88教案网

你的位置: 教案 > 高中教案 > 导航 > 应用问题的题型与方法

小学教案比的应用

发表时间:2021-12-03

应用问题的题型与方法。

一名优秀的教师在教学时都会提前最好准备,作为教师就要好好准备好一份教案课件。教案可以让学生们能够在上课时充分理解所教内容,帮助教师缓解教学的压力,提高教学质量。所以你在写教案时要注意些什么呢?考虑到您的需要,小编特地编辑了“应用问题的题型与方法”,欢迎阅读,希望您能够喜欢并分享!

数学应用性问题是历年高考命题的主要题型之一, 也是考生失分较多的一种题型. 高考中一般命制一道解答题和两道选择填空题.解答这类问题的要害是能阅读、理解陈述的材料,深刻理解题意,学会文字语言向数学的符号语言的翻译转化,能结合应用所学数学知识、思想方法解决问题,包括解决带有实际意义的或者相关学科、生产、生活中的数学问题,并能用数学语言正确的加以表述.考生的弱点主要表现在将实际问题转化成数学问题的能力上.实际问题转化为数学问题,关键是提高阅读能力即数学审题能力,审出函数、方程、不等式、等式,要求我们读懂材料,辨析文字叙述所反应的实际背景,领悟从背景中概括出来的数学实质,抽象其中的数量关系,将文字语言叙述转译成数学式符号语言,建立对应的数学模型解答.可以说,解答一个应用题重点要过三关:一是事理关,即读懂题意,需要一定的阅读理解能力;二是文理关,即把文字语言转化为数学的符号语言;三是数理关,即构建相应的数学模型,构建之后还需要扎实的基础知识和较强的数理能力.

点击下载:http://files.eduu.com/down.php?id=209681

相关推荐

函数与应用问题


数学必修1:函数的应用举例
【要点导学】
1、数学模型
数学模型就是把实际问题用数学语言抽象概括,再从数学角度来反映或近似地反映实际问题时,所得出的关于实际问题的数学描述.数学模型的形式是多样的,它们可以是几何图形,也可以是方程式,函数解析式等等.
2、数学模型方法
数学模型方法,是把实际问题加以抽象概括,建立相应的数学模型,利用这些模型来研究实际问题的一般数学方法.
3、求解实际问题的基本步骤
以函数为数学模型解决实际问题是数学应用的一个重要方面,主要研究它的定义域、值域、单调性、最值等问题.使用数学模型解决实际问题的基本步骤如下:

⑴审题:通过阅读,理解关键词的意义,明确变量和常量,理顺数量关系,弄清题意,明白问题讲的是什么.
⑵建模:将文字语言转换成数学语言,用数学式子表达数量关系,利用数学知识建立相应的数学模型.
⑶求模:求解数学模型,得到数学结论.
⑷还原:将用数学方法得到的结论,回归实际,还原为实际问题的意义.
4、本节课的函数应用是指利用函数知识求解实际问题.
【范例精析】
例1要使火车安全行驶,按规定,铁道转弯处的圆弧半径
不允许小于600.如果某段铁路两端相距156,弧所对的圆心
角小于180o,试确定圆弧弓形的高所允许的取值范围(精确到1m).
思路剖析先以弓形的高为自变量,半径R为函数,建
立R关于的函数关系式,然后再利用圆弧半径不小于600得
到关于的不等式,求出的范围.
解题示范如图,设圆弧的半径OA=OB=R,
圆弧弓形的高CD=,0R.
在RtΔBOD中,DB=78,OD=R-,
则,∴,
依题意R≥600,即≥600,
∴≥0,
解得≤5.1或≥1194.9,
又R,∴,∴≥1194.9应舍去.
答:圆弧弓形的高的允许值范围是(单位:米).
回顾反思如何依题意寻找关于的不等式,是求解本题的关键,这里要抓住两方面:一是圆弧半径不小于600,二是R.其中“R”是几何图形的性质所需要的,在解题时要善于挖掘题设条件中的隐含条件.
例2大气中的温度随着高度的上升而降低,根据实测的结果上升到12为止温度的降低大体上与升高的距离成正比,在12以上温度一定,保持在-55oC.
(1)当地球表面大气的温度是oC时,在的上空为oC,求、、间的函数关系式;
(2)问当地表的温度是29oC时,3上空的温度是多少?
思路剖析用待定系数法确定温度随高度变化的函数关系.
解题示范(1)由题设知,可设-=,即=+.
依题意,当=12时,=-55,
∴-55=+12,解得=-,
∴当时,.
又当时,.
∴所求的函数关系式为
(2)当=29,=3时,
=29-(55+29)=8,
即3上空的温度为8oC.
答:所求的关系式为,在3上空的温度是8oC.
回顾反思1、在求解本题时,要抓住“上升到12为止温度的降低大体上与升高的距离成正比”这句关键性的话,它表达了两层意思:一是温度的降低与升高的距离成正比;二是“温度的降低与升高的距离成正比”的前提是“上升到12为止”,故函数的定义域为.
2、数学模型中的自变量的取值范围,一方面要使数学关系式有意义,另一方面还必须满足实际问题的意义.
例31980年我国人均收入255美元,若到2000年人民生活达到小康水平,即人均收入为817美元,则年平均增长率是多少?若不低于此增长率递增,则到2010年人均收入至少多少美元?
思路剖析按平均增长率可求得逐年的人均收入,通过解方程可计算平均增长率.
解题示范设年平均增长率为,则
1981年人均收入为255,
1982年人均收入为255,
……
2000年人均收入为255,
依题意,得255=817,
∴=,
用计算器算得=0.06=6%.
设2010年人均收入为美元,则=255(1+6%)30,
用计算器算得=1464(美元).
答:年平均增长率为6%,到2010年人均收入至少为1464美元.
回顾反思在实际问题中,常常遇到有关平均增长率(如复利、人口增长率、产值增长率等)的问题,求解与平均增长率有关的实际应用问题时,常要用到公式,其中N表示原来产值的基础数,为平均增长率,表示对应于时间的产值,此公式称作复利公式,要掌握它的推导过程和实际应用.当表示增长率时,0;当表示折旧率时,0.
例4某工厂今年1月、2月、3月生产某产品分别为1万件、1.2万件、1.3万件,为估计以后每月的产量,以这三个月的产量为依据,用一个函数模拟该产品的月产量与月份的关系,模拟函数可选用二次函数或(,,为常数),已知四月份该产品的产量为1.37万件,请问:用以上哪个函数作为模拟函数较好?请说明理由.
思路剖析先利用待定系数法求出两个函数的解析式,再进行比较.
解题示范设二次函数为.
由已知得,
∴.
对于函数,
由已知得,
∴.
当=4时,;
.
∴,,
∴,
∴选用函数作模拟函数较好.
回顾反思本题中,要弄清选择哪个函数作为模拟函数“较好”的依据是什么?看分别与四月份该产品的实际产量1.37万件的误差哪个小.
例5已知某商品的价格每上涨%,销售的数量就减少%,其中为正常数.
(1)当时,该商品的价格上涨多少时,就能使销售的总金额最大?
(2)若适当地涨价,能使销售总金额增加,求的取值范围.
思路剖析销售总金额=商品定价销售数量.
解题示范(1)设商品原定价为,卖出的数量为,则当价格上涨%时,
商品的定价为,销售数量为,
∴销售总金额为,
即.
当时,
∴当=50时,.
即该商品的价格上涨50%时,销售总金额最大.
(2)∵二次函数在上递增,在上递减,
∴要使适当地涨价,能使销售总金额增加,即当0时,为增函数,则须且只需满足

解得01.
回顾反思在求解第二问时要注意两点:一是要理解“适当地涨价,能使销售总金额增加”在数学中的含义是什么?它表示当0时,为增函数,由此得到二次函数顶点的横坐标需满足的条件;二是不要把“销售总金额增加”错误地理解为“销售总金额比原来增加”,以致产生下面的错误解法:
令,得,∴,
∴,∴.
尽管答案一致,但纯属偶然.
【能力训练】
一、选择题
1、我国工农业总产值从1980年到2000年的20年间实现了翻两番的目标,若平均每年的增长率为,则()
A、=4B、=2C、=3D、=4
2、由于电子技术的飞速发展,计算机的成本不断降低.若每隔5年计算机的价格降低,现在价格为8100元的计算机经过15年,其价格可降为()
A、300元B、900元C、2400元D、3600元
3、某企业生产总值的月平均增长率为P,则年平均增长率为()
A、PB、P12C、(1+P)12D、(1+P)12-1
4、某商品零售价2002年比2001年上涨25%,欲控制2003年比2001年只上涨10%,则2003年应比2002年降价()
A、15%B、12%C、10%D、5%
5、一名退休职工每年获得一份医疗保障金,金额与他工作的年数的平方根成正比,如果多工作年,他的保障金会比原有的多元;如果多工作年,他的保障金会比原来的多元,那么他每年的保障金(用表示)是()
A、B、C、D、
二、填空题
6、有一块长为20厘米,宽为12厘米的矩形铁皮,将其四个角各截去一个边长为的小正方形,然后折成一个无盖的盒子.则盒子的容积V与的函数关系式是.
7、以半径为R的半圆上任意一点P为顶点,直径AB为底边的ΔPAB的面积S与高PD=之间的函数关系式是
8、储油303的油桶,每分钟流出3的油,则桶内剩余油量Q(3)以流出时间为自变量的函数的定义域为
9、A、B两地相距160(A地在B地的正北方向),甲从A地以80/s的速度向B行驶,乙从B地向正东方向以60/s的速度行驶.若甲、乙同时出发,则它们之间的最小距离为
10、“中华人民共和国个人所得税法”规定,薪金所得不超过800元的部分不必纳税,超过800元的部分为全月应纳税所得额.此项税款按下表分段累计计算:
全月应纳税所得额税率
不超过500元的部分5%
超过500元至2000元部分10%
…………
则每月工资为1900元的工人每月应纳税款元.
三、解答题
11、某超市为了获取最大利润做了一番试验,若将进货单价为8元的商品按10元一件的价格出售时,每天可销售60件,现在采用提高销售价格减少进货量的办法增加利润,已知这种商品每涨1元,其销售量就要减少10件,问该商品售价定为多少时才能赚得利润最大?并求出最大利润.
12、一根均匀的轻质弹簧,已知在600N的拉力范围内,其长度与所受拉力成一次函数关系,现测得当它在100N的拉力作用下,长度为0.55,在300N拉力作用下长度为0.65,那么弹簧在不受拉力作用时,其自然长度是多少?
13、如图,已知⊙O的半径为R,由直径AB的端点B作圆的切线,从圆周上任一点P引该切线的垂线,垂足为M,连AP,设AP=
(1)写出AP+2PM关于的函数关系式;
(2)求此函数的最值.
14、在底边BC=60,高AD=40的△ABC中作内接矩形MNPQ.设矩形的面积为S,MN=,写出S与之间的函数关系式,并求其定义域和值域.
15、某林场现有木材300003,如果每年平均增长5%,问大约经过多少年木材可以增加到400003?
【素质提高】
16、某房地产公司要在荒地ABCDE(如图)上划出
一块长方形的地面修建一座公寓楼.问如何设计才能使
公寓楼地面的面积最大,并求出最大的面积.
17、在测量某物理量的过程当中,因仪器和观察
的误差,使得次测量分别得到共个数
据.我们规定所测量的物理量的“最佳近似值”是
这样一个量:与其它近似值比较,与各数据的平方和最小.依此规定,从推出的值.
18、某工厂有一个容量为300吨的水塔,每天从早上6点起到晚上10点止供应该厂的生产和生活用水,已知该厂生活用水为每小时10吨,工业用水量W(吨)与时间(小时,且规定早上6点时)的函数关系为W=100.水塔的进水量分为10级,第一级每小时进水10吨,以后每提高一级,每小时进水量就增加10吨.若某天水塔原有水100吨,在开始供水的同时打开进水管,问进水量选择第几级时,既能保证该厂的用水(水塔中水不空),又不会使水溢出?
2.6函数的应用举例
1、D2、C3、D4、B5、D6、7、8、[0,40]9、10、8511、售价定为12元时可获最大利润160元12、0.5013、(1);(2)当时,当时14、,定义域为{|060},值域为{S|0S≤600}15、6年16、与AE平行的长方形的一边长为时,公寓楼的地面面积最大为17、18、第4级

2012届高考数学第二轮考点解析几何问题的题型与方法专题复习教案


第17-20课时:解析几何问题的题型与方法
一.复习目标:
1.能正确导出由一点和斜率确定的直线的点斜式方程;从直线的点斜式方程出发推导出直线方程的其他形式,斜截式、两点式、截距式;能根据已知条件,熟练地选择恰当的方程形式写出直线的方程,熟练地进行直线方程的不同形式之间的转化,能利用直线的方程来研究与直线有关的问题了.
2.能正确画出二元一次不等式(组)表示的平面区域,知道线性规划的意义,知道线性约束条件、线性目标函数、可行解、可行域、最优解等基本概念,能正确地利用图解法解决线性规划问题,并用之解决简单的实际问题,了解线性规划方法在数学方面的应用;会用线性规划方法解决一些实际问题.
3.理解“曲线的方程”、“方程的曲线”的意义,了解解析几何的基本思想,掌握求曲线的方程的方法.
4.掌握圆的标准方程:(r>0),明确方程中各字母的几何意义,能根据圆心坐标、半径熟练地写出圆的标准方程,能从圆的标准方程中熟练地求出圆心坐标和半径,掌握圆的一般方程:,知道该方程表示圆的充要条件并正确地进行一般方程和标准方程的互化,能根据条件,用待定系数法求出圆的方程,理解圆的参数方程(θ为参数),明确各字母的意义,掌握直线与圆的位置关系的判定方法.
5.正确理解椭圆、双曲线和抛物线的定义,明确焦点、焦距的概念;能根据椭圆、双曲线和抛物线的定义推导它们的标准方程;记住椭圆、双曲线和抛物线的各种标准方程;能根据条件,求出椭圆、双曲线和抛物线的标准方程;掌握椭圆、双曲线和抛物线的几何性质:范围、对称性、顶点、离心率、准线(双曲线的渐近线)等,从而能迅速、正确地画出椭圆、双曲线和抛物线;掌握a、b、c、p、e之间的关系及相应的几何意义;利用椭圆、双曲线和抛物线的几何性质,确定椭圆、双曲线和抛物线的标准方程,并解决简单问题;理解椭圆、双曲线和抛物线的参数方程,并掌握它的应用;掌握直线与椭圆、双曲线和抛物线位置关系的判定方法.
二.考试要求:
(一)直线和圆的方程
1.理解直线的斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程。
2.掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式,能够根据直线的方程判断两条直线的位置关系。
3.了解二元一次不等式表示平面区域。
4.了解线性规划的意义,并会简单的应用。
5.了解解析几何的基本思想,了解坐标法。
6.掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程。
(二)圆锥曲线方程
1.掌握椭圆的定义、标准方程和椭圆的简单几何性质。
2.掌握双曲线的定义、标准方程和双曲线的简单几何性质。
3.掌握抛物线的定义、标准方程和抛物线的简单几何性质。
4.了解圆锥曲线的初步应用。
三.教学过程:
(Ⅰ)基础知识详析
高考解析几何试题一般共有4题(2个选择题,1个填空题,1个解答题),共计30分左右,考查的知识点约为20个左右。其命题一般紧扣课本,突出重点,全面考查。选择题和填空题考查直线、圆、圆锥曲线、参数方程和极坐标系中的基础知识。解答题重点考查圆锥曲线中的重要知识点,通过知识的重组与链接,使知识形成网络,着重考查直线与圆锥曲线的位置关系,求解有时还要用到平几的基本知识和向量的基本方法,这一点值得强化。
(一)直线的方程
1.点斜式:;2.截距式:;
3.两点式:;4.截距式:;
5.一般式:,其中A、B不同时为0.
(二)两条直线的位置关系
两条直线,有三种位置关系:平行(没有公共点);相交(有且只有一个公共点);重合(有无数个公共点).在这三种位置关系中,我们重点研究平行与相交.
设直线:=+,直线:=+,则
∥的充要条件是=,且=;⊥的充要条件是=-1.
(三)线性规划问题
1.线性规划问题涉及如下概念:
⑴存在一定的限制条件,这些约束条件如果由x、y的一次不等式(或方程)组成的不等式组来表示,称为线性约束条件.
⑵都有一个目标要求,就是要求依赖于x、y的某个函数(称为目标函数)达到最大值或最小值.特殊地,若此函数是x、y的一次解析式,就称为线性目标函数.
⑶求线性目标函数在线性约束条件下的最大值或最小值问题,统称为线性规划问题.
⑷满足线性约束条件的解(x,y)叫做可行解.
⑸所有可行解组成的集合,叫做可行域.
⑹使目标函数取得最大值或最小值的可行解,叫做这个问题的最优解.
2.线性规划问题有以下基本定理:
⑴一个线性规划问题,若有可行解,则可行域一定是一个凸多边形.
⑵凸多边形的顶点个数是有限的.
⑶对于不是求最优整数解的线性规划问题,最优解一定在凸多边形的顶点中找到.
3.线性规划问题一般用图解法.
(四)圆的有关问题
1.圆的标准方程
(r>0),称为圆的标准方程,其圆心坐标为(a,b),半径为r.
特别地,当圆心在原点(0,0),半径为r时,圆的方程为.
2.圆的一般方程
(>0)称为圆的一般方程,
其圆心坐标为(,),半径为.
当=0时,方程表示一个点(,);
当<0时,方程不表示任何图形.
3.圆的参数方程
圆的普通方程与参数方程之间有如下关系:
(θ为参数)
(θ为参数)
(五)椭圆及其标准方程
1.椭圆的定义:椭圆的定义中,平面内动点与两定点、的距离的和大于||这个条件不可忽视.若这个距离之和小于||,则这样的点不存在;若距离之和等于||,则动点的轨迹是线段.
2.椭圆的标准方程:(>>0),(>>0).
3.椭圆的标准方程判别方法:判别焦点在哪个轴只要看分母的大小:如果项的分母大于项的分母,则椭圆的焦点在x轴上,反之,焦点在y轴上.
4.求椭圆的标准方程的方法:⑴正确判断焦点的位置;⑵设出标准方程后,运用待定系数法求解.
(六)椭圆的简单几何性质
1.椭圆的几何性质:设椭圆方程为(>>0).
⑴范围:-a≤x≤a,-b≤x≤b,所以椭圆位于直线x=和y=所围成的矩形里.
⑵对称性:分别关于x轴、y轴成轴对称,关于原点中心对称.椭圆的对称中心叫做椭圆的中心.
⑶顶点:有四个(-a,0)、(a,0)(0,-b)、(0,b).
线段、分别叫做椭圆的长轴和短轴.它们的长分别等于2a和2b,a和b分别叫做椭圆的长半轴长和短半轴长.所以椭圆和它的对称轴有四个交点,称为椭圆的顶点.
⑷离心率:椭圆的焦距与长轴长的比叫做椭圆的离心率.它的值表示椭圆的扁平程度.0<e<1.e越接近于1时,椭圆越扁;反之,e越接近于0时,椭圆就越接近于圆.
2.椭圆的第二定义
⑴定义:平面内动点M与一个顶点的距离和它到一条定直线的距离的比是常数(e<1=时,这个动点的轨迹是椭圆.
⑵准线:根据椭圆的对称性,(>>0)的准线有两条,它们的方程为.对于椭圆(>>0)的准线方程,只要把x换成y就可以了,即.
3.椭圆的焦半径:由椭圆上任意一点与其焦点所连的线段叫做这点的焦半径.
设(-c,0),(c,0)分别为椭圆(>>0)的左、右两焦点,M(x,y)是椭圆上任一点,则两条焦半径长分别为,.
椭圆中涉及焦半径时运用焦半径知识解题往往比较简便.
椭圆的四个主要元素a、b、c、e中有=+、两个关系,因此确定椭圆的标准方程只需两个独立条件.
(七)椭圆的参数方程
椭圆(>>0)的参数方程为(θ为参数).
说明⑴这里参数θ叫做椭圆的离心角.椭圆上点P的离心角θ与直线OP的倾斜角α不同:;
⑵椭圆的参数方程可以由方程与三角恒等式相比较而得到,所以椭圆的参数方程的实质是三角代换.
(八)双曲线及其标准方程
1.双曲线的定义:平面内与两个定点、的距离的差的绝对值等于常数2a(小于||)的动点的轨迹叫做双曲线.在这个定义中,要注意条件2a<||,这一条件可以用“三角形的两边之差小于第三边”加以理解.若2a=||,则动点的轨迹是两条射线;若2a>||,则无轨迹.
若<时,动点的轨迹仅为双曲线的一个分支,又若>时,轨迹为双曲线的另一支.而双曲线是由两个分支组成的,故在定义中应为“差的绝对值”.
2.双曲线的标准方程:和(a>0,b>0).这里,其中||=2c.要注意这里的a、b、c及它们之间的关系与椭圆中的异同.
3.双曲线的标准方程判别方法是:如果项的系数是正数,则焦点在x轴上;如果项的系数是正数,则焦点在y轴上.对于双曲线,a不一定大于b,因此不能像椭圆那样,通过比较分母的大小来判断焦点在哪一条坐标轴上.
4.求双曲线的标准方程,应注意两个问题:⑴正确判断焦点的位置;⑵设出标准方程后,运用待定系数法求解.
(九)双曲线的简单几何性质
1.双曲线的实轴长为2a,虚轴长为2b,离心率>1,离心率e越大,双曲线的开口越大.
2.双曲线的渐近线方程为或表示为.若已知双曲线的渐近线方程是,即,那么双曲线的方程具有以下形式:
,其中k是一个不为零的常数.
3.双曲线的第二定义:平面内到定点(焦点)与到定直线(准线)距离的比是一个大于1的常数(离心率)的点的轨迹叫做双曲线.对于双曲线,它的焦点坐标是(-c,0)和(c,0),与它们对应的准线方程分别是和.
在双曲线中,a、b、c、e四个元素间有与的关系,与椭圆一样确定双曲线的标准方程只要两个独立的条件.
(十)抛物线的标准方程和几何性质
1.抛物线的定义:平面内到一定点(F)和一条定直线(l)的距离相等的点的轨迹叫抛物线。这个定点F叫抛物线的焦点,这条定直线l叫抛物线的准线。
需强调的是,点F不在直线l上,否则轨迹是过点F且与l垂直的直线,而不是抛物线。
2.抛物线的方程有四种类型:
、、、.
对于以上四种方程:应注意掌握它们的规律:曲线的对称轴是哪个轴,方程中的该项即为一次项;一次项前面是正号则曲线的开口方向向x轴或y轴的正方向;一次项前面是负号则曲线的开口方向向x轴或y轴的负方向。
3.抛物线的几何性质,以标准方程y2=2px为例
(1)范围:x≥0;
(2)对称轴:对称轴为y=0,由方程和图像均可以看出;
(3)顶点:O(0,0),注:抛物线亦叫无心圆锥曲线(因为无中心);
(4)离心率:e=1,由于e是常数,所以抛物线的形状变化是由方程中的p决定的;
(5)准线方程;
(6)焦半径公式:抛物线上一点P(x1,y1),F为抛物线的焦点,对于四种抛物线的焦半径公式分别为(p>0):
(7)焦点弦长公式:对于过抛物线焦点的弦长,可以用焦半径公式推导出弦长公式。设过抛物线y2=2px(p>O)的焦点F的弦为AB,A(x1,y1),B(x2,y2),AB的倾斜角为α,则有①|AB|=x+x+p

以上两公式只适合过焦点的弦长的求法,对于其它的弦,只能用“弦长公式”来求。
(8)直线与抛物线的关系:直线与抛物线方程联立之后得到一元二次方程:x+bx+c=0,当a≠0时,两者的位置关系的判定和椭圆、双曲线相同,用判别式法即可;但如果a=0,则直线是抛物线的对称轴或是和对称轴平行的直线,此时,直线和抛物线相交,但只有一个公共点。
(十一)轨迹方程
⑴曲线上的点的坐标都是这个方程的解;
⑵以这个方程的解为坐标的点都是曲线上的点.
那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线(图形或轨迹).

(十二)注意事项
1.⑴直线的斜率是一个非常重要的概念,斜率k反映了直线相对于x轴的倾斜程度.当斜率k存在时,直线方程通常用点斜式或斜截式表示,当斜率不存在时,直线方程为x=a(a∈R).因此,利用直线的点斜式或斜截式方程解题时,斜率k存在与否,要分别考虑.
⑵直线的截距式是两点式的特例,a、b分别是直线在x轴、y轴上的截距,因为a≠0,b≠0,所以当直线平行于x轴、平行于y轴或直线经过原点,不能用截距式求出它的方程,而应选择其它形式求解.
⑶求解直线方程的最后结果,如无特别强调,都应写成一般式.
⑷当直线或的斜率不存在时,可以通过画图容易判定两条直线是否平行与垂直
⑸在处理有关圆的问题,除了合理选择圆的方程,还要注意圆的对称性等几何性质的运用,这样可以简化计算.
2.⑴用待定系数法求椭圆的标准方程时,要分清焦点在x轴上还是y轴上,还是两种都存在.
⑵注意椭圆定义、性质的运用,熟练地进行a、b、c、e间的互求,并能根据所给的方程画出椭圆.
⑶求双曲线的标准方程应注意两个问题:⑴正确判断焦点的位置;⑵设出标准方程后,运用待定系数法求解.
⑷双曲线的渐近线方程为或表示为.若已知双曲线的渐近线方程是,即,那么双曲线的方程具有以下形式:
,其中k是一个不为零的常数.
⑸双曲线的标准方程有两个和(a>0,b>0).这里,其中||=2c.要注意这里的a、b、c及它们之间的关系与椭圆中的异同.
⑹求抛物线的标准方程,要线根据题设判断抛物线的标准方程的类型,再求抛物线的标准方程,要线根据题设判断抛物线的标准方程的类型,再由条件确定参数p的值.同时,应明确抛物线的标准方程、焦点坐标、准线方程三者相依并存,知道其中抛物线的标准方程、焦点坐标、准线方程三者相依并存,知道其中一个,就可以求出其他两个.
(Ⅱ)范例分析
例1、求与直线3x+4y+12=0平行,且与坐标轴构成的三角形面积是24的直线l的方程。
分析:满足两个条件才能确定一条直线。一般地,求直线方程有两个解法,即用其中一个条件列出含待定系数的方程,再用另一个条件求出此参数。
解法一:先用“平行”这个条件设出l的方程为3x+4y+m=0①再用“面积”条件去求m,∵直线l交x轴于,交y轴于由,得,代入①得所求直线的方程为:
解法二:先用面积这个条件列出l的方程,设l在x轴上截距离a,在y轴上截距b,则有,因为l的倾角为钝角,所以a、b同号,|ab|=ab,l的截距式为,即48x+a2y-48a=0②又该直线与3x+4y+2=0平行,∴,∴代入②得所求直线l的方程为
说明:与直线Ax+By+C=0平行的直线可写成Ax+By+C1=0的形式;与Ax+By+C=0垂直的直线的方程可表示为Bx-Ay+C2=0的形式。
例2、若直线mx+y+2=0与线段AB有交点,其中A(-2,3),B(3,2),求实数m的取值范围。
解:直线mx+y+2=0过一定点C(0,-2),直线mx+y+2=0实际上表示的是过定点(0,-2)的直线系,因为直线与线段AB有交点,则直线只能落在∠ABC的内部,设BC、CA这两条直线的斜率分别为k1、k2,则由斜率的定义可知,直线mx+y+2=0的斜率k应满足k≥k1或k≤k2,∵A(-2,3)B(3,2)

∴-m≥或-m≤即m≤或m≥
说明:此例是典型的运用数形结合的思想来解题的问题,这里要清楚直线mx+y+2=0的斜率-m应为倾角的正切,而当倾角在(0°,90°)或(90°,180°)内,角的正切函数都是单调递增的,因此当直线在∠ACB内部变化时,k应大于或等于kBC,或者k小于或等于kAC,当A、B两点的坐标变化时,也要能求出m的范围。

例3、已知x、y满足约束条件
x≥1,
x-3y≤-4,
3x+5y≤30,
求目标函数z=2x-y的最大值和最小值.
解:根据x、y满足的约束条件作出可行域,即如图所示的阴影部分(包括边界).
作直线:2x-y=0,再作一组平行于的直线:2x-y=t,t∈R.
可知,当在的右下方时,直线上的点(x,y)满足2x-y>0,即t>0,而且直线往右平移时,t随之增大.当直线平移至的位置时,直线经过可行域上的点B,此时所对应的t最大;当在的左上方时,直线上的点(x,y)满足2x-y<0,即t<0,而且直线往左平移时,t随之减小.当直线平移至的位置时,直线经过可行域上的点C,此时所对应的t最小.
x-3y+4=0,
由解得点B的坐标为(5,3);
3x+5y-30=0,
x=1,
由解得点C的坐标为(1,).
3x+5y-30=0,
所以,=2×5-3=7;=2×1-=.

例4、某运输公司有10辆载重量为6吨的A型卡车与载重量为8吨的B型卡车,有11名驾驶员.在建筑某段高速公路中,该公司承包了每天至少搬运480吨沥青的任务.已知每辆卡车每天往返的次数为A型卡车8次,B型卡车7次;每辆卡车每天的成本费A型车350元,B型车400元.问每天派出A型车与B型车各多少辆,公司所花的成本费最低,最低为多少?
解:设每天派出A型车与B型车各x、y辆,并设公司每天的成本为z元.由题意,得
x≤10,
y≤5,
x+y≤11,
48x+56y≥60,
x,y∈N,
且z=350x+400y.
x≤10,
y≤5,
即x+y≤11,
6x+7y≥55,
x,y∈N,
作出可行域,作直线:350x+400y=0,即7x+8y=0.
作出一组平行直线:7x+8y=t中(t为参数)经过可行域内的点和原点距离最近的直线,此直线经过6x+7y=60和y=5的交点A(,5),由于点A的坐标不都是整数,而x,y∈N,所以可行域内的点A(,5)不是最优解.
为求出最优解,必须进行定量分析.
因为,7×+8×5≈69.2,所以经过可行域内的整点(横坐标和纵坐标都是整数的点)且与原点最小的直线是7x+8y=10,在可行域内满足该方程的整数解只有x=10,y=0,所以(10,0)是最优解,即当通过B点时,z=350×10+400×0=3500元为最小.
答:每天派出A型车10辆不派B型车,公司所化的成本费最低为3500元.

例5、已知点T是半圆O的直径AB上一点,AB=2、OT=t(0t1),以AB为直腰作直角梯形,使垂直且等于AT,使垂直且等于BT,交半圆于P、Q两点,建立如图所示的直角坐标系.
(1)写出直线的方程;
(2)计算出点P、Q的坐标;
(3)证明:由点P发出的光线,经AB反射后,反射光线通过点Q.
解:(1)显然,于是直线的方程为;
(2)由方程组解出、;
(3),.
由直线PT的斜率和直线QT的斜率互为相反数知,由点P发出的光线经点T反射,反射光线通过点Q.
说明:需要注意的是,Q点的坐标本质上是三角中的万能公式,有趣吗?
例6、设P是圆M:(x-5)2+(y-5)2=1上的动点,它关于A(9,0)的对称点为Q,把P绕原点依逆时针方向旋转90°到点S,求|SQ|的最值。
解:设P(x,y),则Q(18-x,-y),记P点对应的复数为x+yi,则S点对应的复数为:
(x+yi)i=-y+xi,即S(-y,x)

其中可以看作是点P到定点B(9,-9)的距离,共最大值为最小值为,则
|SQ|的最大值为,|SQ|的最小值为

例7、已知⊙M:轴上的动点,QA,QB分别切⊙M于A,B两点,(1)如果,求直线MQ的方程;
(2)求动弦AB的中点P的轨迹方程.
解:(1)由,可得由射影定理,得在Rt△MOQ中,

故,
所以直线AB方程是
(2)连接MB,MQ,设由
点M,P,Q在一直线上,得
由射影定理得
即把(*)及(**)消去a,
并注意到,可得
说明:适时应用平面几何知识,这是快速解答本题的要害所在。
例8、直线过抛物线的焦点,且与抛物线相交于A两点.(1)求证:;
(2)求证:对于抛物线的任意给定的一条弦CD,直线l不是CD的垂直平分线.
解:(1)易求得抛物线的焦点.
若l⊥x轴,则l的方程为.
若l不垂直于x轴,可设,代入抛物线方程整理得.
综上可知.
(2)设,则CD的垂直平分线的方程为
假设过F,则整理得
,.
这时的方程为y=0,从而与抛物线只相交于原点.而l与抛物线有两个不同的交点,因此与l不重合,l不是CD的垂直平分线.
说明:此题是课本题的深化,课本是高考试题的生长点,复习要重视课本。

例9、已知椭圆,能否在此椭圆位于y轴左侧的部分上找到一点M,使它到左准线的距离为它到两焦点F1、F2距离的等比中项,若能找到,求出该点的坐标,若不能找到,请说明理由。
解:假设存在满足条件的点,设M(x1,y1)a2=4,b2=3,∴a=2,,c=1,∴,
,点M到椭圆左准线的距离
,∴,∴,∴或,这与x1∈[-2,0)相矛盾,∴满足条件的点M不存在。
例10、已知椭圆中心在原点,焦点在轴上,焦距为4,离心率为,
(Ⅰ)求椭圆方程;
(Ⅱ)设椭圆在y轴正半轴上的焦点为M,又点A和点B在椭圆上,且M分有向线段所成的比为2,求线段AB所在直线的方程。
解:(Ⅰ)设椭圆方程为由2c=4得c=2又
故a=3,∴所求的椭圆方程为
(Ⅱ)若k不存在,则,若k存在,则设直线AB的方程为:y=kx+2
又设A
由得
①②
∵点M坐标为M(0,2)∴
由∴
∴代入①、②得…③④
由③、④得∴
∴线段AB所在直线的方程为:。
说明:有向线段所成的比,线段的定比分点等概念,本身就是解析几何研究的一类重要问题。向量概念的引入,使这类问题的解决显得简洁而流畅。求解这类问题可以用定比分点公式,也可以直接用有向线段的比解题。
另外,向量的长度,点的平移等与解析几何都有着千丝万缕的联系,向量与解析几何的结合,为解决这些问题开辟了新的解题途径。

例11、已知直线l与椭圆有且仅有一个交点Q,且与x轴、y轴分别交于R、S,求以线段SR为对角线的矩形ORPS的一个顶点P的轨迹方程.
解:从直线所处的位置,设出直线的方程,
由已知,直线l不过椭圆的四个顶点,所以设直线l的方程为
代入椭圆方程得
化简后,得关于的一元二次方程
于是其判别式
由已知,得△=0.即①
在直线方程中,分别令y=0,x=0,求得
令顶点P的坐标为(x,y),由已知,得
代入①式并整理,得,即为所求顶点P的轨迹方程.
说明:方程形似椭圆的标准方程,你能画出它的图形吗?
例12、已知双曲线的离心率,过的直线到原点的距离是(1)求双曲线的方程;
(2)已知直线交双曲线于不同的点C,D且C,D都在以B为圆心的圆上,求k的值.
解:∵(1)原点到直线AB:的距离.
故所求双曲线方程为
(2)把中消去y,整理得.
设的中点是,则

故所求k=±.
说明:为了求出的值,需要通过消元,想法设法建构的方程.

例13、过点作直线与椭圆3x2+4y2=12相交于A、B两点,O为坐标原点,求△OAB面积的最大值及此时直线倾斜角的正切值。
分析:若直接用点斜式设的方程为,则要求的斜率一定要存在,但在这里的斜率有可能不存在,因此要讨论斜率不存在的情形,为了避免讨论,我们可以设直线的方程为,这样就包含了斜率不存在时的情形了,从而简化了运算。
解:设A(x1,y1),B(x2,y2),:
把代入椭圆方程得:,即
,,
∴,此时
令直线的倾角为,则
即△OAB面积的最大值为,此时直线倾斜角的正切值为。

例14、(2003年江苏高考题)已知常数,向量
经过原点O以为方向向量的直线与经过定点A(0,a)以为方向向量的直线相交于点P,其中试问:是否存在两个定点E、F,使得|PE|+|PF|为定值.若存在,求出E、F的坐标;若不存在,说明理由.
解:∵=(1,0),=(0,a),∴+λ=(λ,a),-2λ=(1,-2λa).
因此,直线OP和AP的方程分别为和.
消去参数λ,得点的坐标满足方程.
整理得……①
因为所以得:
(i)当时,方程①是圆方程,故不存在合乎题意的定点E和F;
(ii)当时,方程①表示椭圆,焦点和为合乎题意的两个定点;
(iii)当时,方程①也表示椭圆,焦点和为合乎题意的两个定点.
说明:由于向量可以用一条有向线段来表示,有向线段的方向可以决定解析几何中直线的斜率,故直线的方向向量与解析几何中的直线有着天然的联系。求解此类问题的关键是:根据直线的方向向量得出直线方程,再转化为解析几何问题解决。

例15、已知椭圆的长、短轴端点分别为A、B,从此椭圆上一点M向x轴作垂线,恰好通过椭圆的左焦点,向量与是共线向量。
(1)求椭圆的离心率e;
(2)设Q是椭圆上任意一点,、分别是左、右焦点,求∠的取值范围;
解:(1)∵,∴。
∵是共线向量,∴,∴b=c,故。
(2)设
当且仅当时,cosθ=0,∴θ。
说明:由于共线向量与解析几何中平行线、三点共线等具有异曲同工的作用,因此,解析几何中与平行线、三点共线等相关的问题均可在向量共线的新情景下设计问题。求解此类问题的关键是:正确理解向量共线与解析几何中平行、三点共线等的关系,把有关向量的问题转化为解析几何问题。

例16、一条斜率为1的直线与离心率为的椭圆C:()交于P、Q,两点,直线与Y轴交于点R,且,,求直线和椭圆C的方程。
解:椭圆离心率为,,
所以椭圆方程为,设方程为:,
由消去得
……(1)……(2)
所以

所以
所以……(3)又,,从而……(4)由(1)(2)(4)得……(5)
由(3)(5)解得,适合,
所以所求直线方程为:或;椭圆C的方程为
说明:向量数量积的坐标表示,构建起向量与解析几何的密切关系,使向量与解析几何融为一体。求此类问题的关键是:利用向量数量积的坐标表示,沟通向量与解析几何的联系。体现了向量的工具性。

例17、已知椭圆C的中心在原点,焦点F1、F2在x轴上,点P为椭圆上的一个动点,且∠F1PF2的最大值为90°,直线l过左焦点F1与椭圆交于A、B两点,△ABF2的面积最大值为12.
(1)求椭圆C的离心率;
(2)求椭圆C的方程.
解法一:(1)设,对由余弦定理,得
,解出
(2)考虑直线的斜率的存在性,可分两种情况:
i)当k存在时,设l的方程为………………①
椭圆方程为
由得.
于是椭圆方程可转化为………………②
将①代入②,消去得,
整理为的一元二次方程,得.
则x1、x2是上述方程的两根.且


AB边上的高
ii)当k不存在时,把直线代入椭圆方程得
由①②知S的最大值为由题意得=12所以
故当△ABF2面积最大时椭圆的方程为:
解法二:设过左焦点的直线方程为:…………①
椭圆的方程为:
由得:于是椭圆方程可化为:……②
把①代入②并整理得:
于是是上述方程的两根.
,
AB边上的高,
从而
当且仅当m=0取等号,即
由题意知,于是.
故当△ABF2面积最大时椭圆的方程为:
例18、(2002年天津高考题)已知两点M(-1,0),N(1,0)且点P使成公差小于零的等差数列,
(Ⅰ)点P的轨迹是什么曲线?
(Ⅱ)若点P坐标为,为的夹角,求tanθ。
解:(Ⅰ)记P(x,y),由M(-1,0)N(1,0)得
所以
于是,是公差小于零的等差数列等价于

所以,点P的轨迹是以原点为圆心,为半径的右半圆。
(Ⅱ)点P的坐标为。。
因为0〈,所以
说明:在引入向量的坐标表示后,可以使向量运算代数化,这样就可以将“形”和“数”紧密地结合在一起。向量的夹角问题融入解析几何问题中,也就显得十分自然。求解这类问题的关键是:先把向量用坐标表示,再用解析几何知识结合向量的夹角公式使问题获解;也可以把两向量夹角问题转化为两直线所成角的问题,用数形结合方法使问题获解。

(Ⅲ)、强化训练
1、已知P是以、为焦点的椭圆上一点,若,则椭圆的离心率为()
(A)(B)(C)(D)
2、已知△ABC的顶点A(3,-1),AB边上的中线所在直线的方程为6x+10y-59=0,∠B的平分线所在直线的方程为:x-4y+10=0,求边BC所在直线的方程。
3、求直线l2:7x-y+4=0到l1:x+y-2=0的角平分线的方程。
食物P食物Q食物R
维生素A(单位/kg)400600400
维生素B(单位/kg)800200400
成本(元/kg)654
4、已知三种食物P、Q、R的维生素含量与成本如下表所示.

现在将xkg的食物P和ykg的食物Q及zkg的食物R混合,制成100kg的混合物.如果这100kg的混合物中至少含维生素A44000单位与维生素B48000单位,那么x,y,z为何值时,混合物的成本最小?
5、某人有楼房一幢,室内面积共180,拟分隔成两类房间作为旅游客房.大房间每间面积为18,可住游客5名,每名游客每天住宿费为40元;小房间每间面积为15,可住游客3名,每名游客每天住宿费为50元.装修大房间每间需1000元,装修小房间每间需600元.如果他只能筹款8000元用于装修,且游客能住满客房,他应隔出大房间和小房间各多少间,能获得最大收益?
6、已知△ABC三边所在直线方程AB:x-6=0,BC:x-2y-8=0,CA:x+2y=0,求此三角形外接圆的方程。
7、已知椭圆x2+2y2=12,A是x轴正方向上的一定点,若过点A,斜率为1的直线被椭圆截得的弦长为,求点A的坐标。
8、已知椭圆(a>b>0)上两点A、B,直线上有两点C、D,且ABCD是正方形。此正方形外接圆为x2+y2-2y-8=0,求椭圆方程和直线的方程。
9、求以直线为准线,原点为相应焦点的动椭圆短轴MN端点的轨迹方程。
10、若椭圆的对称轴在坐标轴上,两焦点与两短轴端点正好是正方形的四个顶点,又焦点到同侧长轴端点的距离为,求椭圆的方程。
11、已知直线与椭圆相交于A、B两点,且线段AB的中点在直线上.
(1)求此椭圆的离心率;
(2)若椭圆的右焦点关于直线的对称点的在圆上,求此椭圆的方程.
12、设A(x1,y1)为椭圆x2+2y2=2上任意一点,过点A作一条直线,斜率为,又设d为原点到直线的距离,r1、r2分别为点A到椭圆两焦点的距离。求证:为定值。
13、某工程要将直线公路l一侧的土石,通过公路上的两个道口A和B,沿着道路AP、BP运往公路另一侧的P处,PA=100m,PB=150m,∠APB=60°,试说明怎样运土石最省工?
14、已知椭圆(a>b>0),P为椭圆上除长轴端点外的任一点,F1、F2为椭圆的两个焦点,(1)若,,求证:离心率;(2)若,求证:的面积为。
15、在Rt△ABC中,∠CBA=90°,AB=2,AC=。DO⊥AB于O点,OA=OB,DO=2,曲线E过C点,动点P在E上运动,且保持|PA|+|PB|的值不变.
(1)建立适当的坐标系,求曲线E的方程;
(2)过D点的直线L与曲线E相交于不同的两点M、N且M在D、N之间,设,
试确定实数的取值范围.
16、(2004年北京春季高考)已知点A(2,8),在抛物线上,的重心与此抛物线的焦点F重合(如图)
(I)写出该抛物线的方程和焦点F的坐标;
(II)求线段BC中点M的坐标;(III)求BC所在直线的方程。

(Ⅳ)、参考答案
1、解:设c为为椭圆半焦距,∵∴
又∴
解得:选(D)。
说明:垂直向量的引入为解决解析几何问题开辟了新思路。求解此类问题的关键是利用向量垂直的充要条件:“”,促使问题转化,然后利用数形结合解决问题。
2、解:设B(a,b),B在直线BT上,∴a-4b+10=0①又AB中点在直线CM上,∴点M的坐标满足方程6x+10y-59=0∴②解①、②组成的方程组可得a=10,b=5∴B(10,5),又由角平分线的定义可知,直线BC到BT的角等于直线BT到直线BA的角,又∴∴,∴BC所在直线的方程为即2x+9y-65=0
3、解法一:设l2到l1角平分线l的斜率为k,∵k1=-1,k2=7
∴,解之得k=-3或,由图形可知k0,
∴k=-3,又由解得l1与l2的交点,
由点斜式得即6x+2y-3=0
解法二:设l2到l1的角为θ,则,所以角θ为锐角,而,由二倍角公式可知∴或为锐角,
∴,∴k=-3等同解法一。
解法三:设l:(x+y-2)+λ(7x-y+4)=0即(1+7λ)x+(1-λ)y+(4λ-2)=0①
∴,由解法一知,∴,代入①化简即得:6x+2y-3=0
解法四:用点到直线的距离公式,设l上任一点P(x,y),则P到l1与l2的距离相等。
∴整理得:6x+2y-3=0与x-3y+7=0,又l是l2到l1的角的平分线,
k0,∴x-3y+7=0不合题意所以所求直线l的方程为6x+2y-3=0.
4、分析:由x+y+z=100,得z=100-x-y,所以上述问题可以看作只含x,y两个变量.设混合物的成本为k元,那么k=6x+5y+4(100-x-y)=2x+y+400.于是问题就归结为求k在已知条件下的线性规划问题.
解:已知条件可归结为下列不等式组:
x≥0,
y≥0,
x+y≤100,
400x+600y+400(100-x-y)≥44000,
800x+200y+400(100-x-y)≥48000.
x+y≤100,
即y≥20,①
2x-y≥40.
在平面直角坐标系中,画出不等式组①所表示的平面区域,这个区域是直线x+y=100,y=20,2x-y=40围成的一个三角形区域EFG(包括边界),即可行域,如图所示的阴影部分.
设混合物的成本为k元,那么k=6x+5y+4(100-x-y)=2x+y+400.
作直线:2x+y=0,把直线向右上方平移至位置时,直线经过可行域上的点E,且与原点的距离最小,此时2x+y的值最小,从而k的值最小.
2x-y=40,x=30,
由得即点E的坐标是(30,20).
y=20,y=20,
所以,=2×30+20+400=480(元),此时z=100-30-20=50.
答:取x=30,y=20,z=50时,混合物的成本最小,最小值是480元.

5、解:设隔出大房间x间,小房间y间时收益为z元,则x、y满足
18x+15y≤180,
1000x+600y≤8000,
x,y∈N,
且z=200x+150y.
所以6x+5y≤60,
5x+3y≤40,
x,y∈N,
作出可行域及直线:200x+150y=0,即4x+3y=0.(如图4)
把直线向上平移至的位置时,直线经过可行域上的点B,且与原点距离最大.此时,z=200x+150y取最大值.但解6x+5y=60与5x+3y=40联立的方程组得到B(,).由于点B的坐标不是整数,而x,y∈N,所以可行域内的点B不是最优解.
为求出最优解,同样必须进行定量分析.
因为4×+3×=≈37.1,但该方程的非负整数解(1,11)、(4,7)、(7,3)均不在可行域内,所以应取4x+3y=36.同样可以验证,在可行域内满足上述方程的整点为(0,12)和(3,8).此时z取最大值1800元.

6、解:解方程组可得A(6,-3)、B(6,-1)、C(4,2)设方程x2+y2+Dx+Ey+F=0,则:
解之得:D=,E=4,F=30
所以所求的△ABC的外接圆方程为:
7、分析:若直线y=kx+b与圆锥曲线f(x,y)=0相交于两点P(x1,y1)、Q(x2、y2),则弦PQ的长度的计算公式为,而
,因此只要把直线y=kx+b的方程代入圆锥曲线f(x,y)=0方程,消去y(或x),结合一元二次方程根与系数的关系即可求出弦长。
解:设A(x0,0)(x0>0),则直线的方程为y=x-x0,设直线与椭圆相交于P(x1,y1),
Q(x2、y2),由y=x-x0可得3x2-4x0x+2x02-12=0,
x2+2y2=12
,,则
∴,即
∴x02=4,又x0>0,∴x0=2,∴A(2,0)。
8、解:圆方程x2+y2-2y-8=0即x2+(y-1)2=9的圆心O'(0,1),半径r=3。
设正方形的边长为p,则,∴,又O'是正方形ABCD的中心,∴O'到直线y=x+k的距离应等于正方形边长p的一半即,由点到直线的距离公式可知k=-2或k=4。
(1)设AB:y=x-2由y=x-2
CD:y=x+4x2+y2-2y-8=0
得A(3,1)B(0,-2),又点A、B在椭圆上,∴a2=12,b2=4,椭圆的方程为。
(2)设AB:y=x+4,同理可得两交点的坐标分别为(0,4),(-3,1)代入椭圆方程得
,此时b2>a2(舍去)。
综上所述,直线方程为y=x+4,椭圆方程为。
9、分析:已知了椭圆的焦点及相应准线,常常需要运用椭圆的第二定义:椭圆上的点到焦点的距离与到相应准线的距离之比等于离心率e,而该题中短轴端点也是椭圆上的动点,因此只要运用第二定义结合a、b、c的几何意义即可。
解:设M(x,y),过M作于A,,,∴,又过M作轴于O',因为点M为短轴端点,则O'必为椭圆中心,
∴,,∴,∴化简得y2=2x,∴短轴端点的轨迹方程为y2=2x(x≠0)。
10、解:若椭圆的焦点在x轴上,如图,∵四边形B1F1B2F2是正方形,且A1F1=,由椭圆的几何意义可知,解之得:,此时椭圆的方程为,同理焦点也可以在y轴上,综上所述,椭圆的方程为或。
11、解:(1)设A、B两点的坐标分别为得
,
根据韦达定理,得
∴线段AB的中点坐标为().
由已知得
故椭圆的离心率为.
(2)由(1)知从而椭圆的右焦点坐标为设关于直线的对称点为
解得
由已知得
故所求的椭圆方程为.
12、分析:根据椭圆的第二定义,即到定点的距离与到定直线的距离之比等于常数e(0<e<1)的点的轨迹是椭圆,椭圆上任一点P(x1,y1)到左焦点F1的距离|PF1|=a+ex1,到右焦点F2的距离|PF2|=a-ex1;同理椭圆上任一点P(x1,y1)到两焦点的距离分别为a+ey1和a-ey1,这两个结论我们称之为焦半径计算公式,它们在椭圆中有着广泛的运用。
解:由椭圆方程可知a2=2,b2=1则c=1,∴离心率,由焦半径公式可知,。又直线的方程为:
即x1x+2y1y-2=0,由点到直线的距离公式知,,又点(x1,y1)在椭圆上,∴2y12=2=x12,
∴,
∴为定值。
13、解:以直线l为x轴,线段AB的中点为原点对立直角坐标系,则在l一侧必存在经A到P和经B到P路程相等的点,设这样的点为M,则
|MA|+|AP|=|MB|+|BP|,
即|MA|-|MB|=|BP|-|AP|=50,
,
∴M在双曲线的右支上.
故曲线右侧的土石层经道口B沿BP运往P处,曲线左侧的土石层经道口A沿AP运往P处,按这种方法运土石最省工.
相关解析几何的实际应用性试题在高考中似乎还未涉及,其实在课本中还可找到典型的范例,你知道吗?
14、分析:的两个顶点为焦点,另一点是椭圆上的动点,因此,|F1F2|=2c,所以我们应以为突破口,在该三角形中用正弦定理或余弦定理,结合椭圆的定义即可证得。
证明:(1)在中,由正弦定理可知,则


(2)在中由余弦定理可知
y

∴。

15、解:(1)建立平面直角坐标系,如图所示.
∵|PA|+|PB|=|CA|+|CB|=
∴动点P的轨迹是椭圆.

∴曲线E的方程是.
(2)设直线L的方程为,代入曲线E的方程,得
设M1(,则
i)L与y轴重合时,
ii)L与y轴不重合时,
由①得又∵,
∵或
∴0<<1,∴.

而∴∴
∴,,
∴的取值范围是。
16、分析:本小题主要考查直线、抛物线等基本知识,考查运用解析几何的方法分析问题和解决问题的能力。
解:(I)由点A(2,8)在抛物线上,有解得
所以抛物线方程为,焦点F的坐标为(8,0)
(II)如图,由F(8,0)是的重心,M是BC的中点,所以F是线段AM的定比分点,且设点M的坐标为,则
解得所以点M的坐标为
(III)由于线段BC的中点M不在x轴上,所以BC所在的直线不垂直于x轴。
设BC所成直线的方程为
由消x得
所以由(II)的结论得解得
因此BC所在直线的方程为即。

牛顿第二定律的理解与方法应用


一名爱岗敬业的教师要充分考虑学生的理解性,高中教师要准备好教案,这是高中教师需要精心准备的。教案可以让学生更好的吸收课堂上所讲的知识点,帮助高中教师更好的完成实现教学目标。您知道高中教案应该要怎么下笔吗?为满足您的需求,小编特地编辑了“牛顿第二定律的理解与方法应用”,仅供参考,欢迎大家阅读。

牛顿第二定律的理解与方法应用
一、牛顿第二定律的理解。
1、矢量性
合外力的方向决定了加速度的方向,合外力方向变,加速度方向变,加速度方向与合外力方向一致。其实牛顿第二定律的表达形式就是矢量式。
2、瞬时性
加速度与合外力是瞬时对应关系,它们同生、同灭、同变化。
3、同一性(同体性)
中各物理量均指同一个研究对象。因此应用牛顿第二定律解题时,首先要处理好的问题是研究对象的选择与确定。
4、相对性
在中,a是相对于惯性系的而不是相对于非惯性系的即a是相对于没有加速度参照系的。
5、独立性
理解一:F合产生的加速度a是物体的总加速度,根据矢量的合成与分解,则有物体在x方向的加速度ax;物体在y方向的合外力产生y方向的加速度ay。牛顿第二定律分量式为:。
二、方法与应用
1、整体法与隔离法(同体性)
选择研究对象是解答物理问题的首要环节,在很多问题中,涉及到相连接的几个物体,研究对象的选择方案不惟一。解答这类问题,应优先考虑整体法,因为整体法涉及研究对象少,未知量少,方程少,求解简便。但对于大多数平衡问题单纯用整体法不能解决,通常采用“先整体,后隔离”的分析方法。
2、牛顿第二定律瞬时性解题法(瞬时性)
牛顿第二定律的核心是加速度与合外力的瞬时对应关系,做变加速运动的物体,其加速度时刻都在变化,某时刻的加速度叫瞬时加速度,而加速度由合外力决定,当合外力恒定时,加速度也恒定,合外力变化时,加速度也随之变化,且瞬时力决定瞬时加速度。解决这类问题要注意:
(1)确定瞬时加速度的关键是正确确定瞬时合外力。
(2)当指定某个力变化时,是否还隐含着其它力也发生变化。
(3)整体法、隔离法的合力应用。
3、动态分析法
4、正交分解法(独立性)
(1)、平行四边形定则是矢量合成的普遍法则,若二力合成,通常应用平行四边形定则,若是多个力共同作用,则往往应用正交分解法
(2)正交分解法:即把力向两个相互垂直的方向分解,分解到直角坐标系的两个轴上,再进行合成,以便于计算解题。
5、结论求解法:结论:物体由竖直圆周的顶点从静止出发,沿不同的光滑直线轨道运动至圆周上另外任一点所用的时间相同。
三、牛顿定律的应用
1、脱离问题
一起运动的两物体发生脱离时,两物体接触,物体间的弹力为零,两物体的速度、加速度相等。
曲线运动、运动的合成与分解、平抛运动
1、深刻理解曲线运动的条件和特点
(1)曲线运动的条件:运动物体所受合外力的方向跟其速度方向不在一条直线上时,物体做曲线运动。
(2)曲线运动的特点:○1在曲线运动中,运动质点在某一点的瞬时速度方向,就是通过这一点的曲线的切线方向。②曲线运动是变速运动,这是因为曲线运动的速度方向是不断变化的。○3做曲线运动的质点,其所受的合外力一定不为零,一定具有加速度。
(3)曲线运动物体所受合外力方向和速度方向不在一直线上,且一定指向曲线的凹侧。
2、深刻理解运动的合成与分解
(1)物体的实际运动往往是由几个独立的分运动合成的,由已知的分运动求跟它们等效的合运动叫做运动的合成;由已知的合运动求跟它等效的分运动叫做运动的分解。
运动的合成与分解基本关系:○1分运动的独立性;○2运动的等效性(合运动和分运动是等效替代关系,不能并存);○3运动的等时性;○4运动的矢量性(加速度、速度、位移都是矢量,其合成和分解遵循平行四边形定则。)
(2)互成角度的两个分运动的合运动的判断
合运动的情况取决于两分运动的速度的合速度与两分运动的加速度的合加速度,两者是否在同一直线上,在同一直线上作直线运动,不在同一直线上将作曲线运动。
①两个直线运动的合运动仍然是匀速直线运动。
②一个匀速直线运动和一个匀加速直线运动的合运动是曲线运动。
③两个初速度为零的匀加速直线运动的合运动仍然是匀加速直线运动。
④两个初速度不为零的匀加速直线运动的合运动可能是直线运动也可能是曲线运动。当两个分运动的初速度的合速度的方向与这两个分运动的合加速度方向在同一直线上时,合运动是匀加速直线运动,否则是曲线运动。
(3)怎样确定合运动和分运动
①合运动一定是物体的实际运动
②如果选择运动的物体作为参照物,则参照物的运动和物体相对参照物的运动是分运动,物体相对地面的运动是合运动。
③进行运动的分解时,在遵循平行四边形定则的前提下,类似力的分解,要按照实际效果进行分解。
3、绳端速度的分解
此类有绳索的问题,对速度分解通常有两个原则①按效果正交分解物体运动的实际速度②沿绳方向一个分量,另一个分量垂直于绳。(效果:沿绳方向的收缩速度,垂直于绳方向的转动速度)
4、小船渡河问题
17、一条宽度为L的河流,水流速度为Vs,已知船在静水中的速度为Vc,那么:
(1)怎样渡河时间最短?
(2)若VcVs,怎样渡河位移最小?
(3)若VcVs,怎样使船沿河漂下的距离最短?
分析与解:(1)如图2甲所示,设船上头斜向上游与河岸成任意角θ,这时船速在垂直于河岸方向的速度分量V1=Vcsinθ,渡河所需时间为:.
可以看出:L、Vc一定时,t随sinθ增大而减小;当θ=900时,sinθ=1,所以,当船头与河岸垂直时,渡河时间最短,.

(2)如图2乙所示,渡河的最小位移即河的宽度。为了使渡河位移等于L,必须使船的合速度V的方向与河岸垂直。这是船头应指向河的上游,并与河岸成一定的角度θ。根据三角函数关系有:Vccosθ─Vs=0.
所以θ=arccosVs/Vc,因为0≤cosθ≤1,所以只有在VcVs时,船才有可能垂直于河岸横渡。
(3)如果水流速度大于船上在静水中的航行速度,则不论船的航向如何,总是被水冲向下游。怎样才能使漂下的距离最短呢?如图2丙所示,设船头Vc与河岸成θ角,合速度V与河岸成α角。可以看出:α角越大,船漂下的距离x越短,那么,在什么条件下α角最大呢?以Vs的矢尖为圆心,以Vc为半径画圆,当V与圆相切时,α角最大,根据cosθ=Vc/Vs,船头与河岸的夹角应为:θ=arccosVc/Vs.
船漂的最短距离为:.
此时渡河的最短位移为:.
5、平抛运动
(1).物体做平抛运动的条件:只受重力作用,初速度不为零且沿水平方向。物体受恒力作用,且初速度与恒力垂直,物体做类平抛运动。
(2).平抛运动的处理方法
通常,可以把平抛运动看作为两个分运动的合动动:一个是水平方向(垂直于恒力方向)的匀速直线运动,一个是竖直方向(沿着恒力方向)的匀加速直线运动。
(3).平抛运动的规律
以抛出点为坐标原点,水平初速度V0方向为沿x轴正方向,竖直向下的方向为y轴正方向,建立如图1所示的坐标系,在该坐标系下,对任一时刻t.
①位移
分位移,,合位移,.
为合位移与x轴夹角.
②速度
分速度,Vy=gt,合速度,.
为合速度V与x轴夹角
(4).平抛运动的性质
做平抛运动的物体仅受重力的作用,故平抛运动是匀变速曲线运动。
29、如图4所示,排球场总长为18m,设球网高度为2m,运动员站在离网3m的线上(图中虚线所示)正对网前跳起将球水平击出。(不计空气阻力)
(1)设击球点在3m线正上方高度为2.5m处,试问击球的速度在什么范围内才能使球即不触网也不越界?
(2)若击球点在3m线正上方的高度小余某个值,那么无论击球的速度多大,球不是触网就是越界,试求这个高度?
思路分析:排球的运动可看作平抛运动,把它分解为水平的匀速直线运动和竖直的自由落体运动来分析。但应注意本题是“环境”限制下的平抛运动,应弄清限制条件再求解。关键是要画出临界条件下的图来。
解答:(1)如图,设球刚好擦网而过
擦网点x1=3m,y1=h2-h1=2.5-2=0.5m
设球刚好打在边界线上,则落地点x2=12m,y2=h2=2.5m,代入上面速度公式可求得:
欲使球既不触网也不越界,则球初速度v0应满足:
(2)设击球点高度为h3时,球恰好既触网又压线,如图所示。
再设此时排球飞出的初速度为v,对触网点x3=3m,y3=h3-h1=h3-2代入(1)中速度公式可得:
对压界点x4=12m,y4=h3,代入(1)中速度公式可得:
1、2两式联立可得h3=2.13m
即当击球高度小于2.13m时,无论球被水平击出的速度多大,球不是触网,就是出界。
6、圆周运动
线速度、角速度、周期间的关系
皮带传动问题
①皮带上的各点的线速度大小相等
②同一轮子上的各点的角速度相等,周期相等。

2012高考地理求极昼极夜问题的原理与方法复习导学案


求极昼极夜问题的原理与方法
进行极地考察或作穿过极地的航行,都需要事先知道极圈内某一纬度上一年中有多少天极昼、多少天极夜,以及极昼极夜开始于什么时间、结束于什么时间。解决这类问题可以借助于《活动星图》教具,这是《活动星图》的又一种新用途。
稍有天球常识的人都知道,(l)大阳赤纬是每天变化的,它与太阳直射点的纬度完全一致,即说,“太阳赤纬是多少度,直射点的纬度就是多少度”。赤纬为“+”,直射点在北半球,赤纬为“-”,直射点在南半球。(2)直射点与切点(晨昏线与纬线圈的切切点)总是处在同一经线圈上而且总是相差90个纬度,即说,“直射点的纬度是多少度,离开极点多少度的范国内就有极昼极夜现象”,其中,直射点所在半球极点周围出现极昼,另一半球出现极夜。上述两点是用《活动星图》教具求极昼极夜开始、结束、持续日期的理论基础。
一般较正规的《活动星图》背面都印有《使用方法》,而且无不介绍如何用《活动星图》求一年中某一天太阳赤纬的方法,反过来,若知道了太阳赤纬,当然也可以用《活动星图》来查这一天是几月几日。用《活动星图》求极围内任一纬度上极昼极夜开始、结束、持续日期正是基于上述想法设计出来的,其过程大致分两大步:第一步是求极圈内所求纬度上出现极昼极夜时,太阳直射点的纬度即当时太阳的赤纬,第二步是用《活动星图》查出与该赤纬值相对应的日期。
极圈内所求纬度上出现极昼极夜时太阳直射点的纬度(太阳赤纬)可据本文开始就提出的两条理论基础来求。如:求75°N地区开始出现极夜时太阳直射点的纬度,依据两条理论基础可以不加思索的算出,75°N地区开始出现极夜时,太阳直射15°S即太阳赤纬为-15°,同理80°S地区开始出现极昼时,太阳直射10°即太阳赤纬为-10°。
用《活动星图》查对应日期的方法有两种:
第一种方法(只用《活动星图》)
转动星盘使子午线经过黄道上的某一点----此点的赤纬与所求纬度上出现极昼极夜时太阳赤纬(与太阳直射点所在地理纬度相同)相同,计数从子午线指示月日至“二分点”(求北极极昼南极极夜时计数到夏至点,求北极极夜南极极昼时计数到冬至点)所在赤经线指示月日之间的天数,以“二至日”为中(皆指北半球二至日,求北极极昼南极极夜时以夏至日为中,求北极极夜南极极昼时以冬至日为中)向前减去这个天数即开始日期,向后加上这个天数即结束日期两个日期之间间隔的天数即所求纬度上极昼极夜的持续日期。例如,求80°N地区极昼极夜开始、结束、持续日期:(1)已知80°N极昼起止时太阳赤纬为+10°,故先转动星盘使子午线经过黄道上赤纬为+10°的一点,然后计数从子午线指示月日(9月23日)至夏至点赤经线指示月日(11月30日或7月16日)之间的天数约67天,即80°N地区极昼开始于夏至日前67天(4月16日前后),结束于夏至日后67天(8月29日前后),极昼持续日期是4月16日至8月29日约134天。(2)已知80°N极夜起止时太阳赤纬为-10°,故先转动星盘使子午线经过黄道上赤纬为-10°的一点,然后计数从子午线指示月日(9月23日)至冬至点所在赤经线指示月日(11月30日或7月16日)之间的天数约67天,即80°N地区极夜开始于冬至日前67天(10月16日前后),结束于冬至日后67天(2月27日前后),极夜持续日期是10月16日至次年2月27日约134天。
第二种方法(《活动星图》加附尺)
准各工作:找一片直边硬纸片作附尺,把《活动星图》子午线上的“地平高度”刻划在附尺上,转动星盘使二至日与二至点赤经线重合,将附尺一端固定在北天极并使之能自由转动。
方法:转动附尺使之经过黄遂上某一点──该点赤纬与所求纬度上出现极昼极夜时的太阳赤纬(与太阳直射点所在地理纬度相同)相同,此时附尺下端指示月日便是所求纬度上极昼极夜开始或结束的日期,据这个日期可再求出另一组日期,两个日期间隔的日数即所求纬度上极昼极夜持续的日期。例如:求70°S极昼极夜开始、结束、持续日期,(1)巳知70°S极昼起止时的太阳赤纬为-20°,故先转动附尺使之经过黄道上太阳赤纬为-20°的一点,此时,附尺下端指示月日为11月21日,这是开始日期,它踞冬至日31天,结束日期是冬至日后31天即1月月22日,持续日期是11月21日到次年1月22日计约62天。(2)已知70°S极夜起止时太阳赤纬为+20°,故先转动附尺使之经过黄道上太阳赤纬为+20°的一点,此时,附尺下端指示月日为7月23日,这是结束日期,它踞夏至日约31天,从夏至日前推31天即5月22日为开始日期,持续日期是5月22日到7月23日计约62天。
用《活动星图》求极圈内任一纬度上极昼极夜开始、结束、持续日期的方法简单、方便、易行,只要手中有一页《话动星图》随时都可推算。但由于受器具、观测等误差因素的影响,所求得的数只能是一个大约数,要想得到准确数据,除必须选用精度较高的《活动星图》外,还要求使用者有较商、较熟练的观测理技术。上述方法尚未见于报刊杂志,同志们不妨一试。