高中圆的方程教案
发表时间:2020-02-19人教版高一数学下册《圆的方程》知识点复习。
古人云,工欲善其事,必先利其器。作为高中教师就要精心准备好合适的教案。教案可以让学生更好的吸收课堂上所讲的知识点,有效的提高课堂的教学效率。那么,你知道高中教案要怎么写呢?下面是小编精心为您整理的“人教版高一数学下册《圆的方程》知识点复习”,希望对您的工作和生活有所帮助。
人教版高一数学下册《圆的方程》知识点复习
圆的方程定义:
圆的标准方程(x-a)2+(y-b)2=r2中,有三个参数a、b、r,即圆心坐标为(a,b),只要求出a、b、r,这时圆的方程就被确定,因此确定圆方程,须三个独立条件,其中圆心坐标是圆的定位条件,半径是圆的定形条件。
直线和圆的位置关系:
1.直线和圆位置关系的判定方法一是方程的观点,即把圆的方程和直线的方程联立成方程组,利用判别式Δ来讨论位置关系.
①Δ>0,直线和圆相交.②Δ=0,直线和圆相切.③Δ<0,直线和圆相离.
方法二是几何的观点,即把圆心到直线的距离d和半径R的大小加以比较.
①d<R,直线和圆相交.②d=R,直线和圆相切.③d>R,直线和圆相离.
2.直线和圆相切,这类问题主要是求圆的切线方程.求圆的切线方程主要可分为已知斜率k或已知直线上一点两种情况,而已知直线上一点又可分为已知圆上一点和圆外一点两种情况.
3.直线和圆相交,这类问题主要是求弦长以及弦的中点问题.
切线的性质
⑴圆心到切线的距离等于圆的半径;
⑵过切点的半径垂直于切线;
⑶经过圆心,与切线垂直的直线必经过切点;
⑷经过切点,与切线垂直的直线必经过圆心;
当一条直线满足
(1)过圆心;
(2)过切点;
(3)垂直于切线三个性质中的两个时,第三个性质也满足.
切线的判定定理
经过半径的外端点并且垂直于这条半径的直线是圆的切线.
切线长定理
从圆外一点作圆的两条切线,两切线长相等,圆心与这一点的连线平分两条切线的夹角.
圆锥曲线性质:
一、圆锥曲线的定义
1.椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆.
2.双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线.即.
3.圆锥曲线的统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线.当01时为双曲线.
二、圆锥曲线的方程
1.椭圆:+=1(ab0)或+=1(ab0)(其中,a2=b2+c2)
2.双曲线:-=1(a0,b0)或-=1(a0,b0)(其中,c2=a2+b2)
3.抛物线:y2=±2px(p0),x2=±2py(p0)
三、圆锥曲线的性质
1.椭圆:+=1(ab0)
(1)范围:|x|≤a,|y|≤b(2)顶点:(±a,0),(0,±b)(3)焦点:(±c,0)(4)离心率:e=∈(0,1)(5)准线:x=±
2.双曲线:-=1(a0,b0)(1)范围:|x|≥a,y∈R(2)顶点:(±a,0)(3)焦点:(±c,0)(4)离心率:e=∈(1,+∞)(5)准线:x=±(6)渐近线:y=±x
3.抛物线:y2=2px(p0)(1)范围:x≥0,y∈R(2)顶点:(0,0)(3)焦点:(,0)(4)离心率:e=1(5)准线:x=-
相关推荐
人教版高一数学下册《直线圆的位置关系》知识点复习
古人云,工欲善其事,必先利其器。作为教师就要早早地准备好适合的教案课件。教案可以让学生更容易听懂所讲的内容,帮助教师营造一个良好的教学氛围。优秀有创意的教案要怎样写呢?下面是由小编为大家整理的“人教版高一数学下册《直线圆的位置关系》知识点复习”,希望能为您提供更多的参考。
人教版高一数学下册《直线圆的位置关系》知识点复习
由直线与圆的公共点的个数,得出以下直线和圆的三种位置关系:
(1)相交:直线与圆有两个公共点时,叫做直线和圆相交.这时直线叫做圆的割线.
(2)相切:直线和圆有唯一公共点时,叫做直线和圆相切.这时直线叫做圆的切线,唯一的公共点叫做切点.
(3)相离:直线和圆没有公共点时,叫做直线和圆相离.
直线与圆的位置关系的数量特征
1、迁移:点与圆的位置关系
(1)点P在⊙O内dr.
2、归纳概括:
如果⊙O的半径为r,圆心O到直线l的距离为d,那么
(1)直线l和⊙O相交dr.
练习题:
1.直线L上的一点到圆心的距离等于⊙O的半径,则L与⊙O的位置关系是()
A.相离
B.相切
C.相交
D.相切或相交
2.圆的最大的弦长为12cm,如果直线与圆相交,且直线与圆心的距离为d,那么()
A.d6cm
B.6cmd12cm
C.d≥6cm
D.d12cm
3.P是⊙O外一点,PA、PB切⊙O于点A、B,Q是优弧AB上的一点,设∠APB=α,∠AQB=β,则α与β的关系是()
A.α=β
B.α+β=90°
C.α+2β=180°
D.2α+β=180°
4.在⊙O中,弦AB和CD相交于点P,若PA=4,PB=7,CD=12,则以PC、PD的长为根的一元二次方程为()
A.x2+12x+28=0
B.x2-12x+28=0
C.x2-11x+12=0
D.x2+11x+12=0
高一数学下册《圆的方程》学案人教版
每个老师不可缺少的课件是教案课件,规划教案课件的时刻悄悄来临了。将教案课件的工作计划制定好,新的工作才会如鱼得水!你们会写一段适合教案课件的范文吗?考虑到您的需要,小编特地编辑了“高一数学下册《圆的方程》学案人教版”,仅供参考,欢迎大家阅读。
高一数学下册《圆的方程》学案人教版
教学目标:
1、知识与技能目标:理解并掌握圆的标准方程,会根据不同条件求圆的标准方程,能从圆的标准方程熟练地写出它的圆心坐标与半径。
2、过程与方法目标:通过对圆的标准方程的推导及应用,渗透数形结合、待定系数法等数学思想方法,提高学生的观察、比较、分析、概括等思维能力。
3、情感与价值观目标:通过学生主动参与圆的相关知识的探讨和几何画板在解与圆有关问题中的应用,激发学生数学学习的兴趣,培养学生的创新精神。
教学重点:
圆的标准方程的推导及应用。
教学难点:
利用圆的几何性质求圆的标准方程。
教学方法:
本节课采用“诱思探索”的教学方法,借助学生已有的知识引出新知;在概念的形成与深化过程中,以一系列的问题为主线,采用讨论式,引导学生主动探究,自己构建新知识;通过层层深入的例题配置,使学生思路逐步开阔,提高解决问题的能力。
同时借助多媒体,增强教学的直观性,有利于渗透数形结合的思想,同时增大课堂容量,提高课堂效率。
教学过程:
一、复习引入:
1、提问:初中平面几何学习的哪些图形?
初中平面几何中所学是两个方面的知识:直线形的和曲线形的。在曲线形方面学习的是圆,学习解析几何以来,已经讨论了直线方程,今天我们来研究最简单、最完美的曲线圆的方程。
2、提问:具有什么性质的点的轨迹是圆?
强调确定一个圆需要的的条件为:圆心与半径,它们分别确定了圆的位置与大小,
二、概念的形成:
1、让学生根据显示在屏幕上的圆自己探究圆的方程。
教师演示圆的形成过程,让学生自己探究圆的方程,教师巡视,加强对学生的个别指导,由学生讲解思路,根据学生的回答,教师展示学生的想法,将两种解法同时显示在屏幕上,方便学生对比。
学生通常会有两种解法:
解法1:(圆心不在坐标原点)设M(x,y)是一动点,点M在该圆上的充要条件是|CM|=r。由两点间的距离公式,得
=r。
两边平方,得
(x-a)2+(y-b)2=r2。
解法2:(圆心在坐标原点)设M(x,y)是一动点,点M在该圆上的充要条件是|CM|=r。由两点间的距离公式,得
=r
两边平方,得
x2+y2=r2
若学生只有一种做法,教师可引导学生建立不同的坐标系,有自己发现另一个方程。
2、圆的标准方程:(x-a)2+(y-b)2=r2
当a=b=0时,方程为x2+y2=r2
三、概念深化:
归纳圆的标准方程的特点:
①圆的标准方程是一个二元二次方程;
②圆的标准方程由三个独立的条件a、b、r决定;
③圆的标准方程给出了圆心的坐标和半径。
四、应用举例:
练习1104页练习8-91、2(学生口答)
练习2说出方程(x+m)2+(y+n)2=a2的圆心与半径。
例1、根据下列条件,求圆的方程:
(1)圆心在点C(-2,1),并且过点A(2,-2);
(2)圆心在点C(1,3),并且与直线3x-4y–6=0相切;
(3)过点A(2,3),B(4,9),以线段AB为直径。
分析探求:让学生说出如何作出这些圆,教师用几何画板做图,帮助学生理清解题思路,由学生自己解答,并通过几何画板来验证。
例2、求过点A(0,1),B(2,1)且半径为的圆的方程。
分析探求:鼓励学生一题多解,先让学生自己求解,再相互讨论、交流、补充,最后教师将学生的想法用多媒体进行展示。
思路一:利用待定系数法设方程为(x-a)2+(y-b)2=5,将两点坐标代入,列方程组,求得a,b,再代入圆的方程。
思路二:利用圆心在圆上两点的垂直平分线上这一性质,利用待定系数法设方程为(x-1)2+(y-b)2=5,将一点坐标代入,列方程,求得b,再代入圆的方程。
思路三:画出圆的图形,利用直角三角形,直接求圆心坐标。
由例1、例2总结求圆的标准方程的方法。
五、反馈练习:
104页练习8-93(要求学生限时完成)
六、归纳总结:
学生小结并相互补充,师生共同整理完善。
1、圆的标准方程的推导;
2、圆的标准方程的形式;
3、求圆的方程的方法;
4、数学思想。
七、课后作业:(略)
人教版高一数学下册《轨迹方程》知识点讲解
人教版高一数学下册《轨迹方程》知识点讲解
一、求动点的轨迹方程的基本步骤
⒈建立适当的坐标系,设出动点M的坐标;
⒉写出点M的集合;
⒊列出方程=0;
⒋化简方程为最简形式;
⒌检验。
二、求动点的轨迹方程的常用方法:
求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。
⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。
⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。
⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。
⒋参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。
⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。
直译法:求动点轨迹方程的一般步骤
①建系建立适当的坐标系;
②设点设轨迹上的任一点P(x,y);
③列式列出动点p所满足的关系式;
④代换依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;
⑤证明证明所求方程即为符合条件的动点轨迹方程。
练习题:
1.若点P到直线x=-1的距离比它到点(2,0)的距离小1,则点P的轨迹为()
A.圆
B.椭圆
C.双曲线
D.抛物线
2.一条线段AB的长为2,两个端点A和B分别在x轴和y轴上滑动,则线段AB的中点的轨迹是()
A.双曲线
B.双曲线的一分支
C.圆
D.椭圆
3.已知|AB→|=3,A、B分别在y轴和x轴上运动,O为原点,OP→=13OA→+23OB→,则动点P的轨迹方程是()
A.x24+y2=1
B.x2+y24=1
C.x29+y2=1
D.x2+y29=1
4.已知两定点F1(-1,0)、F2(1,0),且12|F1F2|是|PF1|与|PF2|的等差中项,则动点P的轨迹是()
A.椭圆
B.双曲线
C.抛物线
D.线段
高一数学下册《数列》知识点复习人教版
一位优秀的教师不打无准备之仗,会提前做好准备,作为高中教师准备好教案是必不可少的一步。教案可以让讲的知识能够轻松被学生吸收,帮助高中教师营造一个良好的教学氛围。怎么才能让高中教案写的更加全面呢?下面的内容是小编为大家整理的高一数学下册《数列》知识点复习人教版,仅供参考,欢迎大家阅读。
高一数学下册《数列》知识点复习人教版
1.数列的定义
按一定次序排列的一列数叫做数列,数列中的每一个数都叫做数列的项.
(1)从数列定义可以看出,数列的数是按一定次序排列的,如果组成数列的数相同而排列次序不同,那么它们就不是同一数列,例如数列1,2,3,4,5与数列5,4,3,2,1是不同的数列.
(2)在数列的定义中并没有规定数列中的数必须不同,因此,在同一数列中可以出现多个相同的数字,如:-1的1次幂,2次幂,3次幂,4次幂,…构成数列:-1,1,-1,1,….
(4)数列的项与它的项数是不同的,数列的项是指这个数列中的某一个确定的数,是一个函数值,也就是相当于f(n),而项数是指这个数在数列中的位置序号,它是自变量的值,相当于f(n)中的n.
(5)次序对于数列来讲是十分重要的,有几个相同的数,由于它们的排列次序不同,构成的数列就不是一个相同的数列,显然数列与数集有本质的区别.如:2,3,4,5,6这5个数按不同的次序排列时,就会得到不同的数列,而{2,3,4,5,6}中元素不论按怎样的次序排列都是同一个集合.
2.数列的分类
(1)根据数列的项数多少可以对数列进行分类,分为有穷数列和无穷数列.在写数列时,对于有穷数列,要把末项写出,例如数列1,3,5,7,9,…,2n-1表示有穷数列,如果把数列写成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示无穷数列.
(2)按照项与项之间的大小关系或数列的增减性可以分为以下几类:递增数列、递减数列、摆动数列、常数列.
3.数列的通项公式
数列是按一定次序排列的一列数,其内涵的本质属性是确定这一列数的规律,这个规律通常是用式子f(n)来表示的,
这两个通项公式形式上虽然不同,但表示同一个数列,正像每个函数关系不都能用解析式表达出来一样,也不是每个数列都能写出它的通项公式;有的数列虽然有通项公式,但在形式上,又不一定是唯一的,仅仅知道一个数列前面的有限项,无其他说明,数列是不能确定的,通项公式更非唯一.如:数列1,2,3,4,…,
由公式写出的后续项就不一样了,因此,通项公式的归纳不仅要看它的前几项,更要依据数列的构成规律,多观察分析,真正找到数列的内在规律,由数列前几项写出其通项公式,没有通用的方法可循.
再强调对于数列通项公式的理解注意以下几点:
(1)数列的通项公式实际上是一个以正整数集N*或它的有限子集{1,2,…,n}为定义域的函数的表达式.
(2)如果知道了数列的通项公式,那么依次用1,2,3,…去替代公式中的n就可以求出这个数列的各项;同时,用数列的通项公式也可判断某数是否是某数列中的一项,如果是的话,是第几项.
(3)如所有的函数关系不一定都有解析式一样,并不是所有的数列都有通项公式.
如2的不足近似值,精确到1,0.1,0.01,0.001,0.0001,…所构成的数列1,1.4,1.41,1.414,1.4142,…就没有通项公式.
(4)有的数列的通项公式,形式上不一定是唯一的,正如举例中的:
(5)有些数列,只给出它的前几项,并没有给出它的构成规律,那么仅由前面几项归纳出的数列通项公式并不唯一.
4.数列的图象
对于数列4,5,6,7,8,9,10每一项的序号与这一项有下面的对应关系:
序号:1234567
项:45678910
这就是说,上面可以看成是一个序号集合到另一个数的集合的映射.因此,从映射、函数的观点看,数列可以看作是一个定义域为正整集N*(或它的有限子集{1,2,3,…,n})的函数,当自变量从小到大依次取值时,对应的一列函数值.这里的函数是一种特殊的函数,它的自变量只能取正整数.
由于数列的项是函数值,序号是自变量,数列的通项公式也就是相应函数和解析式.
数列是一种特殊的函数,数列是可以用图象直观地表示的.
数列用图象来表示,可以以序号为横坐标,相应的项为纵坐标,描点画图来表示一个数列,在画图时,为方便起见,在平面直角坐标系两条坐标轴上取的单位长度可以不同,从数列的图象表示可以直观地看出数列的变化情况,但不精确.
把数列与函数比较,数列是特殊的函数,特殊在定义域是正整数集或由以1为首的有限连续正整数组成的集合,其图象是无限个或有限个孤立的点.
5.递推数列
一堆钢管,共堆放了七层,自上而下各层的钢管数构成一个数列:4,5,6,7,8,9,10.①
数列①还可以用如下方法给出:自上而下第一层的钢管数是4,以下每一层的钢管数都比上层的钢管数多1
练习题:
1.若等差数列{an}的前n项和为Sn,且满足S33-S22=1,则数列{an}的公差是()
A.12B.1C.2D.3
解析:由Sn=na1+n(n-1)2d,得S3=3a1+3d,S2=2a1+d,代入S33-S22=1,得d=2,故选C.
答案:C
2.已知数列a1=1,a2=5,an+2=an+1-an(n∈N*),则a2011等于()
A.1B.-4C.4D.5
解析:由已知,得a1=1,a2=5,a3=4,a4=-1,a5=-5,a6=-4,a7=1,a8=5,…
故{an}是以6为周期的数列,
∴a2011=a6×335+1=a1=1.
答案:A
3.设{an}是等差数列,Sn是其前n项和,且S5<S6,S6=S7>S8,则下列结论错误的是()
A.d<0B.a7=0
C.S9>S5D.S6与S7均为Sn的最大值
解析:∵S5<S6,∴a6>0.S6=S7,∴a7=0.
又S7>S8,∴a8<0.
假设S9>S5,则a6+a7+a8+a9>0,即2(a7+a8)>0.
∵a7=0,a8<0,∴a7+a8<0.假设不成立,故S9<S5.∴C错误.
答案:C