88教案网

你的位置: 教案 > 高中教案 > 导航 > 导数及其应用复习学案练习题

高中素质练习教案

发表时间:2020-10-31

导数及其应用复习学案练习题。

经验告诉我们,成功是留给有准备的人。高中教师要准备好教案,这是高中教师的任务之一。教案可以让学生更好的消化课堂内容,帮助高中教师在教学期间更好的掌握节奏。那么如何写好我们的高中教案呢?小编经过搜集和处理,为您提供导数及其应用复习学案练习题,供大家参考,希望能帮助到有需要的朋友。

§1导数及其应用复习(1)
一、知识点
1.
2.
3.思想方法:①以曲代直;②逼近思想.
二、基础训练
1.与是定义在上的两个可导函数,若满足,则与满足.
2.函数的导数为.
3.已知曲线上过点的切线方程为,则实数的值是.
4.设质点的运动方程是,则质点的瞬时速度=.
5.下列等于1的积分是.①;②;③;④.
6.的值为.
7.设,则等于.
8.若,且,则的值是.
三、典型例题
例1.求下列函数的导数:
⑴;⑵;⑶;⑷

例2.若,且,求.

四、巩固练习
1.已知函数与的图象都过点,且在处有公共切线,求的表达式.

2.汽车以36km/h的速度行驶,到某处需要减速停下.设汽车以等减速刹车,问:从开始刹车到停车,汽车走了多长距离?
五、课堂小结

六、课后反思
七、课后作业
1.若对任意的,有,则此函数解析式为.
2.已知,则=,=,=.
3.曲线的切线中,斜率最小的切线方程为.
4.设,则等于.
5.曲线与坐标轴所围成的面积是.
6.函数在上有最大值和最小值.
7.若,则的大小关系是.
8.若,则的最大值是.
9.函数的导数为.
10.已知,且,求的值.

11.一辆汽车的速度一时间曲线如图,求该汽车在这1min行驶的路程.

延伸阅读

导数在研究函数中的应用导学案及练习题


一、基础过关
1.命题甲:对任意x∈(a,b),有f′(x)0;命题乙:f(x)在(a,b)内是单调递增的.则甲是乙的()
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
2.函数f(x)=(x-3)ex的单调递增区间是()
A.(-∞,2)B.(0,3)
C.(1,4)D.(2,+∞)
3.函数f(x)=x3+ax2+bx+c,其中a,b,c为实数,当a2-3b0时,f(x)是()
A.增函数
B.减函数
C.常数
D.既不是增函数也不是减函数
4.下列函数中,在(0,+∞)内为增函数的是()
A.y=sinxB.y=xe2
C.y=x3-xD.y=lnx-x
5.函数y=f(x)在其定义域-32,3内可导,其图象如图所示,记y=f(x)的导函数为y=f′(x),则不等式f′(x)≤0的解集为________.
6.函数y=x-2sinx在(0,2π)内的单调递增区间为______.

7.已知函数y=f(x)的导函数f′(x)的图象如图所示,试画出函数y=
f(x)的大致图象.

二、能力提升
8.如果函数f(x)的图象如图,那么导函数y=f′(x)的图象可能是()
9.设f(x),g(x)在[a,b]上可导,且f′(x)g′(x),则当axb时,有()
A.f(x)g(x)
B.f(x)g(x)
C.f(x)+g(a)g(x)+f(a)
D.f(x)+g(b)g(x)+f(b)
10.函数y=ax3-x在R上是减函数,则a的取值范围为________.
11.求下列函数的单调区间:
(1)y=x-lnx;(2)y=12x.

12.已知函数f(x)=x3+bx2+cx+d的图象经过点P(0,2),且在点M(-1,f(-1))处的切线方程为6x-y+7=0.
(1)求函数y=f(x)的解析式;(2)求函数y=f(x)的单调区间.

导数的计算导学案及练习题


一、基础过关
1.下列结论中正确的个数为()
①y=ln2,则y′=12;②y=1x2,则y′|x=3=-227;
③y=2x,则y′=2xln2;④y=log2x,则y′=1xln2.
A.0B.1
C.2D.3
2.过曲线y=1x上一点P的切线的斜率为-4,则点P的坐标为()
A.12,2B.12,2或-12,-2
C.-12,-2D.12,-2
3.已知f(x)=xa,若f′(-1)=-4,则a的值等于()
A.4B.-4
C.5D.-5
4.函数f(x)=x3的斜率等于1的切线有()
A.1条B.2条
C.3条D.不确定
5.若曲线y=x-12在点(a,a-12)处的切线与两个坐标轴围成的三角形的面积为18,则a等于()
A.64B.32C.16D.8
6.若y=10x,则y′|x=1=________.
7.曲线y=14x3在x=1处的切线的倾斜角的正切值为______.
二、能力提升
8.已知直线y=kx是曲线y=ex的切线,则实数k的值为()
A.1eB.-1e
C.-eD.e
9.直线y=12x+b是曲线y=lnx(x0)的一条切线,则实数b=________.
10.求下列函数的导数:
(1)y=xx;(2)y=1x4;(3)y=5x3;
(4)y=log2x2-log2x;(5)y=-2sinx21-2cos2x4.

11.求与曲线y=3x2在点P(8,4)处的切线垂直于点P的直线方程.
12.已知抛物线y=x2,直线x-y-2=0,求抛物线上的点到直线的最短距离.

导数及其应用


第三章导数及其应用

知识体系总览
3.1导数的概念
知识梳理
1.平均速度:物理学中,运动物体的位移与所用时间的比称为平均速度,即一段时间或一段位移内的速度;若物体的运动方程为则物体从到这段时间内的平均速度;一般的,函数在区间上的平均变化率为。
2.瞬时速度:是某一时刻或位置物体的速度,方向与物体运动方向相同。我们测量的瞬时速度是用很短时间内的平均速度来代替的,是对物体速度的一种粗略的估算。当平均速度中的无限趋近于0时,平均速度的极限称为在时刻的瞬时速度,记作v==。求瞬时速度的步骤为:
(1)设物体的运动方程为;
(2)先求时间改变量和位置改变量
(3)再求平均速度
(4)后求瞬时速度:瞬时速度v==.
3.求函数的导数的一般方法:
(1)求函数的改变量.
(2)求平均变化率.
(3)取极限,得导数=.
4.上点()处的切线方程为;
3.1.1问题探索求自由落体的瞬时速度
典例剖析
题型一平均速度
例1.已知自由落体运动的位移s(m)与时间t(s)的关系为s=,计算t从3秒到3.1秒、3.001秒、3.0001秒….各段内平均速度()。
分析:先求出,再求出,即为各段时间内的平均速度。
解:设指时间改变量;=指路程改变量。
则=;
所以t从3秒到3.1秒平均速度;
t从3秒到3.001秒平均速度;
t从3秒到3.0001秒平均速度;
评析:通过对各段时间内的平均速度计算,可以思考在各段时间内的平均速度的变化情况;可见某段时间内的平均速度随变化而变化。
题型二瞬时速度
例2.以初速度为做竖直上抛运动的物体,秒时的高度为求物体在时刻t=m处的瞬时速度。
分析:先求出平均速度,求瞬时速度。
解:
所以物体在时刻m处的瞬时速度。
评析:求瞬时速度,也就转化为求极限,瞬时速度我们是通过在一段时间内的平均速度的极限来定义的,只要知道了物体的运动方程,代入公式就可以求出瞬时速度了.
备选题
例3:设函数,求:
(1)当自变量x由1变到1.1时,自变量的增量;
(2)当自变量x由1变到1.1时,函数的增量;
(3)当自变量x由1变到1.1时,函数的平均变化率;
解:(1)
(2)
(3)
评析:本题也可以由直接求解。

点击双基
1.在求平均变化率中,自变量的增量()
A.B.C.D.
解:故选D
2.一质点的运动方程是,则在一段时间内相应得平均速度为:()
A.B.C.D.
解:平均速度===,故选D
3、在曲线y=x2+1的图象上取一点(1,2)及邻近一点(1+Δx,2+Δy),则为()
A.Δx++2B.Δx--2C.Δx+2D.2+Δx-
解:==Δx+2,故选C
4.一物体位移s和时间t的关系是s=2t-3,则物体的初速度是
解:平均速度==2-3t,当t趋向0时,平均速度趋向2.
5.一个物体的运动方程为其中的单位是米,的单位是秒,那么物体在秒末的瞬时速度是
解:

课外作业:
一.选择题
1、若质点M按规律运动,则秒时的瞬时速度为()
A.B.C.D.
解:,故选C
2、任一做直线运动的物体,其位移与时间的关系是,则物体的初速度是()
A0B3C-2D
解:,故选B
3、设函数,当自变量由改变到时,函数的改变量为()
ABCD
解:=,故选D
4、物体的运动方程是,在某一时刻的速度为零,则相应时刻为()
A.1B.2C.3D.4
解:,故选B
5、一个物体的运动方程为其中的单位是米,的单位是秒,那么物体在1秒末的瞬时速度是()
A.3米/秒B.2米/秒C.1米/秒D.4米/秒
解:,故选C
6、在曲线的图象上取一点(1,)及附近一点,则为()
ABCD
解:=,故选C

7..物体的运动规律是,物体在时间内的平均速度是()
A.B.
C.D.当时,
解:由平均变化率知故选B
8.将边长为8的正方形的边长增加a,则面积的增量S为()
A.16aB.64C.+8D.16a+a
解:S=S(8+a)-S(8)=(8+a-=16a+a故选D
二.填空题:
9、已知一物体的运动方程是,则其在________时刻的速度为7。
解:
10.物体运动方程y=+3x,则物体在时间段上的平均速度为______
解:平均速度==9
11、当球半径r变化时,体积V关于r的瞬时变化率是______
解:==4;所以瞬时变化率是。
三解答题:
12、环城自行车比赛运动员的位移与比赛时间满足(
求。

13.设一物体在秒内所经过的路程为米,并且,试求物体在运动第5秒末的速度。
解:
14、求函数y=-+4x+6在x=2时的瞬时变化率
解:平均变化率==-2x+4-
当x趋于0时,瞬时变化率为-2x+4,x=2,瞬时变化率为0.

思悟小结
求瞬时速度的步骤:
1.设物体的运动方程为;
2.先求时间改变量和位置改变量
3.再求平均速度
4.后求瞬时速度:当无限趋近于0,无限趋近于常数v,即为瞬时速度。

变化率与导数导学案及练习题


3.1.1函数的平均变化率3.1.2瞬时速度与导数
【学习要求】1.了解导数概念的实际背景.2.会求函数在某一点附近的平均变化率.
3.会利用导数的定义求函数在某点处的导数.
【学法指导】导数是研究函数的有力工具,要认真理解平均变化率、瞬时变化率的概念,可以从物理和几何两种角度理解导数的意义,深刻体会无限逼近的思想.
1.函数的变化率
定义实例
平均变化率函数y=f(x)从x1到x2的平均变化率为,简记作:ΔyΔx
①平均速度;②曲线割线的斜率
瞬时变化率函数y=f(x)在x=x0处的瞬时变化率是函数f(x)从x0到x0+Δx的平均变化率在Δx→0时的极限,即
=limΔx→0ΔyΔx
①瞬时速度:物体在某一时刻的速度;②切线斜率
2.函数f(x)在x=x0处的导数
函数y=f(x)在x=x0处的称为函数y=f(x)在x=x0处的导数,
记作,即f′(x0)=limΔx→0ΔyΔx=.
引言那么在数学中怎样来刻画变量变化得快与慢呢?
探究点一平均变化率的概念
问题1气球膨胀率我们都吹过气球,回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加得越来越慢.从数学的角度,如何描述这种现象呢?
问题2高台跳水在高台跳水运动中,运动员相对于水面的高度h(单位:m)与起跳后的时间t(单位:s)存在函数关系h(t)=-4.9t2+6.5t+10.计算运动员在下列时间段内的平均速度v,并思考平均速度有什么作用?(1)0≤t≤0.5,(2)1≤t≤2.
问题3什么是平均变化率,平均变化率有何作用?
问题4平均变化率也可以用式子ΔyΔx表示,其中Δy、Δx的意义是什么?ΔyΔx有什么几何意义?
例1已知函数f(x)=2x2+3x-5.
(1)求当x1=4,且Δx=1时,函数增量Δy和平均变化率ΔyΔx;
(2)求当x1=4,且Δx=0.1时,函数增量Δy和平均变化率ΔyΔx;
(3)若设x2=x1+Δx.分析(1)(2)题中的平均变化率的几何意义.
跟踪1(1)计算函数f(x)=x2从x=1到x=1+Δx的平均变化率,其中Δx的值为
①2;②1;③0.1;④0.01.
(2)思考:当|Δx|越来越小时,函数f(x)在区间[1,1+Δx]上的平均变化率有怎样的变化趋势?

探究点二函数在某点处的导数
问题1物体的平均速度能否精确反映它的运动状态?
问题2如何描述物体在某一时刻的运动状态?
问题3导数和瞬时变化率是什么关系?导数有什么作用?
例2利用导数的定义求函数f(x)=-x2+3x在x=2处的导数.

跟踪2求函数f(x)=3x2-2x在x=1处的导数.

例3将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热.如果第xh时,原油的温度(单位:℃)为y=f(x)=x2-7x+15(0≤x≤8).计算第2h和第6h时,原油温度的瞬时变化率,并说明它们的意义.

跟踪3高台跳水运动中,运动员相对于水面的高度h(单位:m)与起跳后的时间t(单位:s)之间的关系式为h(t)=-4.9t2+6.5t+10,求运动员在t=6598s时的瞬时速度,并解释此时的运动状况.

【达标检测】
1.在导数的定义中,自变量的增量Δx满足()
A.Δx0B.Δx0C.Δx=0D.Δx≠0
2.函数f(x)在x0处可导,则limh→0fx0+h-fx0h()
A.与x0、h都有关B.仅与x0有关,而与h无关
C.仅与h有关,而与x0无关D.与x0、h均无关
3.已知函数f(x)=2x2-1的图象上一点(1,1)及邻近一点(1+Δx,1+Δy),则ΔyΔx等于()
A.4B.4xC.4+2ΔxD.4+2(Δx)2