88教案网

你的位置: 教案 > 高中教案 > 导航 > 第二章2.1平面向量的实际背景及基本概念讲义

高中向量的教案

发表时间:2020-10-31

第二章2.1平面向量的实际背景及基本概念讲义。

古人云,工欲善其事,必先利其器。作为教师就需要提前准备好适合自己的教案。教案可以让讲的知识能够轻松被学生吸收,有效的提高课堂的教学效率。关于好的教案要怎么样去写呢?经过搜索和整理,小编为大家呈现“第二章2.1平面向量的实际背景及基本概念讲义”,仅供参考,大家一起来看看吧。

平面向量的实际背景及基本概念

预习课本P74~76,思考并完成以下问题
(1)向量是如何定义的?向量与数量有什么区别?
(2)怎样表示向量?向量的相关概念有哪些?
(3)两个向量(向量的模)能否比较大小?
(4)如何判断相等向量或共线向量?向量与向量是相等向量吗?
(5)零向量与单位向量有什么特殊性?0与0的含义有什么区别?

[新知初探]
1.向量的概念和表示方法
(1)概念:既有大小,又有方向的量称为向量.
(2)向量的表示:
表示法
几何表示:用有向线段来表示向量,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向,即用有向线段的起点、终点字母表示,如,…

字母表示:用小写字母a,b,c,…表示,手写时必须加箭头
[点睛]向量可以用有向线段表示,但向量不是有向线段.向量是规定了大小和方向的量,有向线段是规定了起点和终点的线段.
2.向量的长度(或称模)与特殊向量
(1)向量的长度定义:向量的大小叫做向量的长度.
(2)向量的长度表示:向量,a的长度分别记作:||,|a|.
(3)特殊向量:
①长度为0的向量为零向量,记作0;
②长度等于1个单位的向量,叫做单位向量.
[点睛]定义中的零向量和单位向量都是只限制大小,没有确定方向.我们规定零向量的方向是任意的;单位向量有无数个,它们大小相等,但方向不一定相同.
3.向量间的关系
(1)相等向量:长度相等且方向相同的向量,叫做相等向量,记作:a=b.
(2)平行向量:方向相同或相反的非零向量,也叫共线向量;a平行于b,记作a∥b;规定零向量与任一向量平行.
[点睛]共线向量仅仅指向量的方向相同或相反;相等向量指大小和方向均相同.
[小试身手]
1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)
(1)两个向量能比较大小.()
(2)向量的模是一个正实数.()
(3)单位向量的模都相等.()
(4)向量与向量是相等向量.()
答案:(1)×(2)×(3)√(4)×
2.有下列物理量:①质量;②温度;③角度;④弹力;⑤风速.
其中可以看成是向量的个数()
A.1B.2C.3D.4
答案:B
3.已知向量a如图所示,下列说法不正确的是()
A.也可以用表示B.方向是由M指向N
C.始点是MD.终点是M
答案:D
4.如图,四边形ABCD和ABDE都是平行四边形,则与相等的向量有______.
答案:,
向量的有关概念
[典例]有下列说法:①向量和向量长度相等;②方向不同的两个向量一定不平行;③向量是有向线段;④向量0=0,其中正确的序号为________.
[解析]对于①,||=||=AB,故①正确;
对于②,平行向量包括方向相同或相反两种情况,故②错误;
对于③,向量可以用有向线段表示,但不能把二者等同起来,故③错误;
对于④,0是一个向量,而0是一个数量,故④错误.
[答案]①
(1)判断一个量是否为向量应从两个方面入手
①是否有大小;②是否有方向.
(2)理解零向量和单位向量应注意的问题
①零向量的方向是任意的,所有的零向量都相等.
②单位向量不一定相等,易忽略向量的方向.

[活学活用]
有下列说法:
①若向量a与向量b不平行,则a与b方向一定不相同;
②若向量,满足||>||,且与同向,则>;
③若|a|=|b|,则a,b的长度相等且方向相同或相反;
④由于零向量方向不确定,故其不能与任何向量平行.
其中正确说法的个数是()
A.1B.2
C.3D.4
解析:选A对于①,由共线向量的定义,知两向量不平行,方向一定不相同,故①正确;对于②,因为向量不能比较大小,故②错误;对于③,由|a|=|b|,只能说明a,b的长度相等,确定不了它们的方向,故③错误;对于④,因为零向量与任一向量平行,故④错误.
向量的表示

[典例]在如图所示的坐标纸上(每个小方格边长为1),用直尺和圆规画出下列向量:
①,使||=42,点A在点O北偏东45°;
②,使||=4,点B在点A正东;
③,使||=6,点C在点B北偏东30°.
[解](1)由于点A在点O北偏东45°处,所以在坐标纸上点A距点O的横向小方格数与纵向小方格数相等.又||=42,小方格边长为1,所以点A距点O的横向小方格数与纵向小方格数都为4,于是点A位置可以确定,画出向量如图所示.
(2)由于点B在点A正东方向处,且||=4,所以在坐标纸上点B距点A的横向小方格数为4,纵向小方格数为0,于是点B位置可以确定,画出向量如图所示.
(3)由于点C在点B北偏东30°处,且||=6,依据勾股定理可得:在坐标纸上点C距点B的横向小方格数为3,纵向小方格数为33≈5.2,于是点C位置可以确定,画出向量如图所示.
用有向线段表示向量的方法
用有向线段表示向量时,先确定起点,再确定方向,最后依据向量模的大小确定向量的终点.
必要时,需依据直角三角形知识求出向量的方向(即夹角)或长度(即模),选择合适的比例关系作出向量.
[活学活用]
一辆汽车从A点出发向西行驶了100千米到达B点,然后改变方向,向北偏西40°方向行驶了200千米到达C点,最后又改变方向,向东行驶了100千米到达D点.作出向量,,,.
解:如图所示.
共线向量或相等向量

[典例]如图所示,O是正六边形ABCDEF的中心,且=a,=b,=c.
(1)与a的长度相等、方向相反的向量有哪些?
(2)与a共线的向量有哪些?
(3)请一一列出与a,b,c相等的向量.
[解](1)与a的长度相等、方向相反的向量有,,,.
(2)与a共线的向量有,,,,,,,,.
(3)与a相等的向量有,,;与b相等的向量有,,;与c相等的向量有,,.
[一题多变]
1.[变设问]本例条件不变,试写出与向量相等的向量.
解:与向量相等的向量有,,.
2.[变条件,变设问]在本例中,若|a|=1,则正六边形的边长如何?
解:由正六边形性质知,△FOA为等边三角形,所以边长AF=|a|=1.
寻找共线向量或相等向量的方法
(1)寻找共线向量:先找与表示已知向量的有向线段平行或共线的线段,再构造同向与反向的向量,注意不要漏掉以表示已知向量的有向线段的终点为起点,起点为终点的向量.
(2)寻找相等向量:先找与表示已知向量的有向线段长度相等的向量,再确定哪些是同向共线.

层级一学业水平达标
1.下列说法正确的是()
A.向量∥就是所在的直线平行于所在的直线
B.长度相等的向量叫做相等向量
C.若a=b,b=c,则a=c
D.共线向量是在一条直线上的向量
解析:选C向量∥包含所在的直线与所在的直线平行和重合两种情况,故A错;相等向量不仅要求长度相等,还要求方向相同,故B错;C显然正确;共线向量可以是在一条直线上的向量,也可以是所在直线互相平行的向量,故D错.
2.如图,在圆O中,向量,,是()
A.有相同起点的向量
B.共线向量
C.模相等的向量
D.相等的向量
解析:选C由图可知,,是模相等的向量,其模均等于圆的半径,故选C.
3.向量与向量共线,下列关于向量的说法中,正确的为()
A.向量与向量一定同向
B.向量,向量,向量一定共线
C.向量与向量一定相等
D.以上说法都不正确
解析:选B根据共线向量定义,可知,,这三个向量一定为共线向量,故选B.
4.如图,在ABCD中,点E,F分别是AB,CD的中点,图中与平行的向量有()
A.1个B.2个
C.3个D.4个
解析:选C根据向量的基本概念可知与平行的向量有,,,共3个.
5.已知向量a,b是两个非零向量,,分别是与a,b同方向的单位向量,则下列各式正确的是()
A.=B.=或=-
C.=1D.||=||
解析:选D由于a与b的方向不知,故与无法判断是否相等,故A、B选项均错.又与均为单位向量.∴||=||,故C错D对.
6.已知||=1,||=2,若∠ABC=90°,则||=________.
解析:由勾股定理可知,BC=AC2-AB2=3,所以||=3.
答案:3
7.设a0,b0是两个单位向量,则下列结论中正确的是________(填序号).
①a0=b0;②a0=-b0;③|a0|+|b0|=2;④a0∥b0.
解析:因为a0,b0是单位向量,|a0|=1,|b0|=1,
所以|a0|+|b0|=2.
答案:③
8.给出下列四个条件:①a=b;②|a|=|b|;③a与b方向相反;④|a|=0或|b|=0.其中能使a∥b成立的条件是________(填序号).
解析:若a=b,则a与b大小相等且方向相同,所以a∥b;若|a|=|b|,则a与b的大小相等,而方向不确定,因此不一定有a∥b;方向相同或相反的向量都是平行向量,因此若a与b方向相反,则有a∥b;零向量与任意向量平行,所以若|a|=0或|b|=0,则a∥b.
答案:①③④
9.如图,O是正方形ABCD的中心.
(1)写出与向量相等的向量;
(2)写出与的模相等的向量.
解:(1)与向量相等的向量是.
(2)与的模相等的向量有:,,,,,,.
10.一辆消防车从A地去B地执行任务,先从A地向北偏东30°方向行驶2千米到D地,然后从D地沿北偏东60°方向行驶6千米到达C地,从C地又向南偏西30°方向行驶2千米才到达B地.
(1)在如图所示的坐标系中画出,,,.
(2)求B地相对于A地的位移.
解:(1)向量,,,如图所示.
(2)由题意知=.
所以AD綊BC,
则四边形ABCD为平行四边形.
所以=,则B地相对于A地的位移为“在北偏东60°的方向距A地6千米”.
层级二应试能力达标
1.如图所示,梯形ABCD中,对角线AC与BD交于点P,点E,F分别在两腰AD,BC上,EF过点P,且EF∥AB,则下列等式成立的是()
A.=B.=
C.=D.=
解析:选D根据相等向量的定义,分析可得:
A中,与方向不同,故=错误;
B中,与方向不同,故=错误;
C中,与方向相反,故=错误;
D中,与方向相同,且长度都等于线段EF长度的一半,故=正确.
2.下列说法正确的是()
A.若a∥b,b∥c,则a∥c
B.终点相同的两个向量不共线
C.若a≠b,则a一定不与b共线
D.单位向量的长度为1
解析:选DA中,因为零向量与任意向量平行,若b=0,则a与c不一定平行.B中,两向量终点相同,若夹角是0°或180°,则共线.C中,对于两个向量不相等,可能是长度不相等,但方向相同或相反,所以a与b可能共线.
3.若a为任一非零向量,b为单位向量,下列各式:
①|a|>|b|;②a∥b;③|a|>0;④|b|=±1.
其中正确的是()
A.①④B.③
C.③④D.②③
解析:选Ba为任一非零向量,所以|a|>0,故③正确;由向量、单位向量、平行向量的概念易判断其他式子均错误.故选B.
4.在△ABC中,点D,E分别为边AB,AC的中点,则如图所示的向量中相等向量有()

A.一组B.二组
C.三组D.四组
解析:选A由向量相等的定义可知,只有一组向量相等,即=.
5.四边形ABCD满足=,且||=||,则四边形ABCD是______(填四边形ABCD的形状).
解析:∵=,∴AD∥BC且||=||,∴四边形ABCD是平行四边形.又||=||知该平行四边形对角线相等,故四边形ABCD是矩形.
答案:矩形
6.如图,O是正三角形ABC的中心,四边形AOCD和AOBE均为平行四边形,则与向量相等的向量为________;与向量共线的向量为__________;与向量的模相等的向量为________.(填图中所画出的向量)
解析:∵O是正三角形ABC的中心,∴OA=OB=OC,易知四边形AOCD和四边形AOBE均为菱形,∴与相等的向量为;与共线的向量为,;与的模相等的向量为,,,,.
答案:,,,,,
7.如图,D,E,F分别是正三角形ABC各边的中点.
(1)写出图中所示向量与向量长度相等的向量.
(2)写出图中所示向量与向量相等的向量.
(3)分别写出图中所示向量与向量,共线的向量.
解:(1)与长度相等的向量是,
,,,,,,.
(2)与相等的向量是,.
(3)与共线的向量是,,;
与共线的向量是,,.
8.如图,已知函数y=x的图象l与直线m平行,A0,-22,B(x,y)是m上的点.求
(1)x,y为何值时,=0;
(2)x,y为何值时,为单位向量.
解:(1)要使=0,当且仅当点A与点B重合,于是x=0,y=-22.
(2)如图,要使得是单位向量,必须且只需||=1.
由已知,l∥m且点A的坐标是0,-22,
所以B1点的坐标是22,0.在Rt△AOB1中,有
||2=||2+||2=222+222=1,
即||=1.
上式表示,向量是单位向量.
同理可得,当B2的坐标是-22,-2时,向量AB2―→也是单位向量.
综上有,当x=22,y=0或x=-22,y=-2时,向量是单位向量.

精选阅读

高中数学必修四2.1平面向量的实际背景及基本概念导学案


2.1平面向量的实际背景及基本概念
编审:周彦魏国庆

【学习目标】
1.了解平面向量的实际背景,理解平面向量的概念,掌握向量的几何表示,学会用字母表示向量;
2.理解向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念.
【新知自学】
新知梳理
1.向量的概念:我们把既有又有的量叫向量.
2、叫做有向线段.以A为起点,B为终点的有向线段记作.有向线段包括三个要素:、、.
3、向量的表示方法有两种,即或
4、向量的大小,也就是向量的(或模),记作.长度为0的向量叫做;长度为1的向量叫做.
5、的向量叫做平行向量.向量与向量平行,通常记作.规定零向量与向量平行.
6、的向量叫做相等向量,若向量与向量相等,记作
7、共线向量与相等向量的关系是
思考感悟
1、数量与向量有何区别?

2、有向线段和线段有何区别和联系?分别可以表示向量的什么?

3、共线向量用有向线段表示时必须在同一直线上吗?

对点练习:
1.判断正误:
(1)不相等的向量一定不平行.
(2)平行向量一定方向相同.
(3)共线向量一定在同一直线上.
2.填空:
(1)与零向量相等的向量必定是________向量
(2)与任意向量都平行的向量是_________向量
(3)两个非零向量相等,当且仅当__________
(4)若两个向量在同一直线上,则这两个向量一定是_______向量

3.给出下列物理量:①密度;②温度;③速度;④质量;⑤功;⑥位移.正确的是()
A.①②③是数量,④⑤⑥是向量
B.②④⑥是数量,①③⑤是向量
C.①④是数量,②③⑤⑥是向量
D.①②④⑤是数量,③⑥是向量

4.下列说法错误的是()
A.向量与的长度相同
B.单位向量的长度都相等
C.向量的模是一个非负实数
D.非零向量与是平行向量,则直线与直线平行

【合作探究】
典例精析:
例1.如图,设是正六边形的中心,
分别写出图中与向量、、相等的向量.

变式练习1:例1中,与向量长度相等的向量有多少个?

变式练习2:例1中,是否存在与向量、、长度相等、方向相反的向量?

例2..如图,D、E、F分别是ΔABC的边AB、BC、CA的中点,写出以A、B、C、D、E、F这六个点中任意两个点为起点和终点的向量中,与平行的所有向量.

变式练习3:例2中,与向量共线的向量有哪些?

【课堂小结】

【当堂达标】
1.关于零向量,下列说法中错误的是()
A.零向量是没有方向的
B.零向量的长度是0
C.零向量与任一向量平行
D.零向量的方向是任意的

2.若向量与任意向量都平行,则=___;若||=1,则向量是.

3.把平面上一切单位向量的起点放在同一点,那么这些向量的终点所构成的图形是.

4.把平行于某一直线的一切向量平移到同一起点,则这些向量的终点构成的图形是_______.

5.如图,ABCD的对角线交于点O,则在以A、B、C、D、O这五个点中任意两个点为起点和终点的向量中,与和都不平行的向量有哪些?

【课时作业】
1.给出下列命题:
①向量的大小是实数②平行向量的方向一定相同③向量可以用有向线段表示④单位向量都相等正确的有.

2.给出下列命题:①若||=0,则=0;②若是单位向量,则||=1;③与不平行,则与都是非零向量.④如果//,//,那么//其中真命题是
(填序号)

3.下列各组中的两个量是不是向量?如果是向量,说明它们是不是平行向量.
(1)两个平面图形各自的面积.

(2)停放在广场上的两辆小汽车各自受到的重力.

(3)小船驶向河对岸的速度与水流速度.

(4)浮在水面的物体受到的重力与与浮力.

4.如图所示,已知矩形,对角线上向量与的关系是

5.如图所示,四边形ABCD和BCED都是平行四边形,
(1)写出与BC→相等的向量:_______.
(2)写出与BC→共线的向量:_______.
*(3)写出与的模相等的向量:

*6.如图,四边形ABCD为正方形,△BCE为等腰直角三角形.以图中各点为起点和终点,写出与向量的模相等的所有向量.
*7.某人从A点出发向西走了200m到达B点,然后改变方向,向西偏北的方向走450m到达C点,最后又改变方向,向东走200m到达D点.
(1)做出向量(1cm表示200米);
(2)求的模.

【延伸探究】
在矩形ABCD中,AB=2BC=2,M、N分别是AB和CD的中点,在以A、B、C、D、M、N为起点和终点的所有向量中,回答下列问题:
(1)与向量相等的向量有哪些?向量的相反向量有哪些?
(2)与向量相等的向量有哪些?向量的相反向量有哪些?
(3)在模为的向量中,相等的向量有几对?
(4)在模为1的向量中,相等的向量有几对?

第二章2.32.3.1平面向量基本定理讲义


2.3.1平面向量基本定理
预习课本P93~94,思考并完成以下问题
(1)平面向量基本定理的内容是什么?
(2)如何定义平面向量基底?
(3)两向量夹角的定义是什么?如何定义向量的垂直?

[新知初探]
1.平面向量基本定理
条件e1,e2是同一平面内的两个不共线向量
结论这一平面内的任意向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2
基底不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底
[点睛]对平面向量基本定理的理解应注意以下三点:①e1,e2是同一平面内的两个不共线向量;②该平面内任意向量a都可以用e1,e2线性表示,且这种表示是唯一的;③基底不唯一,只要是同一平面内的两个不共线向量都可作为基底.
2.向量的夹角
条件两个非零向量a和b
产生过程
作向量=a,=b,则∠AOB叫做向量a与b的夹角

范围0°≤θ≤180°
特殊情况θ=0°a与b同向
θ=90°a与b垂直,记作a⊥b
θ=180°a与b反向

[点睛]当a与b共线同向时,夹角θ为0°,共线反向时,夹角θ为180°,所以两个向量的夹角的范围是0°≤θ≤180°.
[小试身手]
1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)
(1)任意两个向量都可以作为基底.()
(2)一个平面内有无数对不共线的向量都可作为表示该平面内所有向量的基底.()
(3)零向量不可以作为基底中的向量.()
答案:(1)×(2)√(3)√
2.若向量a,b的夹角为30°,则向量-a,-b的夹角为()
A.60°B.30°
C.120°D.150°
答案:B
3.设e1,e2是同一平面内两个不共线的向量,以下各组向量中不能作为基底的是()
A.e1,e2B.e1+e2,3e1+3e2
C.e1,5e2D.e1,e1+e2
答案:B
4.在等腰Rt△ABC中,∠A=90°,则向量,的夹角为______.
答案:135°

用基底表示向量

[典例]如图,在平行四边形ABCD中,设对角线=a,=b,试用基底a,b表示,.
[解]法一:由题意知,==12=12a,==12=12b.
所以=+=-=12a-12b,
=+=12a+12b,
法二:设=x,=y,则==y,
又+=,-=,则x+y=a,y-x=b,
所以x=12a-12b,y=12a+12b,
即=12a-12b,=12a+12b.
用基底表示向量的方法
将两个不共线的向量作为基底表示其他向量,基本方法有两种:一种是运用向量的线性运算法则对待求向量不断进行转化,直至用基底表示为止;另一种是通过列向量方程或方程组的形式,利用基底表示向量的唯一性求解.
[活学活用]
如图,已知梯形ABCD中,AD∥BC,E,F分别是AD,BC边上的中点,且BC=3AD,=a,=b.试以a,b为基底表示,,.
解:∵AD∥BC,且AD=13BC,
∴=13=13b.
∵E为AD的中点,
∴==12=16b.
∵=12,∴=12b,
∴=++
=-16b-a+12b=13b-a,
=+=-16b+13b-a=16b-a,
=+=-(+)
=-(+)=-16b-a+12b
=a-23b.

向量夹角的简单求解
[典例]已知|a|=|b|=2,且a与b的夹角为60°,则a+b与a的夹角是多少?a-b与a的夹角又是多少?
[解]如图所示,作=a,=b,且∠AOB=60°.
以,为邻边作平行四边形OACB,则=a+b,=a-b.
因为|a|=|b|=2,所以平行四边形OACB是菱形,又∠AOB=60°,所以与的夹角为30°,与的夹角为60°.
即a+b与a的夹角是30°,a-b与a的夹角是60°.

求两个向量夹角的方法
求两个向量的夹角,关键是利用平移的方法使两个向量的起点重合,根据向量夹角的概念确定夹角,再依据平面图形的知识求解向量的夹角.过程简记为“一作二证三算”.

[活学活用]
如图,已知△ABC是等边三角形.
(1)求向量与向量的夹角;
(2)若E为BC的中点,求向量与的夹角.
解:(1)∵△ABC为等边三角形,
∴∠ABC=60°.
如图,延长AB至点D,使AB=BD,则=,
∴∠DBC为向量与的夹角.
∵∠DBC=120°,
∴向量与的夹角为120°.
(2)∵E为BC的中点,∴AE⊥BC,
∴与的夹角为90°.
平面向量基本定理的应用
[典例]如图,在△ABC中,点M是BC的中点,点N在AC上,且AN=2NC,AM与BN相交于点P,求AP∶PM与BP∶PN.
[解]设=e1,=e2,
则=+=-3e2-e1,=+=2e1+e2.
∵A,P,M和B,P,N分别共线,
∴存在实数λ,μ使得=λ
=-λe1-3λe2,
=μ=2μe1+μe2.
故=+=-=(λ+2μ)e1+(3λ+μ)e2.
而=+=2e1+3e2,由平面向量基本定理,
得λ+2μ=2,3λ+μ=3,解得λ=45,μ=35.
∴=45,=35,
∴AP∶PM=4∶1,BP∶PN=3∶2.
[一题多变]
1.[变设问]在本例条件下,若=a,=b,试用a,b表示,
解:由本例解析知BP∶PN=3∶2,则=25,
=+=+25=b+25(-)
=b+45a-25b=35b+45a.
2.[变条件]若本例中的点N为AC的中点,其它条件不变,求AP∶PM与BP∶PN.
解:如图,设=e1,=e2,
则=+=-2e2-e1,=+=2e1+e2.
∵A,P,M和B,P,N分别共线,
∴存在实数λ,μ使得=λ
=-λe1-2λe2,
=μ=2μe1+μe2.
故=+=-=(λ+2μ)e1+(2λ+μ)e2.
而=+=2e1+2e2,由平面向量基本定理,
得λ+2μ=2,2λ+μ=2,解得λ=23,μ=23.
∴=23,=23,
∴AP∶PM=2,BP∶PN=2.
若直接利用基底表示向量比较困难,可设出目标向量并建立其与基底之间满足的二元关系式,然后利用已知条件及相关结论,从不同方向和角度表示出目标向量(一般需建立两个不同的向量表达式),再根据待定系数法确定系数,建立方程或方程组,解方程或方程组即得.

层级一学业水平达标
1.已知?ABCD中∠DAB=30°,则与的夹角为()
A.30°B.60°
C.120°D.150°
解析:选D如图,与的夹角为∠ABC=150°.
2.设点O是?ABCD两对角线的交点,下列的向量组中可作为这个平行四边形所在平面上表示其他所有向量的基底的是()
①与;②与;③与;④与.
A.①②B.①③
C.①④D.③④
解析:选B寻找不共线的向量组即可,在?ABCD中,与不共线,与不共线;而∥,∥,故①③可作为基底.
3.若AD是△ABC的中线,已知=a,=b,则以a,b为基底表示=()
A.12(a-b)B.12(a+b)
C.12(b-a)D.12b+a
解析:选B如图,AD是△ABC的中线,则D为线段BC的中点,从而=,即-=-,从而=12(+)=12(a+b).
4.在矩形ABCD中,O是对角线的交点,若=e1,=e2,则=()
A.12(e1+e2)B.12(e1-e2)
C.12(2e2-e1)D.12(e2-e1)
解析:选A因为O是矩形ABCD对角线的交点,=e1,=e2,所以=12(+)=12(e1+e2),故选A.
5.(全国Ⅰ卷)设D为△ABC所在平面内一点,=3,则()
A.=-13+43
B.=13-43
C.=43+13
D.=43-13
解析:选A由题意得=+=+13=+13-13=-13+43.
6.已知向量a,b是一组基底,实数x,y满足(3x-4y)a+(2x-3y)b=6a+3b,则x-y的值为______.
解析:∵a,b是一组基底,∴a与b不共线,
∵(3x-4y)a+(2x-3y)b=6a+3b,
∴3x-4y=6,2x-3y=3,解得x=6,y=3,∴x-y=3.
答案:3
7.已知e1,e2是两个不共线向量,a=k2e1+1-5k2e2与b=2e1+3e2共线,则实数k=______.
解析:由题设,知k22=1-5k23,∴3k2+5k-2=0,
解得k=-2或13.
答案:-2或13
8.如下图,在正方形ABCD中,设=a,=b,=c,则在以a,b为基底时,可表示为______,在以a,c为基底时,可表示为______.
解析:以a,c为基底时,将平移,使B与A重合,再由三角形法则或平行四边形法则即得.
答案:a+b2a+c
9.如图所示,设M,N,P是△ABC三边上的点,且=13,=13,=13,若=a,=b,试用a,b将,,表示出来.
解:=-
=13-23=13a-23b,
=-=-13-23=-13b-23(a-b)=-23a+13b,
=-=-(+)=13(a+b).
10.证明:三角形的三条中线共点.
证明:如图所示,设AD,BE,CF分别为△ABC的三条中线,令=a,=b.则有=b-a.
设G在AD上,且AGAD=23,则有=+=a+12(b-a)=12(a+b).
=-=12b-a.
∴=-=23-
=13(a+b)-a=13b-23a
=2312b-a=23.
∴G在BE上,同理可证=23,即G在CF上.
故AD,BE,CF三线交于同一点.
层级二应试能力达标
1.在△ABC中,点D在BC边上,且=2,设=a,=b,则可用基底a,b表示为()
A.12(a+b)B.23a+13b
C.13a+23bD.13(a+b)
解析:选C∵=2,∴=23.
∴=+=+23=+23(-)=13+23=13a+23b.
2.AD与BE分别为△ABC的边BC,AC上的中线,且=a,=b,则=()
A.43a+23bB.23a+43b
C.23a-23bD.-23a+23b
解析:选B设AD与BE交点为F,则=13a,=23b.所以=+=23b+13a,所以=2=23a+43b.
3.如果e1,e2是平面α内所有向量的一组基底,那么,下列命题中正确的是()
A.若存在实数λ1,λ2,使得λ1e1+λ2e1=0,则λ1=λ2=0
B.平面α内任一向量a都可以表示为a=λ1e1+λ2e2,其中λ1,λ2∈R
C.λ1e1+λ2e2不一定在平面α内,λ1,λ2∈R
D.对于平面α内任一向量a,使a=λ1e1+λ2e2的实数λ1,λ2有无数对
解析:选BA中,(λ1+λ2)e1=0,∴λ1+λ2=0,即λ1=-λ2;B符合平面向量基本定理;C中,λ1e1+λ2e2一定在平面α内;D中,λ1,λ2有且只有一对.
4.已知非零向量,不共线,且2=x+y,若=λ(λ∈R),则x,y满足的关系是()
A.x+y-2=0B.2x+y-1=0
C.x+2y-2=0D.2x+y-2=0
解析:选A由=λ,得-=λ(-),
即=(1+λ)-λ.又2=x+y,
∴x=2+2λ,y=-2λ,消去λ得x+y=2.
5.设e1,e2是平面内的一组基底,且a=e1+2e2,b=-e1+e2,则e1+e2=________a+________b.
解析:由a=e1+2e2,b=-e1+e2,解得e1=13a-23b,e2=13a+13b.
故e1+e2=13a-23b+13a+13b
=23a+-13b.
答案:23-13
6.已知非零向量a,b,c满足a+b+c=0,向量a,b的夹角为120°,且|b|=2|a|,则向量a与c的夹角为________.
解析:由题意可画出图形,
在△OAB中,
因为∠OAB=60°,|b|=2|a|,
所以∠ABO=30°,OA⊥OB,
即向量a与c的夹角为90°.
答案:90°
7.设e1,e2是不共线的非零向量,且a=e1-2e2,b=e1+3e2.
(1)证明:a,b可以作为一组基底;
(2)以a,b为基底,求向量c=3e1-e2的分解式;
(3)若4e1-3e2=λa+μb,求λ,μ的值.
解:(1)证明:若a,b共线,则存在λ∈R,使a=λb,
则e1-2e2=λ(e1+3e2).
由e1,e2不共线,得λ=1,3λ=-2λ=1,λ=-23.
∴λ不存在,故a与b不共线,可以作为一组基底.
(2)设c=ma+nb(m,n∈R),则
3e1-e2=m(e1-2e2)+n(e1+3e2)
=(m+n)e1+(-2m+3n)e2.
∴m+n=3,-2m+3n=-1m=2,n=1.∴c=2a+b.
(3)由4e1-3e2=λa+μb,得
4e1-3e2=λ(e1-2e2)+μ(e1+3e2)
=(λ+μ)e1+(-2λ+3μ)e2.
∴λ+μ=4,-2λ+3μ=-3λ=3,μ=1.
故所求λ,μ的值分别为3和1.
8.若点M是△ABC所在平面内一点,且满足:=34+14.
(1)求△ABM与△ABC的面积之比.
(2)若N为AB中点,AM与CN交于点O,设=x+y,求x,y的值.
解:(1)如图,由=34+14可知M,B,C三点共线,
令=λ=+=+λ=+λ(-)=(1-λ)+λλ=14,所以S△ABMS△ABC=14,即面积之比为1∶4.
(2)由=x+y=x+y2,=x4+y,由O,M,A三点共线及O,N,C三点共线x+y2=1,x4+y=1x=47,y=67.

第二章平面向量第1课时2.1向量的概念及表示教案


第1课时§2.1向量的概念及表示
【教学目标】
一、知识与技能
1.理解向量的概念,掌握向量的二要素(长度、方向),能正确地表示向量;
2.注意向量的特点:可以平行移动(长度、方向确定,起点不确定);
3.理解零向量、单位向量、平行向量、共线向量、相等向量、相反向量等概念。
二、过程与方法
(1)从对不同问题的思考中感受什么是向量。
(2)通过师生互动、交流与学习,培养学生探求新知识的学习品质.
三、情感、态度与价值观
(1)通过向量包含大小和方向,概念的学习感知数学美。
(2)向量的方向包含正反两方面,正反关系的对照培养学生辨证唯物主义思维
【教学重点难点】:1.向量、相等向量、共线向量等概念;
2.向量的几何表示
【教学过程】
一、问题情境:
问题1、湖面上有3个景点O,A,B,如图所示.一游艇将游客从景点O送至景点A,半小时后,游艇再将游客送至景点B,从景点O到景点A有一个位移,从景点A到景点B也有一个位移.位移与距离这两个量有什么不同?

问题2、下列物理量中,那些量分别与位移和距离这两个量类似:
(1)物体在重力作用下发生位移,重力所做的功;
(2)物体所受重力;
(3)物体的质量为a千克;
(4)1月1日的4级偏南风的风速。
问题3、上述的物理量中有什么区别吗?
二、新课讲解:
(一)概念辨析:
(1)向量的定义:

(2)向量的表示:

(3)向量的大小及表示
(4)零向量:

(5)单位向量:

(二)向量的关系:
问题4:在平行四边形ABCD中,向量与,与有什么关系?
(1)平行向量

(2)相等向量

(3)相反向量

说明:(1)规定:零向量与任一向量平行,记作;
(2)零向量与零向量相等,记作;
(3)任意二个非零相等向量可用同一条有向线段表示,与有向线段的起点无关。
问题5:1.向量能否平移?

2.要确定一个向量必须确定什么?要确定一个有向线段必须确定什么?两者有何区别?

二、例题分析:
例1、已知O为正六边形ABCDEF的中心,如图,所标出的向量中:
(1)试找出与FE共线的向量;
(2)确定与FE相等的向量;
(3)OA与BC向量相等么?
例2、判断:
(1)平行向量是否一定方向相同?
(2)不相等的向量是否一定不平行?
(3)与零向量相等的向量必定是什么向量?
(4)与任意向量都平行的向量是什么向量?
(5)若两个向量在同一直线上,则这两个向量一定是什么向量?
(6)两个非零向量相等的当且仅当什么?
(7)共线向量一定在同一直线上吗?

例3、如图,在4×5的方格纸中有一个向量AB,分别以图中的格点为起点和终点作向量,其中与AB相等的向量有多少个?与AB长度相等的共线向量有多少个?(AB除外)
课时小结:
(1)向量是既有大小又有方向的量,向量有两个要素:方向和长度,称为自由向量;有向线段具有三个要素:起点,方向和长度;
(2)数量(标量)与向量的区别与联系:向量不同于数量。数量是只有大小的量,而向量是既有大小又有方向的量;数量可以比较大小,而向量不能比较大小,只有它的模可以比较大小;记号“”是没有意义的,而||>||才有意义。

第二章平面向量


第二章平面向量
本章内容介绍
向量这一概念是由物理学和工程技术抽象出来的,是近代数学中重要和基本的数学概念之一,有深刻的几何背景,是解决几何问题的有力工具.向量概念引入后,全等和平行(平移)、相似、垂直、勾股定理就可转化为向量的加(减)法、数乘向量、数量积运算,从而把图形的基本性质转化为向量的运算体系.
向量是沟通代数、几何与三角函数的一种工具,有着极其丰富的实际背景.在本章中,学生将了解向量丰富的实际背景,理解平面向量及其运算的意义,学习平面向量的线性运算、平面向量的基本定理及坐标表示、平面向量的数量积、平面向量应用五部分内容.能用向量语言和方法表述和解决数学和物理中的一些问题.
本节从物理上的力和位移出发,抽象出向量的概念,并说明了向量与数量的区别,然后介绍了向量的一些基本概念.(让学生对整章有个初步的、全面的了解.)

第1课时
§2.1平面向量的实际背景及基本概念
教学目标:
1.了解向量的实际背景,理解平面向量的概念和向量的几何表示;掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;并会区分平行向量、相等向量和共线向量.
2.通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别.
3.通过学生对向量与数量的识别能力的训练,培养学生认识客观事物的数学本质的能力.
教学重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量.
教学难点:平行向量、相等向量和共线向量的区别和联系.
学法:本节是本章的入门课,概念较多,但难度不大.学生可根据在原有的位移、力等物理概念来学习向量的概念,结合图形实物区分平行向量、相等向量、共线向量等概念.
教具:多媒体或实物投影仪,尺规
授课类型:新授课
教学思路:

一、情景设置:
如图,老鼠由A向西北逃窜,猫在B处向东追去,设问:猫能否追到老鼠?(画图)
结论:猫的速度再快也没用,因为方向错了.
分析:老鼠逃窜的路线AC、猫追逐的路线BD实际上都是有方向、有长短的量.
引言:请同学指出哪些量既有大小又有方向?哪些量只有大小没有方向?
二、新课学习:
(一)向量的概念:我们把既有大小又有方向的量叫向量
(二)请同学阅读课本后回答:(可制作成幻灯片)
1、数量与向量有何区别?
2、如何表示向量?
3、有向线段和线段有何区别和联系?分别可以表示向量的什么?
4、长度为零的向量叫什么向量?长度为1的向量叫什么向量?
5、满足什么条件的两个向量是相等向量?单位向量是相等向量吗?
6、有一组向量,它们的方向相同或相反,这组向量有什么关系?
7、如果把一组平行向量的起点全部移到一点O,这是它们是不是平行向量?这时各向量的终点之间有什么关系?
(三)探究学习
1、数量与向量的区别:
数量只有大小,是一个代数量,可以进行代数运算、比较大小;
向量有方向,大小,双重性,不能比较大小.
2.向量的表示方法:
①用有向线段表示;
②用字母a、b
(黑体,印刷用)等表示;
③用有向线段的起点与终点字母:;
④向量的大小――长度称为向量的模,记作||.
3.有向线段:具有方向的线段就叫做有向线段,三个要素:起点、方向、长度.
向量与有向线段的区别:
(1)向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量;
(2)有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段.
4、零向量、单位向量概念:
①长度为0的向量叫零向量,记作0.0的方向是任意的.
注意0与0的含义与书写区别.
②长度为1个单位长度的向量,叫单位向量.
说明:零向量、单位向量的定义都只是限制了大小.
5、平行向量定义:
①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行.
说明:(1)综合①、②才是平行向量的完整定义;(2)向量a、b、c平行,记作a∥b∥c.
6、相等向量定义:
长度相等且方向相同的向量叫相等向量.
说明:(1)向量a与b相等,记作a=b;(2)零向量与零向量相等;
(3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关.
7、共线向量与平行向量关系:
平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的起点无关).
说明:(1)平行向量可以在同一直线上,要区别于两平行线的位置关系;(2)共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.
(四)理解和巩固:
例1书本86页例1.
例2判断:
(1)平行向量是否一定方向相同?(不一定)
(2)不相等的向量是否一定不平行?(不一定)
(3)与零向量相等的向量必定是什么向量?(零向量)
(4)与任意向量都平行的向量是什么向量?(零向量)
(5)若两个向量在同一直线上,则这两个向量一定是什么向量?(平行向量)
(6)两个非零向量相等的当且仅当什么?(长度相等且方向相同)
(7)共线向量一定在同一直线上吗?(不一定)
例3下列命题正确的是()?
A.a与b共线,b与c共线,则a与c也共线?
B.任意两个相等的非零向量的始点与终点是一平行四边形的四顶点?
C.向量a与b不共线,则a与b都是非零向量?
D.有相同起点的两个非零向量不平行
解:由于零向量与任一向量都共线,所以A不正确;由于数学中研究的向量是自由向量,所以两个相等的非零向量可以在同一直线上,而此时就构不成四边形,根本不可能是一个平行四边形的四个顶点,所以B不正确;向量的平行只要方向相同或相反即可,与起点是否相同无关,所以D不正确;对于C,其条件以否定形式给出,所以可从其逆否命题来入手考虑,假若a与b不都是非零向量,即a与b至少有一个是零向量,而由零向量与任一向量都共线,可有a与b共线,不符合已知条件,所以有a与b都是非零向量,所以应选C.
例4如图,设O是正六边形ABCDEF的中心,分别写出图中与向量、、相等的向量.
变式一:与向量长度相等的向量有多少个?(11个)
变式二:是否存在与向量长度相等、方向相反的向量?(存在)
变式三:与向量共线的向量有哪些?()
课堂练习:
1.判断下列命题是否正确,若不正确,请简述理由.?
①向量与是共线向量,则A、B、C、D四点必在一直线上;?
②单位向量都相等;?
③任一向量与它的相反向量不相等;?
④四边形ABCD是平行四边形当且仅当=
⑤一个向量方向不确定当且仅当模为0;?
⑥共线的向量,若起点不同,则终点一定不同.
解:①不正确.共线向量即平行向量,只要求方向相同或相反即可,并不要求两个向量、在同一直线上.
②不正确.单位向量模均相等且为1,但方向并不确定.
③不正确.零向量的相反向量仍是零向量,但零向量与零向量是相等的.④、⑤正确.⑥不正确.如图与共线,虽起点不同,但其终点却相同.
2.书本88页练习
三、小结:
1、描述向量的两个指标:模和方向.
2、平行向量不是平面几何中的平行线段的简单类比.
3、向量的图示,要标上箭头和始点、终点.