴正半轴于A、B两点,求使:
(1)△AOB面积最小时l的方程;
(2)|PA||PB|最小时l的方程.
变式迁移3为了绿化城市,拟在矩形区域ABCD内建一个矩形草坪(如图),另外△EFA内部有一文物保护区不能占用,经测量|AB|=100m,|BC|=80m,|AE|=30m,|AF|=20m,应如何设计才能使草坪面积最大?
探究点四数形结合思想
例4已知实数x,y满足y=x2-2x+2(-1≤x≤1).
试求y+3x+2的最大值与最小值.

变式迁移4直线l过点M(-1,2)且与以点P(-2,-3)、Q(4,0)为端点的线段恒相交,则l的斜率范围是()
A.[-25,5]B.[-25,0)∪(0,5]
C.(-∞,-25]∪[5,+∞)D.[-25,π2)∪(π2,5]
1.要正确理解倾斜角的定义,明确倾斜角的范围为0°≤α180°,熟记斜率公式k=y2-y1x2-x1,该公式与两点顺序无关.已知两点坐标(x1≠x2),根据该公式可以求出经过两点的直线斜率,而x1=x2,y1≠y2时,直线斜率不存在,此时直线的倾斜角为90°.
2.当直线没有斜率(x1=x2)或斜率为0(y1=y2)时,不能用两点式y-y1y2-y1=x-x1x2-x1求直线方程,但都可以写成(x2-x1)(y-y1)=(y2-y1)(x-x1)的形式.直线方程的点斜式、斜截式、两点式、截距式都可以化成一般式,但是有些直线的一般式方程不能化成点斜式、斜截式、两点式或截距式.
3.使用直线方程时,一定要注意限制条件以免解题过程中丢解,如点斜式的使用条件是直线必须有斜率,截距式的使用条件是截距存在且不为零,两点式的使用条件是直线不与坐标轴垂直.
(满分:75分)

一、选择题(每小题5分,共25分)
1.(2011临沂月考)已知直线l经过A(2,1)、B(1,m2)(m∈R)两点,那么直线l的倾斜角的取值范围是()
A.(0,π)B.0,π4∪π2,π
C.0,π4D.π4,π2∪π2,π
2.若直线l:y=kx-3与直线2x+3y-6=0的交点位于第一象限,则直线l的倾斜角的取值范围是()
A.π6,π3B.π6,π2
C.π3,π2D.π6,π2
3.点P(x,y)在经过A(3,0),B(1,1)两点的直线上,那么2x+4y的最小值是()
A.22B.42
C.16D.不存在
4.(2011宜昌调研)点A(a+b,ab)在第一象限内,则直线bx+ay-ab=0不经过的象限是()
A.第一象限B.第二象限
C.第三象限D.第四象限
5.(2011包头期末)经过点P(2,-1),且在y轴上的截距等于它在x轴上的截距的2倍的直线l的方程为()
A.2x+y=2B.2x+y=4
C.2x+y=3D.2x+y=3或x+2y=0
二、填空题(每小题4分,共12分)
6.过两点A(m2+2,m2-3),B(3-m-m2,2m)的直线l的倾斜角为45°,则m=________.
7.直线x+(a2+1)y+1=0(a∈R)的倾斜角的取值范围是________.
8.设A、B是x轴上的两点,点P的横坐标为2,且|PA|=|PB|,若直线PA的方程为x-y+1=0,则直线PB的方程是________________.
三、解答题(共38分)
9.(12分)已知两点A(-1,2),B(m,3),求:
(1)直线AB的斜率k;
(2)求直线AB的方程;
(3)已知实数m∈-33-1,3-1,求直线AB的倾斜角α的范围.

10.(12分)(2011秦皇岛模拟)已知线段PQ两端点的坐标分别为(-1,1)、(2,2),若直线l:x+my+m=0与线段PQ有交点,求m的范围.
11.(14分)已知直线l:kx-y+1+2k=0(k∈R).
(1)证明:直线l过定点;
(2)若直线不经过第四象限,求k的取值范围;
(3)若直线l交x轴负半轴于A,交y轴正半轴于B,△AOB的面积为S,求S的最小值并求此时直线l的方程.

学案47直线及其方程
自主梳理
1.(1)①正向向上0°②0°≤α180°(2)①正切值tanα②y2-y1x2-x12.(x2-x1,y2-y1)3.Ax+By+C=0
直线l上4.y-y0=k(x-x0)y=kx+by-y1y2-y1=x-x1x2-x1xa+yb=1(a≠0,b≠0)Ax+By+C=0(A、B不同时为0)5.x1+x22y1+y22
自我检测
1.A2.D3.D4.C5.D
课堂活动区
例1解题导引斜率与倾斜角常与三角函数联系,本题需要挖掘隐含条件,判断角的范围.关键是熟练掌握好根据三角函数值确定角的范围这一类题型.
解设直线l的倾斜角为α,则直线AB的倾斜角为2α,
由题意可知:tan2α=-2--53--1=34,∴2tanα1-tan2α=34.
整理得3tan2α+8tanα-3=0.
解得tanα=13或tanα=-3,∵tan2α=340,
∴0°2α90°,∴0°α45°,∴tanα0,
故直线l的斜率为13.
变式迁移1D[直线xsinα-y+1=0的斜率是k=sinα,
又∵-1≤sinα≤1,∴-1≤k≤1.
当0≤k≤1时,倾斜角的范围是0,π4,
当-1≤k0时,倾斜角的范围是3π4,π.]
例2解题导引(1)对直线问题,要特别注意斜率不存在的情况.
(2)求直线方程常用方法——待定系数法.
待定系数法就是根据所求的具体直线设出方程,然后按照它们满足的条件求出参数.
解过点M且与x轴垂直的直线是y轴,它和两已知直线的交点分别是0,103和(0,8),
显然不满足中点是点M(0,1)的条件.
故可设所求直线方程为y=kx+1,与两已知直线l1、l2分别交于A、B两点,联立方程组y=kx+1,x-3y+10=0,①
y=kx+1,2x+y-8=0,②
由①解得xA=73k-1,由②解得xB=7k+2.
∵点M平分线段AB,∴xA+xB=2xM,
即73k-1+7k+2=0,解得k=-14.
故所求直线方程为x+4y-4=0.
变式迁移2解(1)设直线l在x,y轴上的截距均为a,
若a=0,即l过点(0,0)和(3,2),
∴l的方程为y=23x,即2x-3y=0.
若a≠0,则设l的方程为xa+ya=1,
∵l过点(3,2),∴3a+2a=1,
∴a=5,∴l的方程为x+y-5=0,
综上可知,直线l的方程为2x-3y=0或x+y-5=0.
(2)由已知:设直线y=3x的倾斜角为α,
则所求直线的倾斜角为2α.
∵tanα=3,∴tan2α=2tanα1-tan2α=-34.
又直线经过点A(-1,-3),
因此所求直线方程为y+3=-34(x+1),
即3x+4y+15=0.
例3解题导引先设出A、B所在的直线方程,再求出A、B两点的坐标,表示出△ABO的面积,然后利用相关的数学知识求最值.
确定直线方程可分为两个类型:一是根据题目条件确定点和斜率或确定两点,进而套用直线方程的几种形式,写出方程,此法称直接法;二是利用直线在题目中具有的某些性质,先设出方程(含参数或待定系数),再确定参数值,然后写出方程,这种方法称为间接法.
解设直线的方程为xa+yb=1(a2,b1),
由已知可得2a+1b=1.
(1)∵22a1b≤2a+1b=1,∴ab≥8.
∴S△AOB=12ab≥4.
当且仅当2a=1b=12,
即a=4,b=2时,S△AOB取最小值4,
此时直线l的方程为x4+y2=1,
即x+2y-4=0.
(2)由2a+1b=1,得ab-a-2b=0,变形得(a-2)(b-1)=2,
|PA||PB|
=2-a2+1-022-02+1-b2
=[2-a2+1][1-b2+4]
≥2a-24b-1.
当且仅当a-2=1,b-1=2,
即a=3,b=3时,|PA||PB|取最小值4.
此时直线l的方程为x+y-3=0.
变式迁移3解如图所示建立直角坐标系,则E(30,0),F(0,20),
∴线段EF的方程为x30+y20=1(0≤x≤30).
在线段EF上取点P(m,n),
作PQ⊥BC于点Q,
PR⊥CD于点R,设矩形PQCR的面积为S,
则S=|PQ||PR|=(100-m)(80-n).
又m30+n20=1(0≤m≤30),
∴n=20(1-m30).
∴S=(100-m)(80-20+23m)
=-23(m-5)2+180503(0≤m≤30).
∴当m=5时,S有最大值,这时|EP||PF|=30-55=5.
所以当矩形草坪的两边在BC、CD上,一个顶点在线段EF上,且这个顶点分EF成5∶1时,草坪面积最大.
例4解题导引解决这类问题的关键是弄清楚所求代数式的几何意义,借助数形结合,将求最值问题转化为求斜率取值范围问题,简化了运算过程,收到事半功倍的效果.
解由y+3x+2的几何意义可知,它表示经过定点P(-2,-3)与曲线段AB上任一点(x,y)的直线的斜率k,由图可知:
kPA≤k≤kPB,由已知可得:
A(1,1),B(-1,5),
∴43≤k≤8,
故y+3x+2的最大值为8,最小值为43.
变式迁移4C
[如图,过点M作y轴的平行线与线段PQ相交于点N.
kMP=5,kMQ=-25.
当直线l从MP开始绕M按逆时针方向旋转到MN时,倾斜角在增大,斜率也在增大,这时,k≥5.当直线l从MN开始逆时针旋转到MQ时,
∵正切函数在(π2,π)上仍为增函数,
∴斜率从-∞开始增加,增大到kMQ=-25,
故直线l的斜率范围是(-∞,-25]∪[5,+∞).]
课后练习区
1.B2.B3.B4.C5.D
6.-27.[34π,π)8.x+y-5=0
9.解(1)当m=-1时,
直线AB的斜率不存在;(1分)
当m≠-1时,k=1m+1.(3分)
(2)当m=-1时,AB的方程为x=-1,(5分)
当m≠-1时,AB的方程为y-2=1m+1(x+1),
即y=xm+1+2m+3m+1.(7分)
∴直线AB的方程为x=-1或y=xm+1+2m+3m+1.
(8分)
(3)①当m=-1时,α=π2;
②当m≠-1时,
∵k=1m+1∈(-∞,-3]∪33,+∞,
∴α∈π6,π2∪π2,2π3.(10分)
综合①②,知直线AB的倾斜角
α∈π6,2π3.(12分)
10.
解直线x+my+m=0恒过A(0,-1)点.(2分)
kAP=-1-10+1=-2,
kAQ=-1-20-2=32,(5分)
则-1m≥32或-1m≤-2,
∴-23≤m≤12且m≠0.(9分)
又m=0时直线x+my+m=0与线段PQ有交点,
∴所求m的范围是-23≤m≤12.(12分)
11.(1)证明直线l的方程是:k(x+2)+(1-y)=0,
令x+2=01-y=0,解之得x=-2y=1,
∴无论k取何值,直线总经过定点(-2,1).(4分)
(2)解由方程知,当k≠0时直线在x轴上的截距为-1+2kk,在y轴上的截距为1+2k,要使直线不经过第四象限,则必须有-1+2kk≤-21+2k≥1,解之得k0;(7分)
当k=0时,直线为y=1,符合题意,故k≥0.(9分)
(3)解由l的方程,得A-1+2kk,0,
B(0,1+2k).依题意得-1+2kk0,1+2k0,
解得k0.(11分)
∵S=12|OA||OB|
=121+2kk|1+2k|
=121+2k2k=124k+1k+4≥12×(2×2+4)=4,
“=”成立的条件是k0且4k=1k,
即k=12,
∴Smin=4,此时l:x-2y+4=0.(14分)

扩展阅读

高考数学(理科)一轮复习椭圆学案带答案


一名优秀的教师在教学方面无论做什么事都有计划和准备,作为高中教师就要精心准备好合适的教案。教案可以更好的帮助学生们打好基础,帮助高中教师能够更轻松的上课教学。那么一篇好的高中教案要怎么才能写好呢?以下是小编为大家精心整理的“高考数学(理科)一轮复习椭圆学案带答案”,但愿对您的学习工作带来帮助。

学案51椭圆

导学目标:1.了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用.2.掌握椭圆的定义,几何图形、标准方程及其简单几何性质.
自主梳理
1.椭圆的概念
在平面内与两个定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做________.这两定点叫做椭圆的________,两焦点间的距离叫________.
集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a0,c0,且a,c为常数:
(1)若________,则集合P为椭圆;
(2)若________,则集合P为线段;
(3)若________,则集合P为空集.
2.椭圆的标准方程和几何性质

标准方程x2a2+y2b2=1
(ab0)y2a2+x2b2=1
(ab0)
图形


质范围-a≤x≤a
-b≤y≤b-b≤x≤b
-a≤y≤a
对称性对称轴:坐标轴对称中心:原点
顶点A1(-a,0),A2(a,0)
B1(0,-b),B2(0,b)A1(0,-a),A2(0,a)
B1(-b,0),B2(b,0)
轴长轴A1A2的长为2a;短轴B1B2的长为2b
焦距|F1F2|=2c
离心率e=ca∈(0,1)

a,b,c
的关系c2=a2-b2

自我检测
1.已知△ABC的顶点B、C在椭圆x23+y2=1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ABC的周长是()
A.23B.6C.43D.12
2.(2011揭阳调研)“mn0”是方程“mx2+ny2=1表示焦点在y轴上的椭圆”的()
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件
3.已知椭圆x2sinα-y2cosα=1(0≤α2π)的焦点在y轴上,则α的取值范围是()
A.3π4,πB.π4,3π4
C.π2,πD.π2,3π4
4.椭圆x212+y23=1的焦点为F1和F2,点P在椭圆上,如果线段PF1的中点在y轴上,那么|PF1|是|PF2|的()
A.7倍B.5倍C.4倍D.3倍
5.(2011开封模拟)椭圆5x2+ky2=5的一个焦点是(0,2),那么k等于()
A.-1B.1C.5D.-5
探究点一椭圆的定义及应用
例1(教材改编)一动圆与已知圆O1:(x+3)2+y2=1外切,与圆O2:(x-3)2+y2=81内切,试求动圆圆心的轨迹方程.
变式迁移1求过点A(2,0)且与圆x2+4x+y2-32=0内切的圆的圆心的轨迹方程.
探究点二求椭圆的标准方程
例2求满足下列各条件的椭圆的标准方程:
(1)长轴是短轴的3倍且经过点A(3,0);
(2)经过两点A(0,2)和B12,3.

变式迁移2(1)已知椭圆过(3,0),离心率e=63,求椭圆的标准方程;
(2)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点P1(6,1)、P2(-3,-2),求椭圆的标准方程.

探究点三椭圆的几何性质
例3(2011安阳模拟)已知F1、F2是椭圆的两个焦点,P为椭圆上一点,∠F1PF2=60°.
(1)求椭圆离心率的范围;
(2)求证:△F1PF2的面积只与椭圆的短轴长有关.

变式迁移3已知椭圆x2a2+y2b2=1(ab0)的长、短轴端点分别为A、B,从此椭圆上一点M(在x轴上方)向x轴作垂线,恰好通过椭圆的左焦点F1,AB∥OM.
(1)求椭圆的离心率e;
(2)设Q是椭圆上任意一点,F1、F2分别是左、右焦点,求∠F1QF2的取值范围.
方程思想的应用
例(12分)(2011北京朝阳区模拟)已知中心在原点,焦点在x轴上的椭圆C的离心率为12,且经过点M(1,32),过点P(2,1)的直线l与椭圆C相交于不同的两点A,B.
(1)求椭圆C的方程;
(2)是否存在直线l,满足PA→PB→=PM→2?若存在,求出直线l的方程;若不存在,请说明理由.
【答题模板】
解(1)设椭圆C的方程为x2a2+y2b2=1(ab0),
由题意得1a2+94b2=1,ca=12,a2=b2+c2.解得a2=4,b2=3.故椭圆C的方程为x24+y23=1.[4分]
(2)若存在直线l满足条件,由题意可设直线l的方程为y=k(x-2)+1,由x24+y23=1,y=kx-2+1,
得(3+4k2)x2-8k(2k-1)x+16k2-16k-8=0.[6分]
因为直线l与椭圆C相交于不同的两点A,B,
设A,B两点的坐标分别为(x1,y1),(x2,y2),
所以Δ=[-8k(2k-1)]2-4(3+4k2)(16k2-16k-8)0.
整理得32(6k+3)0,解得k-12.[7分]
又x1+x2=8k2k-13+4k2,x1x2=16k2-16k-83+4k2,
且PA→PB→=PM→2,
即(x1-2)(x2-2)+(y1-1)(y2-1)=54,
所以(x1-2)(x2-2)(1+k2)=54,
即[x1x2-2(x1+x2)+4](1+k2)=54.[9分]
所以[16k2-16k-83+4k2-2×8k2k-13+4k2+4](1+k2)=4+4k23+4k2=54,
解得k=±12.[11分]
所以k=12.于是存在直线l满足条件,
其方程为y=12x.[12分]
【突破思维障碍】
直线与椭圆的位置关系主要是指公共点问题、相交弦问题及其他综合问题.反映在代数上,就是直线与椭圆方程联立的方程组有无实数解及实数解的个数的问题,它体现了方程思想的应用,当直线与椭圆相交时,要注意判别式大
于零这一隐含条件,它可以用来检验所求参数的值是否有意义,也可通过该不等式来求参数的范围.对直线与椭圆的位置关系的考查往往结合平面向量进行求解,与向量相结合的题目,大都与共线、垂直和夹角有关,若能转化为向量的坐标运算往往更容易实现解题功能,所以在复习过程中要格外重视.
1.求椭圆的标准方程,除了直接根据定义外,常用待定系数法(先定性,后定型,再定参).当椭圆的焦点位置不明确而无法确定其标准方程时,可设方程为x2m+y2n=1(m0,n0且m≠n),可以避免讨论和繁杂的计算,也可以设为Ax2+By2=1(A0,B0且A≠B),这种形式在解题中更简便.
2.椭圆的几何性质分为两类:一是与坐标轴无关的椭圆本身固有的性质,如:长轴长、短轴长、焦距、离心率等;另一类是与坐标系有关的性质,如:顶点坐标,焦点坐标等.第一类性质是常数,不因坐标系的变化而变化,第二类性质是随坐标系变化而相应改变.
3.直线与椭圆的位置关系问题.它是高考的热点,通常涉及椭圆的性质、最值的求法和直线的基础知识、线段的中点、弦长、垂直问题等,分析此类问题时,要充分利用数形结合法、设而不求法、弦长公式及根与系数的关系去解决.
(满分:75分)

一、选择题(每小题5分,共25分)
1.(2011温州模拟)若△ABC的两个顶点坐标分别为A(-4,0)、B(4,0),△ABC的周长为18,则顶点C的轨迹方程为()
A.x225+y29=1(y≠0)B.y225+x29=1(y≠0)
C.x216+y29=1(y≠0)D.y216+x29=1(y≠0)
2.已知椭圆x210-m+y2m-2=1,长轴在y轴上,若焦距为4,则m等于()
A.4B.5C.7D.8
3.已知F1、F2是椭圆的两个焦点,过F1且与椭圆长轴垂直的直线交椭圆于A、B两点,若△ABF2是等腰直角三角形,则这个椭圆的离心率是()
A.32B.22C.2-1D.2
4.(2011天门期末)已知圆(x+2)2+y2=36的圆心为M,设A为圆上任一点,N(2,0),线段AN的垂直平分线交MA于点P,则动点P的轨迹是()
A.圆B.椭圆
C.双曲线D.抛物线
5.椭圆x225+y29=1上一点M到焦点F1的距离为2,N是MF1的中点,则|ON|等于()
A.2B.4C.8D.32
二、填空题(每小题4分,共12分)
6.已知椭圆G的中心在坐标原点,长轴在x轴上,离心率为32,且G上一点到G的两个焦点的距离之和为12,则椭圆G的方程为______________.
7.(2011唐山调研)椭圆x29+y22=1的焦点为F1、F2,点P在椭圆上.若|PF1|=4,则|PF2|=________;∠F1PF2的大小为________.
8.
如图,已知点P是以F1、F2为焦点的椭圆x2a2+y2b2=1(ab0)上一点,若PF1⊥PF2,tan∠PF1F2=12,则此椭圆的离心率是______.
三、解答题(共38分)
9.(12分)已知方向向量为v=(1,3)的直线l过点(0,-23)和椭圆C:x2a2+y2b2=1(ab0)的右焦点,且椭圆的离心率为63.
(1)求椭圆C的方程;
(2)若已知点D(3,0),点M,N是椭圆C上不重合的两点,且DM→=λDN→,求实数λ的取值范围.
10.(12分)(2011烟台模拟)椭圆ax2+by2=1与直线x+y-1=0相交于A,B两点,C是AB的中点,若|AB|=22,OC的斜率为22,求椭圆的方程.

11.(14分)(2010福建)已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点.
(1)求椭圆C的方程.
(2)是否存在平行于OA的直线l,使得直线l与椭圆C有公共点,且直线OA与l的距离等于4?若存在,求出直线l的方程;若不存在,说明理由.

学案51椭圆
自主梳理
1.椭圆焦点焦距(1)ac(2)a=c(3)ac
自我检测
1.C2.C3.D4.A5.B
课堂活动区
例1解如图所示,设动圆的圆心为C,半径为r.
则由圆相切的性质知,
|CO1|=1+r,|CO2|=9-r,
∴|CO1|+|CO2|=10,
而|O1O2|=6,
∴点C的轨迹是以O1、O2为焦点的椭圆,其中2a=10,2c=6,b=4.
∴动圆圆心的轨迹方程为
x225+y216=1.
变式迁移1解将圆的方程化为标准形式为:
(x+2)2+y2=62,圆心B(-2,0),r=6.
设动圆圆心M的坐标为(x,y),
动圆与已知圆的切点为C.
则|BC|-|MC|=|BM|,
而|BC|=6,
∴|BM|+|CM|=6.
又|CM|=|AM|,
∴|BM|+|AM|=6|AB|=4.
∴点M的轨迹是以点B(-2,0)、A(2,0)为焦点、线段AB中点(0,0)为中心的椭圆.
a=3,c=2,b=5.
∴所求轨迹方程为x29+y25=1.
例2解题导引确定一个椭圆的标准方程,必须要有一个定位条件(即确定焦点的位置)和两个定形条件(即确定a,b的大小).当焦点的位置不确定时,应设椭圆的标准方程为x2a2+y2b2=1(ab0)或y2a2+x2b2=1(ab0),或者不必考虑焦点位置,直接设椭圆的方程为mx2+ny2=1(m0,n0,且m≠n).
解(1)若椭圆的焦点在x轴上,
设方程为x2a2+y2b2=1(ab0).
∵椭圆过点A(3,0),∴9a2=1,
∴a=3,又2a=32b,∴b=1,∴方程为x29+y2=1.
若椭圆的焦点在y轴上,设方程为y2a2+x2b2=1(ab0).
∵椭圆过点A(3,0),∴9b2=1,
∴b=3,又2a=32b,
∴a=9,∴方程为y281+x29=1.
综上可知椭圆的方程为x29+y2=1或y281+x29=1.
(2)设经过两点A(0,2),B12,3的椭圆标准方程为mx2+ny2=1,将A,B坐标代入方程得4n=114m+3n=1m=1n=14,∴所求椭圆方程为x2+y24=1.
变式迁移2解(1)当椭圆的焦点在x轴上时,∵a=3,ca=63,∴c=6,从而b2=a2-c2=9-6=3,
∴椭圆的标准方程为x29+y23=1.
当椭圆的焦点在y轴上时,
∵b=3,ca=63,∴a2-b2a=63,∴a2=27.
∴椭圆的标准方程为x29+y227=1.
∴所求椭圆的标准方程为x29+y23=1或x29+y227=1.
(2)设椭圆方程为mx2+ny2=1(m0,n0且m≠n).
∵椭圆经过P1、P2点,∴P1、P2点坐标适合椭圆方程,
则6m+n=1,①3m+2n=1,②
①②两式联立,解得m=19,n=13.
∴所求椭圆方程为x29+y23=1.
例3解题导引(1)椭圆上一点与两焦点构成的三角形,称为椭圆的焦点三角形,与焦点三角形有关的计算或证明常利用正弦定理、余弦定理、|PF1|+|PF2|=2a,得到a、c的关系.
(2)对△F1PF2的处理方法定义式的平方余弦定理面积公式
|PF1|+|PF2|2=2a2,4c2=|PF1|2+|PF2|2-2|PF1||PF2|cosθ,S△=12|PF1||PF2|sinθ.
(1)解设椭圆方程为x2a2+y2b2=1(ab0),
|PF1|=m,|PF2|=n.
在△PF1F2中,由余弦定理可知,
4c2=m2+n2-2mncos60°.
∵m+n=2a,∴m2+n2=(m+n)2-2mn=4a2-2mn.
∴4c2=4a2-3mn,即3mn=4a2-4c2.
又mn≤m+n22=a2(当且仅当m=n时取等号),
∴4a2-4c2≤3a2.∴c2a2≥14,即e≥12.
∴e的取值范围是12,1.
(2)证明由(1)知mn=43b2,∴S△PF1F2=12mnsin60°=33b2,
即△PF1F2的面积只与短轴长有关.
变式迁移3解(1)∵F1(-c,0),则xM=-c,yM=b2a,
∴kOM=-b2ac.∵kAB=-ba,OM∥AB,
∴-b2ac=-ba,∴b=c,故e=ca=22.
(2)设|F1Q|=r1,|F2Q|=r2,∠F1QF2=θ,
∴r1+r2=2a,|F1F2|=2c,
cosθ=r21+r22-4c22r1r2=r1+r22-2r1r2-4c22r1r2
=a2r1r2-1≥a2r1+r222-1=0,
当且仅当r1=r2时,cosθ=0,∴θ∈[0,π2].
课后练习区
1.A2.D3.C4.B5.B
6.x236+y29=17.2120°8.53
9.解(1)∵直线l的方向向量为v=(1,3),
∴直线l的斜率为k=3.
又∵直线l过点(0,-23),
∴直线l的方程为y+23=3x.
∵ab,∴椭圆的焦点为直线l与x轴的交点.
∴c=2.又∵e=ca=63,∴a=6.∴b2=a2-c2=2.
∴椭圆方程为x26+y22=1.(6分)
(2)若直线MN⊥y轴,则M、N是椭圆的左、右顶点,
λ=3+63-6或λ=3-63+6,即λ=5+26或5-26.
若MN与y轴不垂直,设直线MN的方程为x=my+3(m≠0).由x26+y22=1,x=my+3得(m2+3)y2+6my+3=0.
设M、N坐标分别为(x1,y1),(x2,y2),
则y1+y2=-6mm2+3,①
y1y2=3m2+3,②
Δ=36m2-12(m2+3)=24m2-360,∴m232.
∵DM→=(x1-3,y1),DN→=(x2-3,y2),DM→=λDN→,显然λ0,且λ≠1,
∴(x1-3,y1)=λ(x2-3,y2).∴y1=λy2.
代入①②,得λ+1λ=12m2m2+3-2=10-36m2+3.
∵m232,得2λ+1λ10,即λ2-2λ+10,λ2-10λ+10,
解得5-26λ5+26且λ≠1.
综上所述,λ的取值范围是5-26≤λ≤5+26,
且λ≠1.(12分)
10.解方法一设A(x1,y1)、B(x2,y2),
代入椭圆方程并作差得
a(x1+x2)(x1-x2)+b(y1+y2)(y1-y2)=0.
而y1-y2x1-x2=-1,y1+y2x1+x2=kOC=22,
代入上式可得b=2a.(4分)
由方程组ax2+by2=1x+y-1=0,得(a+b)x2-2bx+b-1=0,
∴x1+x2=2ba+b,x1x2=b-1a+b,
再由|AB|=1+k2|x2-x1|=2|x2-x1|=22,
得2ba+b2-4b-1a+b=4,(8分)
将b=2a代入得a=13,∴b=23.
∴所求椭圆的方程是x23+2y23=1.(12分)
方法二由ax2+by2=1,x+y=1
得(a+b)x2-2bx+b-1=0.(2分)
设A(x1,y1)、B(x2,y2),
则|AB|=k2+1x1-x22=24b2-4a+bb-1a+b2.
∵|AB|=22,∴a+b-aba+b=1.①(6分)
设C(x,y),则x=x1+x22=ba+b,y=1-x=aa+b,
∵OC的斜率为22,∴ab=22.(9分)
代入①,得a=13,b=23.
∴椭圆方程为x23+2y23=1.(12分)
11.解方法一(1)依题意,可设椭圆C的方程为x2a2+y2b2=1(ab0),且可知其左焦点为F′(-2,0).
从而有c=2,2a=|AF|+|AF′|=3+5=8,
解得c=2,a=4.又a2=b2+c2,所以b2=12,
故椭圆C的方程为x216+y212=1.(5分)
(2)假设存在符合题意的直线l,设其方程为y=32x+t.
由y=32x+t,x216+y212=1,得3x2+3tx+t2-12=0.(7分)
因为直线l与椭圆C有公共点,
所以Δ=(3t)2-4×3×(t2-12)≥0,
解得-43≤t≤43.(9分)
另一方面,由直线OA与l的距离d=4,
得|t|94+1=4,解得t=±213.(12分)
由于±213[-43,43],所以符合题意的直线l不存在.(14分)
方法二(1)依题意,可设椭圆C的方程为x2a2+y2b2=1(ab0),
且有4a2+9b2=1,a2-b2=4.解得b2=12或b2=-3(舍去).
从而a2=16.(3分)
所以椭圆C的方程为x216+y212=1.(5分)
(2)同方法一.

高考数学(理科)一轮复习函数模型及其应用学案带答案


学案12函数模型及其应用
导学目标:1.了解指数函数、对数函数以及幂函数的增长特征.知道直线上升、指数增长、对数增长等不同函数类型增长的含义.2.了解函数模型(指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.
自主梳理
1.三种增长型函数模型的图象与性质
函数
性质y=ax(a1)y=logax
(a1)y=xn(n0)
在(0,+∞)上的单调性
增长速度
图象的变化随x增大逐渐表现为与____平行随x增大逐渐表现为与____平行随n值变化而不同
2.三种增长型函数之间增长速度的比较
(1)指数函数y=ax(a1)与幂函数y=xn(n0)
在区间(0,+∞)上,无论n比a大多少,尽管在x的一定范围内ax会小于xn,但由于y=ax的增长速度________y=xn的增长速度,因而总存在一个x0,当xx0时有________.
(2)对数函数y=logax(a1)与幂函数y=xn(n0)
对数函数y=logax(a1)的增长速度,不论a与n值的大小如何总会________y=xn的增长速度,因而在定义域内总存在一个实数x0,使xx0时有____________.
由(1)(2)可以看出三种增长型的函数尽管均为增函数,但它们的增长速度不同,且不在同一个档次上,因此在(0,+∞)上,总会存在一个x0,使xx0时有_____________________.
3.函数模型的应用实例的基本题型
(1)给定函数模型解决实际问题;
(2)建立确定性的函数模型解决问题;
(3)建立拟合函数模型解决实际问题.
4.函数建模的基本程序
自我检测
1.下列函数中随x的增大而增大速度最快的是()
A.v=1100exB.v=100lnx
C.v=x100D.v=100×2x
2.某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L1=5.06x-0.15x2和L2=2x,其中x为销售量(单位:辆).若该公司在这两地共销售15辆车,则能获得的最大利润为()
A.45.606B.45.6
C.45.56D.45.51
3.(2010陕西)某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于6时再增选一名代表.那么,各班可推选代表人数y与该班人数x之间的函数关系用取整函数y=[x]([x]表示不大于x的最大整数)可以表示为()
A.y=[x10]B.y=[x+310]
C.y=[x+410]D.y=[x+510]
4.(2011湘潭月考)某工厂6年来生产某种产品的情况是:前三年年产量的增长速度越来越快,后三年年产量保持不变,则该厂6年来这种产品的总产量C与时间t(年)的函数关系图象正确的是()
5.一个人喝了少量酒后,血液中的酒精含量迅速上升到0.3mg/mL,在停止喝酒后,血液中的酒精含量以每小时25%的速度减少,为了保障交通安全,某地根据《道路交通安全法》规定:驾驶员血液中的酒精含量不得超过0.09mg/mL,那么,一个喝了少量酒后的驾驶员,至少经过________小时,才能开车?(精确到1小时)
探究点一一次函数、二次函数模型
例1(2011阳江模拟)某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y(万元)与年产量x(吨)之间的函数关系式可以近似地表示为y=x25-48x+8000,已知此生产线年产量最大为210吨.
(1)求年产量为多少吨时,生产每吨产品的平均成本最低,并求最低成本;
(2)若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?

变式迁移1某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.
(1)当每辆车的月租金定为3600元时,能租出多少辆车?
(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?

探究点二分段函数模型
例2据气象中心观察和预测:发生于M地的沙尘暴一直向正南方向移动,其移动速度v(km/h)与时间t(h)
的函数图象如图所示,过线段OC上一点T(t,0)作横轴的垂线l,梯形OABC在直线l左侧部分的面积即为t(h)内沙尘暴所经过的路程s(km).
(1)当t=4时,求s的值;
(2)将s随t变化的规律用数学关系式表示出来;
(3)若N城位于M地正南方向,且距M地650km,试判断这场沙尘暴是否会侵袭到N城,如果会,在沙尘暴发生后多长时间它将侵袭到N城?如果不会,请说明理由.

变式迁移2某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨为1.80元,当用水超过4吨时,超过部分每吨3.00元.某月甲、乙两户共交水费y元,已知甲、乙两户该月用水量分别为5x,3x(吨).
(1)求y关于x的函数;
(2)若甲、乙两户该月共交水费26.4元,分别求出甲、乙两户该月的用水量和水费.

探究点三指数函数模型
例3诺贝尔奖发放方式为:每年一发,把奖金总额平均分成6份,奖励给分别在6项(物理、化学、文学、经济学、生理学和医学、和平)为人类作出最有益贡献的人,每年发放奖金的总金额是基金在该年度所获利息的一半,另一半利息作基金总额,以便保证奖金数逐年增加.假设基金平均年利率为r=6.24%.资料显示:1999年诺贝尔奖发放后基金总额约为19800万美元.设f(x)表示第x(x∈N*)年诺贝尔奖发放后的基金总额(1999年记为f(1),2000年记为f(2),…,依次类推)
(1)用f(1)表示f(2)与f(3),并根据所求结果归纳出函数f(x)的表达式;
(2)试根据f(x)的表达式判断网上一则新闻“2009年度诺贝尔奖各项奖金高达150万美元”是否为真,并说明理由.
(参考数据:1.03129=1.32)

变式迁移3(2011商丘模拟)现有某种细胞100个,其中有占总数12的细胞每小时分裂一次,即由1个细胞分裂成2个细胞,按这种规律发展下去,经过多少小时,细胞总数可以超过1010个?
(参考数据:lg3=0.477,lg2=0.301)

1.解答应用问题的程序概括为“四步八字”,即(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择模型;
(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;
(3)求模:求解数学模型,得出数学结论;
(4)还原:将数学结论还原为实际问题的意义.
2.考查函数模型的知识表现在以下几个方面:
(1)利用函数模型的单调性比较数的大小;
(2)比较几种函数图象的变化规律,证明不等式或求解不等式;
(3)函数性质与图象相结合,运用“数形结合”解答一些综合问题.
(满分:75分)

一、选择题(每小题5分,共25分)
1.在某种新型材料的研制中,实验人员获得了下列一组实验数据.现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是()
X1.953.003.945.106.12
Y0.971.591.982.352.61
A.y=2xB.y=log2x
C.y=12(x2-1)D.y=2.61cosx
2.拟定甲地到乙地通话m分钟的电话费f(m)=1.06×(0.5×[m]+1)(单位:元),其中m0,[m]表示不大于m的最大整数(如[3.72])=3,[4]=4),当m∈[0.5,3.1]时,函数f(m)的值域是
()
A.{1.06,2.12,3.18,4.24}
B.{1.06,1.59,2.12,2.65}
C.{1.06,1.59,2.12,2.65,3.18}
D.{1.59,2.12,2.65}
3.(2011秦皇岛模拟)某商店出售A、B两种价格不同的商品,由于商品A连续两次提价20%,同时商品B连续两次降价20%,结果都以每件23元售出,若商店同时售出这两种商品各一件,则与价格不升不降时的情况比较,商店盈利情况是()
A.多赚约6元B.少赚约6元
C.多赚约2元D.盈利相同
4.国家规定个人稿费纳税办法是:不超过800元的不纳税;超过800元而不超过4000元的按超过800元部分的14%纳税;超过4000元的按全部稿酬的11%纳税.已知某人出版一本书,共纳税420元,这个人应得稿费(扣税前)为()
A.4000元B.3800元
C.4200元D.3600元
5.(2011沧州月考)生产一定数量的商品的全部费用称为生产成本,某企业一个月生产某种商品x万件时的生产成本为C(x)=12x2+2x+20(万元).一万件售价是20万元,为获取更大利润,该企业一个月应生产该商品数量为()
A.18万件B.20万件
C.16万件D.8万件
题号12345
答案
二、填空题(每小题4分,共12分)
6.据某校环保小组调查,某区垃圾量的年增长率为b,2009年产生的垃圾量为at,由此预测,该区下一年的垃圾量为__________t,2014年的垃圾量为__________t.
7.(2010金华十校3月联考)有一批材料可以建成200m长的围墙,如果用此批材料在一边靠墙的地方围成一块矩形场地,中间用同样材料隔成三个面积相等的矩形(如图所示),则围成场地的最大面积为________(围墙的厚度不计).

8.已知每生产100克饼干的原材料加工费为1.8元.某食品加工厂对饼干采用两种包装,其包装费用、销售价格如下表所示:
型号小包装大包装
重量100克300克
包装费0.5元0.7元
销售价格3.00元8.4元
则下列说法中正确的是________(填序号)
①买小包装实惠;②买大包装实惠;③卖3小包比卖1大包盈利多;④卖1大包比卖3小包盈利多.
三、解答题(共38分)
9.(12分)(2010湖南师大附中仿真)设某企业每月生产电机x台,根据企业月度报表知,每月总产值m(万元)与总支出n(万元)近似地满足下列关系:m=92x-14,n=-14x2+5x+74,当m-n≥0时,称不亏损企业;当m-n0时,称亏损企业,且n-m为亏损额.
(1)企业要成为不亏损企业,每月至少要生产多少台电机?
(2)当月总产值为多少时,企业亏损最严重,最大亏损额为多少?
10.(12分)某单位用2160万元购得一块空地,计划在该块地上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为x(x≥10)层,则每平方米的平均建筑费用为560+48x(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=购地总费用建筑总面积)

11.(14分)(2011鄂州模拟)某宾馆有相同标准的床位100张,根据经验,当该宾馆的床价(即每张床每天的租金)不超过10元时,床位可以全部租出,当床位高于10元时,每提高1元,将有3张床位空闲.为了获得较好的效益,该宾馆要给床位一个合适的价格,条件是:①要方便结账,床价应为1元的整数倍;②该宾馆每日的费用支出为575元,床位出租的收入必须高于支出,而且高出得越多越好.若用x表示床价,用y表示该宾馆一天出租床位的净收入(即除去每日的费用支出后的收入).
(1)把y表示成x的函数,并求出其定义域;
(2)试确定该宾馆将床位定价为多少时,既符合上面的两个条件,又能使净收入最多?

答案自主梳理
1.增函数增函数增函数越来越快越来越慢相对平稳y轴x轴2.(1)快于axxn(2)慢于logaxxnaxxnlogax
自我检测
1.A[由e2,知当x增大时,1100ex增大更快.]
2.B[依题意,可设甲销售x辆,则乙销售(15-x)辆,
∴总利润S=5.06x-0.15x2+2(15-x)
=-0.15x2+3.06x+30(x≥0).
∴当x=10时,Smax=45.6(万元).]
3.B[每10个人可以推选1个,(xmod10)6可以再推选一个,即如果余数(xmod10)≥7相当于给x多加了3,所以可以多一个10出来.]
4.A
5.5
解析设x小时后,血液中的酒精含量不超过0.09mg/mL,
则有0.334x≤0.09,即34x≤0.3.
估算或取对数计算,得5小时后,可以开车.
课堂活动区
例1解(1)每吨平均成本为yx(万元).
则yx=x5+8000x-48
≥2x58000x-48=32,
当且仅当x5=8000x,即x=200时取等号.
∴年产量为200吨时,每吨平均成本最低为32万元.
(2)设年获得总利润为R(x)万元,
则R(x)=40x-y=40x-x25+48x-8000
=-x25+88x-8000
=-15(x-220)2+1680(0≤x≤210).
∵R(x)在[0,210]上是增函数,
∴x=210时,R(x)有最大值为-15×(210-220)2+1680=1660.
∴年产量为210吨时,可获得最大利润1660万元.
变式迁移1解(1)租金增加了600元,所以未租出的车有12辆,一共租出了88辆.
(2)设每辆车的月租金为x元(x≥3000),租赁公司的月收益为y元,
则y=x100-x-300050-x-300050×50
-100-x-300050×150
=-x250+162x-21000
=-150(x-4050)2+307050,
当x=4050时,ymax=307050.
答当每辆车月租金定为4050元时,租赁公司的月收益最大,最大为307050.
例2解(1)由图象可知:
当t=4时,v=3×4=12(km/h),
∴s=12×4×12=24(km).
(2)当0≤t≤10时,s=12t3t=32t2,
当10t≤20时,s=12×10×30+30(t-10)=30t-150;
当20t≤35时,s=12×10×30+10×30+(t-20)×30-12×(t-20)×2(t-20)=-t2+70t-550.
综上,可知S=32t2,t∈[0,10],30t-150,t∈10,20],-t2+70t-550,t∈20,35].
(3)∵t∈[0,10]时,smax=32×102=150650,
t∈(10,20]时,smax=30×20-150=450650,
∴当t∈(20,35]时,令-t2+70t-550=650.
解得t1=30,t2=40.∵20t≤35,∴t=30.
∴沙尘暴发生30h后将侵袭到N城.
变式迁移2解(1)当甲的用水量不超过4吨时,即5x≤4,乙的用水量也不超过4吨,
y=1.8(5x+3x)=14.4x;
当甲的用水量超过4吨,乙的用水量不超过4吨,即3x≤4,且5x4时,y=4×1.8+3x×1.8+3(5x-4)=20.4x-4.8.
当乙的用水量超过4吨,即3x4时,
y=2×4×1.8+3×[(3x-4)+(5x-4)]=24x-9.6.
所以y=14.4x,0≤x≤45,20.4x-4.8,45x≤43,24x-9.6,x43.
(2)由于y=f(x)在各段区间上均单调递增,
当x∈0,45时,y≤f4526.4;
当x∈45,43时,y≤f4326.4;
当x∈43,+∞时,令24x-9.6=26.4,解得x=1.5.
所以甲户用水量为5x=7.5吨,
付费S1=4×1.8+3.5×3=17.70(元);
乙户用水量为3x=4.5吨,
付费S2=4×1.8+0.5×3=8.70(元).
例3解题导引指数函数模型的应用是高考的一个主要内容,常与增长率相结合进行考查.在实际问题中有人口增长、银行利率、细胞分裂等增长问题可以用指数函数模型来表示.通常可表示为y=a(1+p)x(其中a为原来的基础数,p为增长率,x为时间)的形式.
解(1)由题意知:f(2)=f(1)(1+6.24%)-12f(1)6.24%=f(1)×(1+3.12%),
f(3)=f(2)×(1+6.24%)-12f(2)×6.24%
=f(2)×(1+3.12%)=f(1)×(1+3.12%)2,
∴f(x)=19800(1+3.12%)x-1(x∈N*).
(2)2008年诺贝尔奖发放后基金总额为f(10)=19800(1+3.12%)9=26136,
故2009年度诺贝尔奖各项奖金为1612f(10)6.24%≈136(万美元),与150万美元相比少了约14万美元,是假新闻.
变式迁移3解现有细胞100个,先考虑经过1,2,3,4个小时后的细胞总数,
1小时后,细胞总数为
12×100+12×100×2=32×100;
2小时后,细胞总数为
12×32×100+12×32×100×2=94×100;
3小时后,细胞总数为
12×94×100+12×94×100×2=278×100;
4小时后,细胞总数为
12×278×100+12×278×100×2=8116×100;
可见,细胞总数y与时间x(小时)之间的函数关系为:
y=100×(32)x,x∈N*,
由100×(32)x1010,得(32)x108,
两边取以10为底的对数,
得xlg328,∴x8lg3-lg2,
∵8lg3-lg2=80.477-0.301≈45.45,
∴x45.45.
答经过46小时,细胞总数超过1010个.
课后练习区
1.B[通过检验可知,y=log2x较为接近.]
2.B[当0.5≤m1时,[m]=0,f(m)=1.06;
当1≤m2时,[m]=1,f(m)=1.59;
当2≤m3时,[m]=2,f(m)=2.12;
当3≤m≤3.1时,[m]=3,f(m)=2.65.]
3.B[设A、B两种商品的原价为a、b,
则a(1+20%)2=b(1-20%)2=23
a=23×2536,b=23×2516,a+b-46≈6元.]
4.B[设扣税前应得稿费为x元,则应纳税额为分段函数,由题意,得y=00x≤800,x-800×14%800x≤4000,11%xx4000.
如果稿费为4000元应纳税为448元,现知某人共纳税420元,所以稿费应在800~4000元之间,
∴(x-800)×14%=420,∴x=3800.]
5.A[利润L(x)=20x-C(x)=-12(x-18)2+142,
当x=18时,L(x)有最大值.]
6.a(1+b)a(1+b)5
解析由于2009年的垃圾量为at,年增长率为b,故下一年的垃圾量为a+ab=a(1+b)t,同理可知2011年的垃圾量为a(1+b)2t,…,2014年的垃圾量为a(1+b)5t.
7.2500m2
解析设所围场地的长为x,则宽为200-x4,其中0x200,场地的面积为x×200-x4≤14x+200-x22
=2500m2,
等号当且仅当x=100时成立.
8.②④
9.解(1)由已知,
m-n=92x-14--14x2+5x+74
=14x2-12x-2.……………………………………………………………………………(3分)
由m-n≥0,得x2-2x-8≥0,解得x≤-2或x≥4.
据题意,x0,所以x≥4.
故企业要成为不亏损企业,每月至少要生产4台电机.………………………………(6分)
(2)若企业亏损最严重,则n-m取最大值.
因为n-m=-14x2+5x+74-92x+14
=-14x-12-9=94-14(x-1)2.………………………………………………………(9分)
所以当x=1时,n-m取最大值94,
此时m=92-14=174.
故当月总产值为174万元时,企业亏损最严重,最大亏损额为94万元.………………(12分)
10.解设楼房每平方米的平均综合费用为f(x)元,
则f(x)=(560+48x)+2160×100002000x=560+48x+10800x(x≥10,x∈N*).…………(5分)
∵f(x)=560+48(x+225x)≥560+482x225x=560+48×30=2000.……………(10分)
当且仅当x=225x时,上式取等号,即x=15时,f(x)min=2000.
所以楼房应建15层.……………………………………………………………………(12分)
11.解(1)依题意有
y=100x-575x≤10,[100-x-10×3]x-575x10,……………………………………………(4分)
由于y0且x∈N*,
由100x-5750,x≤10.得6≤x≤10,x∈N*.
由x10,[100-x-10×3]x-5750
得10x≤38,x∈N*,
所以函数为
y=100x-575x∈N*,且6≤x≤10,-3x2+130x-575x∈N*,且10x≤38,
定义域为{x|6≤x≤38,x∈N*}.…………………………………………………………(6分)
(2)当x=10时,y=100x-575(6≤x≤10,x∈N*)取得最大值425元,……………(8分)
当x10时,y=-3x2+130x-575,当且仅当x=-1302×-3=653时,y取最大值,但x∈N*,所以当x=22时,y=-3x2+130x-575(10x≤38,x∈N*)取得最大值833元.(12分)
比较两种情况,可知当床位定价为22元时净收入最多.……………………………(14分)

高考数学(理科)一轮复习数学归纳法学案带答案


俗话说,居安思危,思则有备,有备无患。作为高中教师就需要提前准备好适合自己的教案。教案可以更好的帮助学生们打好基础,让高中教师能够快速的解决各种教学问题。那么如何写好我们的高中教案呢?下面是小编帮大家编辑的《高考数学(理科)一轮复习数学归纳法学案带答案》,欢迎您参考,希望对您有所助益!

学案39数学归纳法

导学目标:1.了解数学归纳法的原理.2.能用数学归纳法证明一些简单的数学命题.
自主梳理
1.归纳法
由一系列有限的特殊事例得出________的推理方法叫归纳法.根据推理过程中考查的对象是涉及事物的全体或部分可分为____归纳法和________归纳法.
2.数学归纳法
设{Pn}是一个与正整数相关的命题集合,如果:(1)证明起始命题________(或________)成立;(2)在假设______成立的前提下,推出________也成立,那么可以断定{Pn}对一切正整数成立.
3.数学归纳法证题的步骤
(1)(归纳奠基)证明当n取第一个值__________时命题成立.
(2)(归纳递推)假设______________________________时命题成立,证明当________时命题也成立.只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立.
自我检测
1.用数学归纳法证明:“1+a+a2+…+an+1=1-an+21-a(a≠1)”在验证n=1时,左端计算所得的项为()
A.1B.1+a
C.1+a+a2D.1+a+a2+a3
2.如果命题P(n)对于n=k(k∈N*)时成立,则它对n=k+2也成立,又若P(n)对于n=2时成立,则下列结论正确的是()
A.P(n)对所有正整数n成立
B.P(n)对所有正偶数n成立
C.P(n)对所有正奇数n成立
D.P(n)对所有大于1的正整数n成立
3.(2011台州月考)证明n+221+12+13+14+…+12nn+1(n1),当n=2时,中间式子等于()
A.1B.1+12
C.1+12+13D.1+12+13+14
4.用数学归纳法证明“2nn2+1对于nn0的正整数n都成立”时,第一步证明中的起始值n0应取()
A.2B.3C.5D.6
5.用数学归纳法证明“n3+(n+1)3+(n+2)3(n∈N*)能被9整除”,要利用归纳假设证n=k+1时的情况,只需展开()
A.(k+3)3B.(k+2)3
C.(k+1)3D.(k+1)3+(k+2)3
探究点一用数学归纳法证明等式
例1对于n∈N*,用数学归纳法证明:
1n+2(n-1)+3(n-2)+…+(n-1)2+n1=16n(n+1)(n+2).

变式迁移1(2011金华月考)用数学归纳法证明:
对任意的n∈N*,1-12+13-14+…+12n-1-12n=1n+1+1n+2+…+12n.

探究点二用数学归纳法证明不等式
例2用数学归纳法证明:对一切大于1的自然数,不等式1+131+15…1+12n-12n+12均成立.

变式迁移2已知m为正整数,用数学归纳法证明:当x-1时,(1+x)m≥1+mx.

探究点三用数学归纳法证明整除问题
例3用数学归纳法证明:当n∈N*时,an+1+(a+1)2n-1能被a2+a+1整除.

变式迁移3用数学归纳法证明:当n为正整数时,f(n)=32n+2-8n-9能被64整除.

从特殊到一般的思想
例(14分)已知等差数列{an}的公差d大于0,且a2、a5是方程x2-12x+27=0的两根,数列{bn}的前n项和为Tn,且Tn=1-12bn.
(1)求数列{an}、{bn}的通项公式;
(2)设数列{an}的前n项和为Sn,试比较1bn与Sn+1的大小,并说明理由.
【答题模板】
解(1)由已知得a2+a5=12a2a5=27,又∵{an}的公差大于0,
∴a5a2,∴a2=3,a5=9.∴d=a5-a23=9-33=2,a1=1,
∴an=1+(n-1)×2=2n-1.[2分]
∵Tn=1-12bn,∴b1=23,当n≥2时,Tn-1=1-12bn-1,
∴bn=Tn-Tn-1=1-12bn-1-12bn-1,
化简,得bn=13bn-1,[4分]
∴{bn}是首项为23,公比为13的等比数列,
即bn=2313n-1=23n,
∴an=2n-1,bn=23n.[6分]
(2)∵Sn=1+2n-12n=n2,∴Sn+1=(n+1)2,1bn=3n2.
以下比较1bn与Sn+1的大小:
当n=1时,1b1=32,S2=4,∴1b1S2,当n=2时,1b2=92,S3=9,∴1b2S3,
当n=3时,1b3=272,S4=16,∴1b3S4,当n=4时,1b4=812,S5=25,∴1b4S5.
猜想:n≥4时,1bnSn+1.[9分]
下面用数学归纳法证明:
①当n=4时,已证.
②假设当n=k(k∈N*,k≥4)时,1bkSk+1,即3k2(k+1)2.[10分]
那么,n=k+1时,1bk+1=3k+12=33k23(k+1)2=3k2+6k+3=(k2+4k+4)+2k2+2k-1[(k+1)+1]2=S(k+1)+1,∴n=k+1时,1bnSn+1也成立.[12分]
由①②可知n∈N*,n≥4时,1bnSn+1都成立.
综上所述,当n=1,2,3时,1bnSn+1,当n≥4时,1bnSn+1.[14分]
【突破思维障碍】
1.归纳——猜想——证明是高考重点考查的内容之一,此类问题可分为归纳性问题和存在性问题,本例中归纳性问题需要从特殊情况入手,通过观察、分析、归纳、猜想,探索出一般规律.
2.数列是定义在N*上的函数,这与数学归纳法运用的范围是一致的,并且数列的递推公式与归纳原理实质上是一致的,数列中有不少问题常用数学归纳法解决.
【易错点剖析】
1.严格按照数学归纳法的三个步骤书写,特别是对初始值的验证不可省略,有时要取两个(或两个以上)初始值进行验证;初始值的验证是归纳假设的基础.
2.在进行n=k+1命题证明时,一定要用n=k时的命题,没有用到该命题而推理证明的方法不是数学归纳法.
1.数学归纳法:先证明当n取第一个值n0时命题成立,然后假设当n=k(k∈N*,k≥n0)时命题成立,并证明当n=k+1时命题也成立,那么就证明了这个命题成立.这是因为第一步首先证明了n取第一个值n0时,命题成立,这样假设就有了存在的基础,至少k=n0时命题成立,由假设合理推证出n=k+1时命题也成立,这实质上是证明了一种循环,如验证了n0=1成立,又证明了n=k+1也成立,这就一定有n=2成立,n=2成立,则n=3成立,n=3成立,则n=4也成立,如此反复以至无穷,对所有n≥n0的整数就都成立了.
2.(1)第①步验证n=n0使命题成立时n0不一定是1,是使命题成立的最小正整数.
(2)第②步证明n=k+1时命题也成立的过程中一定要用到归纳递推,否则就不是数学归纳法.
(满分:75分)

一、选择题(每小题5分,共25分)
1.用数学归纳法证明命题“当n是正奇数时,xn+yn能被x+y整除”,在第二步时,正确的证法是()
A.假设n=k(k∈N*)时命题成立,证明n=k+1命题成立
B.假设n=k(k是正奇数)时命题成立,证明n=k+1命题成立
C.假设n=2k+1(k∈N*)时命题成立,证明n=k+1命题成立
D.假设n=k(k是正奇数)时命题成立,证明n=k+2命题成立
2.已知f(n)=1n+1n+1+1n+2+…+1n2,则()
A.f(n)中共有n项,当n=2时,f(2)=12+13
B.f(n)中共有n+1项,当n=2时,f(2)=12+13+14
C.f(n)中共有n2-n项,当n=2时,f(2)=12+13
D.f(n)中共有n2-n+1项,当n=2时,f(2)=12+13+14
3.如果命题P(n)对n=k成立,则它对n=k+1也成立,现已知P(n)对n=4不成立,则下列结论正确的是()
A.P(n)对n∈N*成立
B.P(n)对n4且n∈N*成立
C.P(n)对n4且n∈N*成立
D.P(n)对n≤4且n∈N*不成立
4.(2011日照模拟)用数学归纳法证明1+2+3+…+n2=n4+n22,则当n=k+1时左端应在n=k的基础上加上()
A.k2+1
B.(k+1)2
C.k+14+k+122
D.(k2+1)+(k2+2)+(k2+3)+…+(k+1)2
5.(2011湛江月考)已知f(x)是定义域为正整数集的函数,对于定义域内任意的k,若f(k)≥k2成立,则f(k+1)≥(k+1)2成立,下列命题成立的是()
A.若f(3)≥9成立,且对于任意的k≥1,均有f(k)≥k2成立
B.若f(4)≥16成立,则对于任意的k≥4,均有f(k)k2成立
C.若f(7)≥49成立,则对于任意的k7,均有f(k)k2成立
D.若f(4)=25成立,则对于任意的k≥4,均有f(k)≥k2成立
二、填空题(每小题4分,共12分)
6.用数学归纳法证明“1+2+3+…+n+…+3+2+1=n2(n∈N*)”时,从n=k到n=k+1时,该式左边应添加的代数式是________.
7.(2011南京模拟)用数学归纳法证明不等式1n+1+1n+2+…+1n+n1324的过程中,由n=k推导n=k+1时,不等式的左边增加的式子是______________.
8.凸n边形有f(n)条对角线,凸n+1边形有f(n+1)条对角线,则f(n+1)=f(n)+________.
三、解答题(共38分)
9.(12分)用数学归纳法证明1+n2≤1+12+13+…+12n≤12+n(n∈N*).

10.(12分)(2011新乡月考)数列{an}满足an0,Sn=12(an+1an),求S1,S2,猜想Sn,并用数学归纳法证明.

11.(14分)(2011郑州月考)已知函数f(x)=1x2e-1|x|(其中e为自然对数的底数).
(1)判断f(x)的奇偶性;
(2)在(-∞,0)上求函数f(x)的极值;
(3)用数学归纳法证明:当x0时,对任意正整数n都有f(1x)n!x2-n.

学案39数学归纳法
自主梳理
1.一般结论完全不完全2.(1)P1P0(2)PkPk+1
3.(1)n0(n0∈N*)(2)n=k(k≥n0,k∈N*)n=k+1
自我检测
1.C[当n=1时左端有n+2项,∴左端=1+a+a2.]
2.B[由n=2成立,根据递推关系“P(n)对于n=k时成立,则它对n=k+2也成立”,可以推出n=4时成立,再推出n=6时成立,…,依次类推,P(n)对所有正偶数n成立”.]
3.D[当n=2时,中间的式子
1+12+13+122=1+12+13+14.]
4.C[当n=1时,21=12+1;
当n=2时,2222+1;当n=3时,2332+1;
当n=4时,2442+1.而当n=5时,2552+1,∴n0=5.]
5.A[假设当n=k时,原式能被9整除,
即k3+(k+1)3+(k+2)3能被9整除.
当n=k+1时,(k+1)3+(k+2)3+(k+3)3为了能用上面的归纳假设,只需将(k+3)3展开,让其出现k3即可.]
课堂活动区
例1解题导引用数学归纳法证明与正整数有关的一些等式命题,关键在于弄清等式两边的构成规律:等式的两边各有多少项,由n=k到n=k+1时,等式的两边会增加多少项,增加怎样的项.
证明设f(n)=1n+2(n-1)+3(n-2)+…+(n-1)2+n1.
(1)当n=1时,左边=1,右边=1,等式成立;
(2)假设当n=k(k≥1且k∈N*)时等式成立,
即1k+2(k-1)+3(k-2)+…+(k-1)2+k1
=16k(k+1)(k+2),
则当n=k+1时,
f(k+1)=1(k+1)+2[(k+1)-1]+3[(k+1)-2]+…+[(k+1)-1]2+(k+1)1
=f(k)+1+2+3+…+k+(k+1)
=16k(k+1)(k+2)+12(k+1)(k+1+1)
=16(k+1)(k+2)(k+3).
由(1)(2)可知当n∈N*时等式都成立.
变式迁移1证明(1)当n=1时,
左边=1-12=12=11+1=右边,
∴等式成立.
(2)假设当n=k(k≥1,k∈N*)时,等式成立,即
1-12+13-14+…+12k-1-12k
=1k+1+1k+2+…+12k.
则当n=k+1时,
1-12+13-14+…+12k-1-12k+12k+1-12k+2
=1k+1+1k+2+…+12k+12k+1-12k+2
=1k+1+1+1k+1+2+…+12k+12k+1+1k+1-12k+2
=1k+1+1+1k+1+2+…+12k+12k+1+12k+1,
即当n=k+1时,等式也成立,
所以由(1)(2)知对任意的n∈N*等式都成立.
例2解题导引用数学归纳法证明不等式问题时,从n=k到n=k+1的推证过程中,证明不等式的常用方法有比较法、分析法、综合法、放缩法等.
证明(1)当n=2时,左边=1+13=43;右边=52.
∵左边右边,∴不等式成立.
(2)假设当n=k(k≥2,且k∈N*)时不等式成立,
即1+131+15…1+12k-12k+12.
则当n=k+1时,
1+131+15…1+12k-11+12k+1-1
2k+122k+22k+1=2k+222k+1=4k2+8k+422k+1
4k2+8k+322k+1=2k+32k+122k+1=2k+1+12.
∴当n=k+1时,不等式也成立.
由(1)(2)知,对于一切大于1的自然数n,不等式都成立.
变式迁移2证明(1)当m=1时,原不等式成立;
当m=2时,左边=1+2x+x2,右边=1+2x,
因为x2≥0,所以左边≥右边,原不等式成立;
(2)假设当m=k(k≥2,k∈N*)时,不等式成立,
即(1+x)k≥1+kx,则当m=k+1时,
∵x-1,∴1+x0.
于是在不等式(1+x)k≥1+kx两边同时乘以1+x得,
(1+x)k(1+x)≥(1+kx)(1+x)=1+(k+1)x+kx2
≥1+(k+1)x.
所以(1+x)k+1≥1+(k+1)x,
即当m=k+1时,不等式也成立.
综合(1)(2)知,对一切正整数m,不等式都成立.
例3解题导引用数学归纳法证明整除问题,由k过渡到k+1时常使用“配凑法”.在证明n=k+1成立时,先将n=k+1时的原式进行分拆、重组或者添加项等方式进行整理,最终将其变成一个或多个部分的和,其中每个部分都能被约定的数(或式子)整除,从而由部分的整除性得出整体的整除性,最终证得n=k+1时也成立.
证明(1)当n=1时,a2+(a+1)=a2+a+1能被a2+a+1整除.
(2)假设当n=k(k≥1且k∈N*)时,
ak+1+(a+1)2k-1能被a2+a+1整除,
则当n=k+1时,
ak+2+(a+1)2k+1=aak+1+(a+1)2(a+1)2k-1
=aak+1+a(a+1)2k-1+(a2+a+1)(a+1)2k-1
=a[ak+1+(a+1)2k-1]+(a2+a+1)(a+1)2k-1,
由假设可知a[ak+1+(a+1)2k-1]能被a2+a+1整除,
∴ak+2+(a+1)2k+1也能被a2+a+1整除,
即n=k+1时命题也成立.
综合(1)(2)知,对任意的n∈N*命题都成立.
变式迁移3证明(1)当n=1时,f(1)=34-8-9=64,
命题显然成立.
(2)假设当n=k(k≥1,k∈N*)时,
f(k)=32k+2-8k-9能被64整除.
则当n=k+1时,
32(k+1)+2-8(k+1)-9=9(32k+2-8k-9)+98k+99-8(k+1)-9=9(32k+2-8k-9)+64(k+1)
即f(k+1)=9f(k)+64(k+1)
∴n=k+1时命题也成立.
综合(1)(2)可知,对任意的n∈N*,命题都成立.
课后练习区
1.D[A、B、C中,k+1不一定表示奇数,只有D中k为奇数,k+2为奇数.]
2.D
3.D[由题意可知,P(n)对n=3不成立(否则P(n)对n=4也成立).同理可推P(n)对n=2,n=1也不成立.]
4.D[∵当n=k时,左端=1+2+3+…+k2,
当n=k+1时,
左端=1+2+3+…+k2+(k2+1)+…+(k+1)2,
∴当n=k+1时,左端应在n=k的基础上加上
(k2+1)+(k2+2)+(k2+3)+…+(k+1)2.]
5.D[f(4)=2542,∴k≥4,均有f(k)≥k2.
仅有D选项符合题意.]
6.2k+1
解析∵当n=k+1时,
左边=1+2+…+k+(k+1)+k+…+2+1,
∴从n=k到n=k+1时,应添加的代数式为(k+1)+k=2k+1.
7.12k+12k+2
解析不等式的左边增加的式子是
12k+1+12k+2-1k+1=12k+12k+2.
8.n-1
解析∵f(4)=f(3)+2,f(5)=f(4)+3,
f(6)=f(5)+4,…,∴f(n+1)=f(n)+n-1.
9.证明(1)当n=1时,左边=1+12,右边=12+1,
∴32≤1+12≤32,命题成立.(2分)
当n=2时,左边=1+22=2;右边=12+2=52,
∴21+12+13+1452,命题成立.(4分)
(2)假设当n=k(k≥2,k∈N*)时命题成立,
即1+k21+12+13+…+12k12+k,(6分)
则当n=k+1时,
1+12+13+…+12k+12k+1+12k+2+…+12k+2k1+k2+2k12k+1=1+k+12.(8分)
又1+12+13+…+12k+12k+1+12k+2+…+12k+2k12+k+2k12k=12+(k+1),
即n=k+1时,命题也成立.(10分)
由(1)(2)可知,命题对所有n∈N*都成立.(12分)
10.解∵an0,∴Sn0,
由S1=12(a1+1a1),变形整理得S21=1,
取正根得S1=1.
由S2=12(a2+1a2)及a2=S2-S1=S2-1得
S2=12(S2-1+1S2-1),
变形整理得S22=2,取正根得S2=2.
同理可求得S3=3.由此猜想Sn=n.(4分)
用数学归纳法证明如下:
(1)当n=1时,上面已求出S1=1,结论成立.
(6分)
(2)假设当n=k时,结论成立,即Sk=k.
那么,当n=k+1时,
Sk+1=12(ak+1+1ak+1)=12(Sk+1-Sk+1Sk+1-Sk)
=12(Sk+1-k+1Sk+1-k).
整理得S2k+1=k+1,取正根得Sk+1=k+1.
故当n=k+1时,结论成立.(11分)
由(1)、(2)可知,对一切n∈N*,Sn=n都成立.
(12分)
11.(1)解∵函数f(x)定义域为{x∈R|x≠0}
且f(-x)=1-x2=1x2=f(x),
∴f(x)是偶函数.(4分)
(2)解当x0时,f(x)=1x2,
f′(x)=-2x3+1x2(-1x2)
=-1x4(2x+1),(6分)
令f′(x)=0有x=-12,
当x变化时,f′(x),f(x)的变化情况如下表:
x(-∞,-12)
-12
(-12,0)

f′(x)+0-
f(x)增极大值减
由表可知:当x=-12时,f(x)取极大值4e-2,
无极小值.(8分)
(3)证明当x0时f(x)=1x2,∴f(1x)=x2e-x.
考虑到:x0时,不等式f(1x)n!x2-n等价于x2e-xn!x2-nxnn!ex(ⅰ)(9分)
所以只要用数学归纳法证明不等式(ⅰ)对一切n∈N*都成立即可.
①当n=1时,设g(x)=ex-x(x0),
∵x0时,g′(x)=ex-10,∴g(x)是增函数,
故g(x)g(0)=10,即exx(x0).
所以当n=1时,不等式(ⅰ)成立.(10分)
②假设n=k(k≥1,k∈N*)时,不等式(ⅰ)成立,
即xkk!ex,
当n=k+1时,设h(x)=(k+1)!ex-xk+1(x0),
h′(x)=(k+1)!ex-(k+1)xk=(k+1)(k!ex-xk)0,
故h(x)=(k+1)!ex-xk+1(x0)为增函数,
∴h(x)h(0)=(k+1)!0,
∴xk+1(k+1)!ex,
即n=k+1时,不等式(ⅰ)也成立,(13分)
由①②知不等式(ⅰ)对一切n∈N*都成立,
故当x0时,原不等式对n∈N*都成立.(14分)

高考数学理科一轮复习定积分及其简单的应用学案(带答案)


学案16定积分及其简单的应用
导学目标:1.以求曲边梯形的面积和汽车变速行驶的路程为背景准确理解定积分的概念.2.理解定积分的简单性质并会简单应用.3.会说出定积分的几何意义,能根据几何意义解释定积分.4.会用求导公式和导数运算法则,反方向求使F′(x)=f(x)的F(x),并运用牛顿—莱布尼茨公式求f(x)的定积分.5.会通过求定积分的方法求由已知曲线围成的平面图形的面积.6.能熟练运用定积分求变速直线运动的路程.7.会用定积分求变力所做的功.
自主梳理
1.定积分的几何意义:如果在区间[a,b]上函数f(x)连续且恒有f(x)≥0,那么函数f(x)在区间[a,b]上的定积分的几何意义是直线________________________所围成的曲边梯形的________.
2.定积分的性质
(1)bakf(x)dx=__________________(k为常数);
(2)ba[f1(x)±f2(x)]dx=_____________________________________;
(3)baf(x)dx=_______________________________________.
3.微积分基本定理
一般地,如果f(x)是区间[a,b]上的连续函数,并且F′(x)=f(x),那么baf(x)dx=F(b)-F(a),这个结论叫做__________________,为了方便,我们常把F(b)-F(a)记成__________________,即baf(x)dx=F(x)|ba=F(b)-F(a).
4.定积分在几何中的应用
(1)当x∈[a,b]且f(x)0时,由直线x=a,x=b(a≠b),y=0和曲线y=f(x)围成的曲边梯形的面积S=__________________.
(2)当x∈[a,b]且f(x)0时,由直线x=a,x=b(a≠b),y=0和曲线y=f(x)围成的曲边梯形的面积S=__________________.
(3)当x∈[a,b]且f(x)g(x)0时,由直线x=a,x=b(a≠b)和曲线y=f(x),y=g(x)围成的平面图形的面积S=______________________.
(4)若f(x)是偶函数,则a-af(x)dx=2a0f(x)dx;若f(x)是奇函数,则a-af(x)dx=0.
5.定积分在物理中的应用
(1)匀变速运动的路程公式
做变速直线运动的物体所经过的路程s,等于其速度函数v=v(t)[v(t)≥0]在时间区间[a,b]上的定积分,即________________________.
(2)变力做功公式
一物体在变力F(x)(单位:N)的作用下做直线运动,如果物体沿着与F相同的方向从x=a移动到x=b(ab)(单位:m),则力F所做的功W=__________________________.
自我检测
1.计算定积分503xdx的值为()
A.752B.75
C.252D.25
2.定积分10[1-x-12-x]dx等于()
A.π-24B.π2-1
C.π-14D.π-12
3.如右图所示,阴影部分的面积是()
A.23B.2-3
C.323D.353
4.(2010湖南)421xdx等于()
A.-2ln2B.2ln2
C.-ln2D.ln2
5.若由曲线y=x2+k2与直线y=2kx及y轴所围成的平面图形的面积S=9,则k=________.
探究点一求定积分的值
例1计算下列定积分:
(1);
(2);
(3)π0(2sinx-3ex+2)dx;
(4)20|x2-1|dx.

变式迁移1计算下列定积分:
(1)2π0|sinx|dx;(2)π0sin2xdx.

探究点二求曲线围成的面积
例2计算由抛物线y=12x2和y=3-(x-1)2所围成的平面图形的面积S.

变式迁移2计算曲线y=x2-2x+3与直线y=x+3所围图形的面积.

探究点三定积分在物理中的应用
例3一辆汽车的速度-时间曲线如图所示,求此汽车在这1min内所行驶的路程.

变式迁移3A、B两站相距7.2km,一辆电车从A站开往B站,电车开出ts后到达途中C点,这一段速度为1.2tm/s,到C点时速度达24m/s,从C点到B点前的D点以匀速行驶,从D点开始刹车,经ts后,速度为(24-1.2t)m/s,在B点恰好停车,试求:
(1)A、C间的距离;
(2)B、D间的距离;
(3)电车从A站到B站所需的时间.

函数思想的应用
例(12分)在区间[0,1]上给定曲线y=x2.试在此区间内确定点t的值,使图中的阴影部分的面积S1与S2之和最小,并求最小值.
【答题模板】
解S1面积等于边长为t与t2的矩形面积去掉曲线y=x2与x轴、直线x=t所围成的面积,即S1=tt2-t0x2dx=23t3.[2分]
S2的面积等于曲线y=x2与x轴,x=t,x=1围成的面积去掉矩形面积,矩形边长分别为t2,1-t,即S2=1tx2dx-t2(1-t)=23t3-t2+13.[4分]
所以阴影部分面积S=S1+S2=43t3-t2+13(0≤t≤1).[6分]
令S′(t)=4t2-2t=4tt-12=0时,得t=0或t=12.[8分]
t=0时,S=13;t=12时,S=14;t=1时,S=23.[10分]
所以当t=12时,S最小,且最小值为14.[12分]
【突破思维障碍】
本题既不是直接求曲边梯形面积问题,也不是直接求函数的最小值问题,而是先利用定积分求出面积的和,然后利用导数的知识求面积和的最小值,难点在于把用导数求函数最小值的问题置于先求定积分的题境中,突出考查学生知识的迁移能力和导数的应用意识.
1.定积分baf(x)dx的几何意义就是表示由直线x=a,x=b(a≠b),y=0和曲线y=f(x)围成的曲边梯形的面积;反过来,如果知道一个这样的曲边梯形的面积也就知道了相应定积分的值,如204-x2dx=π(半径为2的14个圆的面积),2-24-x2dx=2π.
2.运用定积分的性质可以化简定积分计算,也可以把一个函数的定积分化成几个简单函数定积分的和或差.
3.计算一些简单的定积分问题,解题步骤是:第一步,把被积函数变形为幂函数、正弦函数、余弦函数、指数函数与常数积的和或差;第二步,把定积分用定积分性质变形为求被积函数为上述函数的定积分;第三步,分别用求导公式找到一个相应的使F′(x)=f(x)的F(x);第四步,再分别用牛顿—莱布尼茨公式求各个定积分的值后计算原定积分的值.
(满分:75分)
一、选择题(每小题5分,共25分)
1.下列值等于1的积分是()
A.10xdxB.10(x+1)dx
C.1012dxD.101dx
2.(2011汕头模拟)设函数f(x)=x2+1,0≤x≤1,3-x,1x≤2,则20f(x)dx等于()
A.13B.176
C.6D.17
3.已知f(x)为偶函数且60f(x)dx=8,则6-6f(x)dx等于()
A.0B.4C.8D.16
4.(2011深圳模拟)曲线y=sinx,y=cosx与直线x=0,x=π2所围成的平面区域的面积为()
A.π20(sinx-cosx)dx
B.2π40(sinx-cosx)dx
C.π20(cosx-sinx)dx
D.2π40(cosx-sinx)dx
5.(2011临渭区高三调研)函数f(x)=x0t(t-4)dt在[-1,5]上()
A.有最大值0,无最小值
B.有最大值0,最小值-323
C.有最小值-323,无最大值
D.既无最大值也无最小值
题号12345
答案
二、填空题(每小题4分,共12分)
6.若1N的力使弹簧伸长2cm,则使弹簧伸长12cm时克服弹力做的功为__________J.
7.10(2xk+1)dx=2,则k=________.
8.(2010山东实验中学高三三诊)若f(x)在R上可导,f(x)=x2+2f′(2)x+3,则30f(x)dx=________.
三、解答题(共38分)
9.(12分)计算以下定积分:
(1)212x2-1xdx;(2)32x+1x2dx;
(3)π30(sinx-sin2x)dx;(4)21|3-2x|dx.

10.(12分)设y=f(x)是二次函数,方程f(x)=0有两个相等的实根,且f′(x)=2x-2.
(1)求y=f(x)的表达式;
(2)求y=f(x)的图象与两坐标轴所围成图形的面积.

11.(14分)求曲线y=ex-1与直线x=-ln2,y=e-1所围成的平面图形的面积.

答案自主梳理
1.x=a,x=b(a≠b),y=0和曲线y=f(x)面积
2.(1)kbaf(x)dx(2)baf1(x)dx±baf2(x)dx(3)caf(x)dx+bcf(x)dx(其中acb)
3.微积分基本定理F(x)|ba4.(1)baf(x)dx(2)-baf(x)dx(3)ba[f(x)-g(x)]dx
5.(1)s=bav(t)dt(2)baF(x)dx
自我检测
1.A2.A3.C4.D
5.±3
解析由y=x2+k2,y=2kx.
得(x-k)2=0,
即x=k,
所以直线与曲线相切,如图所示,
当k0时,S=k0(x2+k2-2kx)dx
=k0(x-k)2dx=13(x-k)3|k0=0-13(-k)3=k33,
由题意知k33=9,∴k=3.
由图象的对称性可知k=-3也满足题意,故k=±3.
课堂活动区
例1解题导引(1)与绝对值有关的函数均可化为分段函数.
①分段函数在区间[a,b]上的积分可分成几段积分的和的形式.
②分段的标准是使每一段上的函数表达式确定,按照原函数分段的情况分即可,无需分得过细.
(2)f(x)是偶函数,且在关于原点对称的区间[-a,a]上连续,则a-af(x)dx=2a0f(x)dx.
解(1)e1x+1x+1x2dx
=e1xdx+e11xdx+e11x2dx
=12x2|e1+lnx|e1-1x|e1
=12(e2-1)+(lne-ln1)-1e-11
=12e2-1e+32.
(2)π20(sinx-2cosx)dx
=π20sinxdx-2π20cosxdx
=(-cosx)|π20-2sinx|π20
=-cosπ2-(-cos0)-2sinπ2-sin0
=-1.
(3)π0(2sinx-3ex+2)dx
=2π0sinxdx-3π0exdx+π02dx
=2(-cosx)|π0-3ex|π0+2x|π0
=2[(-cosπ)-(-cos0)]-3(eπ-e0)+2(π-0)
=7-3eπ+2π.
(4)∵0≤x≤2,
于是|x2-1|=x2-1,1x≤2,1-x2,0≤x≤1,
∴20|x2-1|dx=10(1-x2)dx+21(x2-1)dx
=x-13x3|10+13x3-x|21=2.
变式迁移1解(1)∵(-cosx)′=sinx,
∴2π0|sinx|dx=π0|sinx|dx+2ππ|sinx|dx
=π0sinxdx-2ππsinxdx
=-cosx|π0+cosx|2ππ
=-(cosπ-cos0)+(cos2π-cosπ)=4.
(2)π0sin2xdx=π012-12cos2xdx
=π012dx-12π0cos2xdx
=12x|π0-1212sin2x|π0
=π2-0-1212sin2π-12sin0
=π2.
例2解题导引求曲线围成的面积的一般步骤为:(1)作出曲线的图象,确定所要求的面积;(2)联立方程解出交点坐标;(3)用定积分表示所求的面积;(4)求出定积分的值.
解作出函数y=12x2和y=3-(x-1)2的图象(如图所示),则所求平面图形的面积S为图中阴影部分的面积.
解方程组y=12x2,y=3-x-12,得x=-23,y=29或x=2,y=2.
所以两曲线交点为A-23,29,B(2,2).
所以S=2-23[3-(x-1)2]dx-2-2312x2dx
=2-23(-x2+2x+2)dx-2-2312x2dx
=-13x3+x2+2x2-23-16x32-23
=-83+4+4-881+49-43-16×8+827
=42027.
变式迁移2解
如图,
设f(x)=x+3,
g(x)=x2-2x+3,
两函数图象的交点为A,B,
由y=x+3,y=x2-2x+3.
得x=0,y=3或x=3,y=6.
∴曲线y=x2-2x+3与直线y=x+3所围图形的面积
S=30[f(x)-g(x)]dx
=30[(x+3)-(x2-2x+3)dx]
=30(-x2+3x)dx
=-13x3+32x2|30=92.
故曲线与直线所围图形的面积为92.
例3解题导引用定积分解决变速运动的位置与路程问题时,将物理问题转化为数学问题是关键.变速直线运动的速度函数往往是分段函数,故求积分时要利用积分的性质将其分成几段积分,然后求出积分的和,即可得到答案.s(t)求导后得到速度,对速度积分则得到路程.
解方法一由速度—时间曲线易知.
v(t)=3t,t∈[0,10,30,t∈[10,40,-1.5t+90,t∈[40,60],
由变速直线运动的路程公式可得
s=1003tdt+401030dt+6040(-1.5t+90)dt
=32t2|100+30t|4010+-34t2+90t|6040=1350(m).
答此汽车在这1min内所行驶的路程是1350m.
方法二由定积分的物理意义知,汽车1min内所行驶的路程就是速度函数在[0,60]上的积分,也就是其速度曲线与x轴围成梯形的面积,
∴s=12(AB+OC)×30=12×(30+60)×30=1350(m).
答此汽车在这1min内所行驶的路程是1350m.
变式迁移3解(1)设v(t)=1.2t,令v(t)=24,∴t=20.
∴A、C间距离|AC|=2001.2tdt
=(0.6t2)|200=0.6×202=240(m).
(2)由D到B时段的速度公式为
v(t)=(24-1.2t)m/s,可知|BD|=|AC|=240(m).
(3)∵|AC|=|BD|=240(m),
∴|CD|=7200-240×2=6720(m).
∴C、D段用时672024=280(s).
又A、C段与B、D段用时均为20s,
∴共用时280+20+20=320(s).
课后练习区
1.D2.B3.D4.D5.B
6.0.36
解析设力F与弹簧伸长的长度x的关系式为F=kx,
则1=k×0.02,∴k=50,
∴F=50x,伸长12cm时克服弹力做的功
W=0.12050xdx=502x2|0.120=502×0.122=0.36(J).
7.1
解析∵10(2xk+1)dx=2k+1xk+1+x10
=2k+1+1=2,∴k=1.
8.-18
解析∵f′(x)=2x+2f′(2),∴f′(2)=4+2f′(2),
即f′(2)=-4,∴f(x)=x2-8x+3,
∴30f(x)dx=13×33-4×32+3×3=-18.
9.解(1)函数y=2x2-1x的一个原函数是y=23x3-lnx,
所以212x2-1xdx=23x3-lnx21
=163-ln2-23=143-ln2.………………………………………………………………(3分)
(2)32x+1x2dx=32x+1x+2dx
=12x2+lnx+2x32
=92+ln3+6-(2+ln2+4)
=ln32+92.…………………………………………………………………………………(6分)
(3)函数y=sinx-sin2x的一个原函数为
y=-cosx+12cos2x,所以π30(sinx-sin2x)dx
=-cosx+12cos2xπ30
=-12-14--1+12=-14.……………………………………………………………(9分)
=(3x-x2)|321+(x2-3x)|232=12.…………………………………………………………(12分)
10.解(1)设f(x)=ax2+bx+c(a≠0),
则f′(x)=2ax+b.又f′(x)=2x-2,
所以a=1,b=-2,即f(x)=x2-2x+c.………………………………………………(4分)
又方程f(x)=0有两个相等实根,
所以Δ=4-4c=0,即c=1.
故f(x)=x2-2x+1.………………………………………………………………………(8分)
(2)依题意,所求面积S=10(x2-2x+1)dx
=13x3-x2+x|10=13.……………………………………………………………………(12分)
11.解画出直线x=-ln2,y=e-1及曲线y=ex-1如图所示,则所求面积为图中阴影部分的面积.
由y=e-1,y=ex-1,解得B(1,e-1).
由x=-ln2,y=ex-1,解得A-ln2,-12.…………………………………………………(4分)
此时,C(-ln2,e-1),D(-ln2,0).
所以S=S曲边梯形BCDO+S曲边三角形OAD
=1-ln2(e-1)dx-10(ex-1)dx+?0-ln2ex-1dx………………………………………(7分)
=(e-1)x|1-ln2-(ex-x)|10+|(ex-x)|0-ln2|………………………………………………(10分)
=(e-1)(1+ln2)-(e-1-e0)+|e0-(e-ln2+ln2)|
=(e-1)(1+ln2)-(e-2)+ln2-12
=eln2+12.……………………………………………………………………………(14分)