88教案网

你的位置: 教案 > 高中教案 > 导航 > 平面向量的坐标表示

高中向量的教案

发表时间:2020-10-13

平面向量的坐标表示。

一名优秀的教师在教学方面无论做什么事都有计划和准备,作为教师就要精心准备好合适的教案。教案可以让上课时的教学氛围非常活跃,有效的提高课堂的教学效率。写好一份优质的教案要怎么做呢?下面是小编帮大家编辑的《平面向量的坐标表示》,仅供您在工作和学习中参考。

总课题向量的坐标表示总课时第23课时
分课题平面向量的坐标运算分课时第2课时
教学目标掌握平面向量的坐标表示及坐标运算
重点难点掌握平面向量的坐标表示及坐标运算;平面向量坐标表示的理解
引入新课
1、在直角坐标平面内一点是如何表示的?。
2、以原点为起点,为终点,能不能也用坐标来表示呢?例:
3、平面向量的坐标表示。

4、平面向量的坐标运算。
已知、、实数,那么
;;。
例题剖析
例1、如图,已知是坐标原点,点在第一象限,,,求向量的坐标。

例2、如图,已知,,,,求向量,,,的坐标。

例3、用向量的坐标运算解:如图,质量为的物体静止的放在斜面上,斜面与水平面的夹角为,求斜面对物体的摩擦力。

例4、已知,,是直线上一点,且,求点的坐标。
巩固练习
1、与向量平行的单位向量为()
、、、或、

2、已知是坐标原点,点在第二象限,,,求向量的坐标。

3、已知四边形的顶点分别为,,,,求向量,的坐标,并证明四边形是平行四边形。
4、已知作用在原点的三个力,,,求它们的合力的坐标。
5、已知是坐标原点,,,且,求的坐标。
课堂小结
平面向量的坐标表示;平面向量的坐标运算。
课后训练
班级:高一()班姓名__________
一、基础题
1、若向量,,则,的坐标分别为()
、,、,、,、,
2、已知,终点坐标是,则起点坐标是。
3、已知,,向量与相等.则。
4、已知点,,,则。
5、已知的终点在以,为端点的线段上,则的最大值和最小值分别等于。
6、已知平行四边形的三个顶点坐标分别为,,,求第四个顶点的坐标。

7、已知向量,,点为坐标原点,若向量,,求向量的坐标。

8、已知点,及,,求点,和的坐标。

三、能力题
9、已知点,,,若点满足,
当为何值时:(1)点在直线上?(2)点在第四象限内?

扩展阅读

2.3.3平面向量的正交分解及坐标表示平面向量的坐标运算


2.3.22.3.3平面向量的正交分解及坐标表示
平面向量的坐标运算

预习课本P94~98,思考并完成以下问题
(1)怎样分解一个向量才为正交分解?
(2)如何由a,b的坐标求a+b,a-b,λa的坐标?
[新知初探]
1.平面向量正交分解的定义
把一个平面向量分解为两个互相垂直的向量.
2.平面向量的坐标表示
(1)基底:在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i,j作为基底.
(2)坐标:对于平面内的一个向量a,有且仅有一对实数x,y,使得a=xi+yj,则有序实数对(x,y)叫做向量a的坐标.
(3)坐标表示:a=(x,y).
(4)特殊向量的坐标:i=(1,0),j=(0,1),0=(0,0).
[点睛](1)平面向量的正交分解实质上是平面向量基本定理的一种应用形式,只是两个基向量e1和e2互相垂直.
(2)由向量坐标的定义,知两向量相等的充要条件是它们的横、纵坐标对应相等,即a=bx1=x2且y1=y2,其中a=(x1,y1),b=(x2,y2).
3.平面向量的坐标运算
设向量a=(x1,y1),b=(x2,y2),λ∈R,则有下表:
文字描述符号表示
加法两个向量和的坐标分别等于这两个向量相应坐标的和a+b=(x1+x2,y1+y2)
减法两个向量差的坐标分别等于这两个向量相应坐标的差a-b=(x1-x2,y1-y2)
数乘实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标λa=(λx1,λy1)
重要结论一个向量的坐标等于表示此向量的有向线段的终点的坐标减去起点的坐标已知A(x1,y1),
B(x2,y2),则=(x2-x1,y2-y1)
[点睛](1)向量的坐标只与起点、终点的相对位置有关,而与它们的具体位置无关.
(2)当向量确定以后,向量的坐标就是唯一确定的,因此向量在平移前后,其坐标不变.
[小试身手]
1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)
(1)相等向量的坐标相同与向量的起点、终点无关.()
(2)当向量的始点在坐标原点时,向量的坐标就是向量终点的坐标.()
(3)两向量差的坐标与两向量的顺序无关.()
(4)点的坐标与向量的坐标相同.()
答案:(1)√(2)√(3)×(4)×
2.若a=(2,1),b=(1,0),则3a+2b的坐标是()
A.(5,3)B.(4,3)
C.(8,3)D.(0,-1)
答案:C
3.若向量=(1,2),=(3,4),则=()
A.(4,6)B.(-4,-6)
C.(-2,-2)D.(2,2)
答案:A
4.若点M(3,5),点N(2,1),用坐标表示向量=______.
答案:(-1,-4)

平面向量的坐标表示

[典例]
如图,在边长为1的正方形ABCD中,AB与x轴正半轴成30°角.求点B和点D的坐标和与的坐标.
[解]由题知B,D分别是30°,120°角的终边与单位圆的交点.
设B(x1,y1),D(x2,y2).
由三角函数的定义,得
x1=cos30°=32,y1=sin30°=12,∴B32,12.
x2=cos120°=-12,y2=sin120°=32,
∴D-12,32.
∴=32,12,=-12,32.

求点和向量坐标的常用方法
(1)求一个点的坐标,可以转化为求该点相对于坐标原点的位置向量的坐标.
(2)在求一个向量时,可以首先求出这个向量的起点坐标和终点坐标,再运用终点坐标减去起点坐标得到该向量的坐标.

[活学活用]
已知O是坐标原点,点A在第一象限,||=43,∠xOA=60°,
(1)求向量的坐标;
(2)若B(3,-1),求的坐标.
解:(1)设点A(x,y),则x=43cos60°=23,
y=43sin60°=6,即A(23,6),=(23,6).
(2)=(23,6)-(3,-1)=(3,7).
平面向量的坐标运算
[典例](1)已知三点A(2,-1),B(3,4),C(-2,0),则向量3+2=________,-2=________.
(2)已知向量a,b的坐标分别是(-1,2),(3,-5),求a+b,a-b,3a,2a+3b的坐标.
[解析](1)∵A(2,-1),B(3,4),C(-2,0),
∴=(1,5),=(4,-1),=(-5,-4).
∴3+2=3(1,5)+2(4,-1)
=(3+8,15-2)
=(11,13).
-2=(-5,-4)-2(1,5)
=(-5-2,-4-10)
=(-7,-14).
[答案](11,13)(-7,-14)
(2)解:a+b=(-1,2)+(3,-5)=(2,-3),
a-b=(-1,2)-(3,-5)=(-4,7),
3a=3(-1,2)=(-3,6),
2a+3b=2(-1,2)+3(3,-5)
=(-2,4)+(9,-15)
=(7,-11).
平面向量坐标运算的技巧
(1)若已知向量的坐标,则直接应用两个向量和、差及向量数乘的运算法则进行.
(2)若已知有向线段两端点的坐标,则可先求出向量的坐标,然后再进行向量的坐标运算.
(3)向量的线性坐标运算可完全类比数的运算进行.

[活学活用]
1.设平面向量a=(3,5),b=(-2,1),则a-2b=()
A.(7,3)B.(7,7)
C.(1,7)D.(1,3)
解析:选A∵2b=2(-2,1)=(-4,2),
∴a-2b=(3,5)-(-4,2)=(7,3).
2.已知M(3,-2),N(-5,-1),=12,则P点坐标为______.
解析:设P(x,y),=(x-3,y+2),=(-8,1),
∴=12=12(-8,1)=-4,12,
∴x-3=-4,y+2=12.∴x=-1,y=-32.
答案:-1,-32

向量坐标运算的综合应用
[典例]已知点O(0,0),A(1,2),B(4,5)及=+t,t为何值时,点P在x轴上?点P在y轴上?点P在第二象限?
[解]因为=+t=(1,2)+t(3,3)=(1+3t,2+3t),
若点P在x轴上,则2+3t=0,
所以t=-23.
若点P在y轴上,则1+3t=0,
所以t=-13.
若点P在第二象限,则1+3t<0,2+3t>0,
所以-23<t<-13.
[一题多变]
1.[变条件]本例中条件“点P在x轴上,点P在y轴上,点P在第二象限”若换为“B为线段AP的中点”试求t的值.
解:由典例知P(1+3t,2+3t),
则1+1+3t2=4,2+2+3t2=5,解得t=2.
2.[变设问]本例条件不变,试问四边形OABP能为平行四边形吗?若能,求出t值;若不能,说明理由.
解:=(1,2),=(3-3t,3-3t).若四边形OABP为平行四边形,则=,
所以3-3t=1,3-3t=2,该方程组无解.
故四边形OABP不能成为平行四边形.
向量中含参数问题的求解
(1)向量的坐标含有两个量:横坐标和纵坐标,如果横或纵坐标是一个变量,则表示向量的点的坐标的位置会随之改变.
(2)解答这类由参数决定点的位置的题目,关键是列出满足条件的含参数的方程(组),解这个方程(组),就能达到解题的目的.
层级一学业水平达标
1.如果用i,j分别表示x轴和y轴方向上的单位向量,且A(2,3),B(4,2),则可以表示为()
A.2i+3jB.4i+2j
C.2i-jD.-2i+j
解析:选C记O为坐标原点,则=2i+3j,=4i+2j,所以=-=2i-j.
2.已知=a,且A12,4,B14,2,又λ=12,则λa等于()
A.-18,-1B.14,3
C.18,1D.-14,-3
解析:选A∵a==14,2-12,4=-14,-2,
∴λa=12a=-18,-1.
3.已知向量a=(1,2),2a+b=(3,2),则b=()
A.(1,-2)B.(1,2)
C.(5,6)D.(2,0)
解析:选Ab=(3,2)-2a=(3,2)-(2,4)=(1,-2).
4.在平行四边形ABCD中,AC为一条对角线,=(2,4),=(1,3),则=()
A.(2,4)B.(3,5)
C.(1,1)D.(-1,-1)
解析:选C=-=-=-(-)=(1,1).
5.已知M(-2,7),N(10,-2),点P是线段MN上的点,且=-2,则P点的坐标为()
A.(-14,16)B.(22,-11)
C.(6,1)D.(2,4)
解析:选D设P(x,y),则=(10-x,-2-y),=(-2-x,7-y),
由=-2得10-x=4+2x,-2-y=-14+2y,所以x=2,y=4.
6.(江苏高考)已知向量a=(2,1),b=(1,-2),若ma+nb=(9,-8)(m,n∈R),则m-n的值为________.
解析:∵ma+nb=(2m+n,m-2n)=(9,-8),
∴2m+n=9,m-2n=-8,∴m=2,n=5,∴m-n=2-5=-3.
答案:-3
7.若A(2,-1),B(4,2),C(1,5),则+2=________.
解析:∵A(2,-1),B(4,2),C(1,5),
∴=(2,3),=(-3,3).
∴+2=(2,3)+2(-3,3)=(2,3)+(-6,6)=(-4,9).
答案:(-4,9)
8.已知O是坐标原点,点A在第二象限,||=6,∠xOA=150°,向量的坐标为________.
解析:设点A(x,y),则x=||cos150°=6cos150°=-33,
y=||sin150°=6sin150°=3,
即A(-33,3),所以=(-33,3).
答案:(-33,3)
9.已知a=,B点坐标为(1,0),b=(-3,4),c=(-1,1),且a=3b-2c,求点A的坐标.
解:∵b=(-3,4),c=(-1,1),
∴3b-2c=3(-3,4)-2(-1,1)=(-9,12)-(-2,2)=(-7,10),
即a=(-7,10)=.
又B(1,0),设A点坐标为(x,y),
则=(1-x,0-y)=(-7,10),
∴1-x=-7,0-y=10x=8,y=-10,
即A点坐标为(8,-10).
10.已知向量=(4,3),=(-3,-1),点A(-1,-2).
(1)求线段BD的中点M的坐标.
(2)若点P(2,y)满足=λ(λ∈R),求λ与y的值.
解:(1)设B(x1,y1),
因为=(4,3),A(-1,-2),
所以(x1+1,y1+2)=(4,3),
所以x1+1=4,y1+2=3,所以x1=3,y1=1,
所以B(3,1).
同理可得D(-4,-3),
设BD的中点M(x2,y2),
则x2=3-42=-12,y2=1-32=-1,
所以M-12,-1.
(2)由=(3,1)-(2,y)=(1,1-y),
=(-4,-3)-(3,1)=(-7,-4),
又=λ(λ∈R),
所以(1,1-y)=λ(-7,-4)=(-7λ,-4λ),
所以1=-7λ,1-y=-4λ,所以λ=-17,y=37.

层级二应试能力达标
1.已知向量=(2,4),=(0,2),则12=()
A.(-2,-2)B.(2,2)
C.(1,1)D.(-1,-1)
解析:选D12=12(-)=12(-2,-2)=(-1,-1),故选D.
2.已知向量a=(1,2),b=(2,3),c=(3,4),且c=λ1a+λ2b,则λ1,λ2的值分别为()
A.-2,1B.1,-2
C.2,-1D.-1,2
解析:选D∵c=λ1a+λ2b,
∴(3,4)=λ1(1,2)+λ2(2,3)=(λ1+2λ2,2λ1+3λ2),
∴λ1+2λ2=3,2λ1+3λ2=4,解得λ1=-1,λ2=2.
3.已知四边形ABCD的三个顶点A(0,2),B(-1,-2),C(3,1),且=2,则顶点D的坐标为()
A.2,72B.2,-12
C.(3,2)D.(1,3)
解析:选A设点D(m,n),则由题意得(4,3)=2(m,n-2)=(2m,2n-4),故2m=4,2n-4=3,解得m=2,n=72,即点D2,72,故选A.
4.对于任意的两个向量m=(a,b),n=(c,d),规定运算“?”为m?n=(ac-bd,bc+ad),运算“?”为m?n=(a+c,b+d).设f=(p,q),若(1,2)?f=(5,0),则(1,2)?f等于()
A.(4,0)B.(2,0)
C.(0,2)D.(0,-4)
解析:选B由(1,2)f=(5,0),得p-2q=5,2p+q=0,解得p=1,q=-2,所以f=(1,-2),所以(1,2)?f=(1,2)?(1,-2)=(2,0).
5.已知向量i=(1,0),j=(0,1),对坐标平面内的任一向量a,给出下列四个结论:
①存在唯一的一对实数x,y,使得a=(x,y);
②若x1,x2,y1,y2∈R,a=(x1,y1)≠(x2,y2),则x1≠x2,且y1≠y2;
③若x,y∈R,a=(x,y),且a≠0,则a的起点是原点O;
④若x,y∈R,a≠0,且a的终点坐标是(x,y),则a=(x,y).
其中,正确结论有________个.
解析:由平面向量基本定理,可知①正确;例如,a=(1,0)≠(1,3),但1=1,故②错误;因为向量可以平移,所以a=(x,y)与a的起点是不是原点无关,故③错误;当a的终点坐标是(x,y)时,a=(x,y)是以a的起点是原点为前提的,故④错误.
答案:1
6.已知A(-3,0),B(0,2),O为坐标原点,点C在∠AOB内,|OC|=22,且∠AOC=π4.设=λ+(λ∈R),则λ=________.
解析:过C作CE⊥x轴于点E,
由∠AOC=π4知,|OE|=|CE|=2,所以=+=λ+,即=λ,所以(-2,0)=λ(-3,0),故λ=23.
答案:23
7.在△ABC中,已知A(7,8),B(3,5),C(4,3),M,N,D分别是AB,AC,BC的中点,且MN与AD交于点F,求的坐标.
解:∵A(7,8),B(3,5),C(4,3),
∴=(3-7,5-8)=(-4,-3),
=(4-7,3-8)=(-3,-5).
∵D是BC的中点,
∴=12(+)=12(-4-3,-3-5)
=12(-7,-8)=-72,-4.
∵M,N分别为AB,AC的中点,∴F为AD的中点.
∴=-=-12=-12-72,-4=74,2.
8.在直角坐标系xOy中,已知点A(1,1),B(2,3),C(3,2),
(1)若++=0,求的坐标.
(2)若=m+n(m,n∈R),且点P在函数y=x+1的图象上,求m-n.
解:(1)设点P的坐标为(x,y),
因为++=0,
又++=(1-x,1-y)+(2-x,3-y)+(3-x,2-y)=(6-3x,6-3y).
所以6-3x=0,6-3y=0,解得x=2,y=2.
所以点P的坐标为(2,2),
故=(2,2).
(2)设点P的坐标为(x0,y0),因为A(1,1),B(2,3),C(3,2),
所以=(2,3)-(1,1)=(1,2),
=(3,2)-(1,1)=(2,1),
因为=m+n,
所以(x0,y0)=m(1,2)+n(2,1)=(m+2n,2m+n),所以x0=m+2n,y0=2m+n,
两式相减得m-n=y0-x0,
又因为点P在函数y=x+1的图象上,
所以y0-x0=1,所以m-n=1.

平面向量数量积的坐标表示


平面向量数量积的坐标表示
教学目标
1.正确理解掌握两个向量数量积的坐标表示方法,能通过两个向量的坐标求出这两个向量的数量积.
2.掌握两个向量垂直的坐标条件,能运用这一条件去判断两个向量垂直.
3.能运用两个向量的数量积的坐标表示去解决处理有关长度、角度、垂直等问题.
重点:两个向量数量积的坐标表示,向量的长度公式,两个向量垂直的充要条件.
难点:对向量的长度公式,两个向量垂直的充要条件的灵活运用.
教学过程设计
(一)学生复习思考,教师指导.
1.A点坐标(x1,y1),B点坐标(x2,y2).
=________=________
2.A点坐标(x1,y1),B点坐标(x2,y2)
=________
3.向量的数量积满足那些运算律?
(二)教师讲述新课.
前面我们已经学过了两个向量的数量积,如果已知两个向量的坐标,如何用这些坐标来表示两个向量的数量积,这是一个很有价值的问题.
设两个非零向量为=(x1,y1),=(x2,y2).为x轴上的单位向量,为y轴上的单位向量,则=x1+y1,=x2+y2
这就是说:两个向量的数量积等于它们对应坐标的乘积的和.
引入向量的数量积的坐标表示,我们得到下面一些重要结论:
(1)向量模的坐标表示:
(2)平面上两点间的距离公式:
向量的起点和终点坐标分别为A(x1,y1),B(x2,y2),=
(3)两向量的夹角公式
设=(x1,y1),=(x2,y2),=θ.
4.两向量垂直的充要条件的坐标表示
=(x1,y1),=(x2,y2).
即两向量垂直的充要条件是它们对应坐标乘积的和为零.
(三)学生练习,教师指导.
练习1:课本练习1.
已知a(-3,4),(5,2)
练习2:课本练习2.
已知=(2,3),=(-2,4),=(-1,-2).
=2×(-2)+3×4=8,(+)(-)=-7.
(+)=0,(a+b)2=(0,7)(0,7)=49.
练习3:已知A(1,2),B(2,3),C(-2,5).
求证:△ABC是直角三角形.
证:∵=(1,1),=(-3,3),=(-4,2).
经检验,=1×(-3)+1×3=0.
∴⊥,△ABC是直角三角形.
(四)师生共同研究例题.
例1:已知向量=(3,4),=(2,-1).
(1)求与的夹角θ,
(2)若+x与-垂直,求实数x的值.
解:(1)=(3,4),=(2,-1).
(2)+x与-垂直,
(+x)(-)=0,+x=(3,4)+x(2,-1)=(2x+3,4-x)
-=(3,4)-(2,-1)=(1,5).
例2:求证:三角形的三条高线交于一点.
证:设△ABC的BC、AC边上的高交于P点,现分别以BC、PA所在直线为x轴、y轴,建立直角坐标系,设有关各点的坐标为B(x1,0),C(x2,0),A(0,y1),P(0,y).
∵⊥,=(-x1,y),=(-x2,y1).
(-x1)×(-x2)+y×y1=0.
即x1x2+yy1=0.
又=(-x2,y),=(-x1,y1).
=(-x1)×(-x2)+y×y1=x1x2+yy1=0.
∴⊥,CP是AB边上的高.
故三角形的三条高线交于一点.
(五)作业.习题5.71,2,3,4,5.

平面向量的基本定理及坐标表示


一位优秀的教师不打无准备之仗,会提前做好准备,作为高中教师就要精心准备好合适的教案。教案可以让学生更好地进入课堂环境中来,帮助高中教师提高自己的教学质量。那么,你知道高中教案要怎么写呢?下面是小编精心收集整理,为您带来的《平面向量的基本定理及坐标表示》,希望能对您有所帮助,请收藏。

平面向量的基本定理及坐标表示
第4课时
§2.3.1平面向量基本定理
教学目的:
(1)了解平面向量基本定理;
(2)理解平面里的任何一个向量都可以用两个不共线的向量来表示,初步掌握应用向量解决实际问题的重要思想方法;
(3)能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达.
教学重点:平面向量基本定理.
教学难点:平面向量基本定理的理解与应用.
授课类型:新授课
教具:多媒体、实物投影仪
教学过程:
一、复习引入:
1.实数与向量的积:实数λ与向量的积是一个向量,记作:λ
(1)|λ|=|λ|||;(2)λ0时λ与方向相同;λ0时λ与方向相反;λ=0时λ=
2.运算定律
结合律:λ(μ)=(λμ);分配律:(λ+μ)=λ+μ,λ(+)=λ+λ
3.向量共线定理向量与非零向量共线的充要条件是:有且只有一个非零实数λ,使=λ.
二、讲解新课:
平面向量基本定理:如果,是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1,λ2使=λ1+λ2.
探究:
(1)我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;
(2)基底不惟一,关键是不共线;
(3)由定理可将任一向量a在给出基底e1、e2的条件下进行分解;
(4)基底给定时,分解形式惟一.λ1,λ2是被,,唯一确定的数量
三、讲解范例:
例1已知向量,求作向量2.5+3.
例2如图ABCD的两条对角线交于点M,且=,=,用,表示,,和
例3已知ABCD的两条对角线AC与BD交于E,O是任意一点,求证:+++=4
例4(1)如图,,不共线,=t(tR)用,表示.
(2)设不共线,点P在O、A、B所在的平面内,且.求证:A、B、P三点共线.
例5已知a=2e1-3e2,b=2e1+3e2,其中e1,e2不共线,向量c=2e1-9e2,问是否存在这样的实数与c共线.
四、课堂练习:
1.设e1、e2是同一平面内的两个向量,则有()
A.e1、e2一定平行
B.e1、e2的模相等
C.同一平面内的任一向量a都有a=λe1+μe2(λ、μ∈R)
D.若e1、e2不共线,则同一平面内的任一向量a都有a=λe1+ue2(λ、u∈R)
2.已知矢量a=e1-2e2,b=2e1+e2,其中e1、e2不共线,则a+b与c=6e1-2e2的关系
A.不共线B.共线C.相等D.无法确定
3.已知向量e1、e2不共线,实数x、y满足(3x-4y)e1+(2x-3y)e2=6e1+3e2,则x-y的值等于()
A.3B.-3C.0D.2
4.已知a、b不共线,且c=λ1a+λ2b(λ1,λ2∈R),若c与b共线,则λ1=.
5.已知λ1>0,λ2>0,e1、e2是一组基底,且a=λ1e1+λ2e2,则a与e1_____,a与e2_________(填共线或不共线).
五、小结(略)
六、课后作业(略):
七、板书设计(略)
八、课后记: