小学数学复习教案
发表时间:2021-01-25初三数学概率初步总复习。
老师职责的一部分是要弄自己的教案课件,大家在认真准备自己的教案课件了吧。只有制定教案课件工作计划,才能对工作更加有帮助!你们知道多少范文适合教案课件?考虑到您的需要,小编特地编辑了“初三数学概率初步总复习”,大家不妨来参考。希望您能喜欢!
第30讲概率初步
考标要求考查角度
1.能正确指出自然和社会现象中的一些必然事件、不可能事件、不确定事件.
2.能从实际问题中了解概率的意义,能用列举法计算随机事件发生的概率.
3.能用大量重复试验时的频率估计事件发生的概率.概率是中考命题的必考点,选材多来自游戏、抽奖等生活题材,主要考查必然事件、不可能事件及随机事件的区别,用列表、画树状图法求简单事件发生的概率以及用频率估计概率,题型以填空题、选择题及解答题的形式出现.
知识梳理
一、事件的有关概念
1.必然事件
在现实生活中__________发生的事件称为必然事件.
2.不可能事件
在现实生活中__________发生的事件称为不可能事件.
3.随机事件
在现实生活中,有可能__________,也有可能__________的事件称为随机事件.
4.分类
事件确定事件必然事件不可能事件随机事件
二、用列举法求概率
1.定义
在随机事件中,一件事发生的可能性__________叫做这个事件的概率.
2.适用条件
(1)可能出现的结果为__________多个;
(2)各种结果发生的可能性__________.
3.求法
(1)利用__________或__________的方法列举出所有机会均等的结果;
(2)弄清我们关注的是哪个或哪些结果;
(3)求出关注的结果数与所有等可能出现的结果数的比值,即关注事件的概率.
列表法一般应用于两个元素,且结果的可能性较多的题目,当事件涉及三个或三个以上元素时,用树形图列举.
三、利用频率估计概率
1.适用条件
当试验的结果不是有限个或各种结果发生的可能性不相等.
2.方法
进行大量重复试验,当事件发生的频率越来越靠近一个__________时,该__________就可认为是这个事件发生的概率.
四、概率的应用
概率是和实际结合非常紧密的数学知识,可以对生活中的某些现象作出评判,如解释摸奖,配紫色,评判游戏活动的公平性,数学竞赛获奖的可能性等等,还可以对某些事件作出决策.
自主测试
1.(2012浙江杭州)一个不透明的盒子中装有2个红球和1个白球,它们除颜色外都相同.若从中任意摸出一个球,则下列叙述正确的是()
A.摸到红球是必然事件B.摸到白球是不可能事件
C.摸到红球与摸到白球的可能性相等D.摸到红球比摸到白球的可能性大
2.(2012浙江宁波)一个不透明口袋中装着只有颜色不同的1个红球和2个白球,搅匀后从中摸出一个球,摸到白球的概率为()
A.23B.12C.13D.1
3.有一箱规格相同的红、黄两种颜色的小塑料球共1000个.为了估计这两种颜色的球各有多少个,小明将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,发现摸到红球的频率约为0.6,据此可以估计红球的个数约为__________.
4.有长度分别为2cm,3cm,4cm,7cm的四条线段,任取其中三条能组成三角形的概率是__________.
5.(2012福建泉州)在一个不透明的盒子中,共有“一白三黑”4个围棋子,它们除了颜色之外没有其他区别.
(1)随机地从盒中提出1子,则提出白子的概率是多少?
(2)随机地从盒中提出1子,不放回再提第二子,请你用画树状图或列表的方法表示所有等可能的结果,并求恰好提出“一黑一白”子的概率.
考点一、事件的分类
【例1】下列事件属于必然事件的是()
A.在1个标准大气压下,水加热到100℃沸腾B.明天我市最高气温为56℃
C.中秋节晚上能看到月亮D.下雨后有彩虹
解析:区分事件发生的可能性,应注意积累生活经验和一些基本常识,然后再予以判断.
答案:A
方法总结如何判断事件发生的可能性,我们可以凭直觉判断出有些事件发生的可能性大小,有时要结合日积月累的生活经验,或者经过严谨的推理得到事实等.
触类旁通1下列事件中,为必然事件的是()
A.购买一张彩票,中奖B.打开电视,正在播放广告
C.抛掷一枚硬币,正面向上D.一个袋中只装有5个黑球,从中摸出一个球是黑球
考点二、用列举法求概率
【例2】(2012湖南张家界)第七届中博会于2012年5月18日至20日在湖南召开,设立了长沙、株洲、湘潭和张家界4个会展区,聪聪一家用两天时间参观两个会展区:第一天从4个会展区中随机选择一个,第二天从余下3个会展区中再随机选择一个,如果每个会展区被选中的机会均等.
(1)请用画树状图或列表的方法表示出所有可能出现的结果;
(2)求聪聪一家第一天参观长沙会展区,第二天参观张家界会展区的概率;
(3)求张家界会展区被选中的概率.
分析:根据题意列表或画树状图,求出所有可能出现的结果,再根据每种事件出现的次数,求出对应的概率.
解:(1)用列表法:
或画树状图:
(2)由(1)知,共有12种等可能的结果,第一天参观长沙会展区,第二天参观张家界会展区(记为事件A)有一种可能结果,则P(A)=112.
(3)所有等可能结果中,出现张家界会展区的有6种可能结果,记张家界会展区被选中为事件B,则P(B)=612=12.
方法总结1.用列举法求概率,无论是简单事件还是复杂事件,都先列举所有可能出现的结果,再代入P(A)=mn计算.
2.在用列举法解题时,一定要注意各种情况出现的可能性务必相同,不要出现重复、遗漏等现象.
3.判断游戏的公平性,在相同的条件下,应考虑随机事件发生的可能性是否相同,可能性大的获胜机会就大.
触类旁通2甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛,
(1)请用树状图法或列表法,求恰好选中甲、乙两位同学的概率;
(2)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.
考点三、频率与概率
【例3】小明在学习了统计与概率的知识后,做了投掷骰子的试验,小明共做了100次试验,试验的结果如下:
朝上的点数123456
出现的次数171315232012
(1)试求“4点朝上”和“5点朝上”的频率;
(2)由于“4点朝上”的频率最大,能不能说一次试验中“4点朝上”的概率最大?为什么?
解:(1)“4点朝上”出现的频率是23100=0.23.
“5点朝上”出现的频率是20100=0.20.
(2)不能这样说,因为“4点朝上”的频率最大并不能说明“4点朝上”这一事件发生的概率最大,只有当试验的次数足够多时,该事件发生的频率才稳定在事件发生的概率附近.
方法总结在大量重复试验中,随着统计数据的增大,频率稳定在某个常数左右,将该常数作为概率的估计值,两者的区别在于:频率是通过多次试验得到的数据,而概率是理论上事件发生的可能性,二者并不完全相同.
触类旁通3某质检员从一大批种子中抽取若干批,在同一条件下进行发芽试验,有关数据如下:
种子粒数50100200500100030005000
发芽种子粒数459218445891427324556
发芽频率
(1)计算各批种子发芽频率,填入上表.
(2)根据频率的稳定性估计种子的发芽概率.
考点四、概率的应用
【例4】(2011云南昆明)小昆和小明玩摸牌游戏,游戏规则如下:有3张背面完全相同,牌面标有数字1,2,3的纸牌,将纸牌洗匀后背面朝上放在桌面上,随机抽出一张,记下牌面数字,放回后洗匀再随机抽出一张.
(1)请用画树状图或列表的方法(只选其中一种),表示出两次抽出的纸牌数字可能出现的所有结果.
(2)若规定:两次抽出的纸牌数字之和为奇数,则小昆获胜;两次抽出的纸牌数字之和为偶数,则小明获胜.这个游戏公平吗?为什么?
解:(1)列表如下:
123
1(1,1)(1,2)(1,3)
2(2,1)(2,2)(2,3)
3(3,1)(3,2)(3,3)
或画树状图如下:
(2)可能出现的数字之和分别为2,3,4,3,4,5,4,5,6共9个,它们出现的可能性相同.其中奇数共4个,偶数共5个.
∴P(小昆获胜)=49,P(小明获胜)=59.
∵49≠59,∴游戏不公平.
方法总结游戏公平与否,关键是根据规则算出各自的概率,概率均等则游戏公平,否则就不公平.设计游戏规则时,应先根据题意求出随机事件的各种可能出现的情况的概率,再根据其中概率相等时的情况设计公平的游戏规则,也可根据概率不相等时的情况设计公平的游戏规则.
触类旁通4(1)四张质地、大小、背面完全相同的卡片上,正面分别画有圆、矩形、等边三角形、等腰梯形四个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为()
A.14B.12C.34D.1
(2)5月19日为中国旅游日,衢州推出“读万卷书,行万里路,游衢州景”的主题系列旅游惠民活动,市民王先生准备在优惠日当天上午从孔氏南宗庙、烂柯河、龙游石窟中随机选择一个地点;下午从江郎山、三衢石林、开化根博园中随机选择一个地点游玩.则王先生恰好上午选中孔氏南宗庙,下午选中江郎山这两个地点的概率是()
A.19B.13C.23D.29
1.(2012湖南张家界)下列不是必然事件的是()
A.角平分线上的点到角两边的距离相等B.三角形任意两边之和大于第三边
C.面积相等的两个三角形全等D.三角形内心到三边距离相等
2.(2012湖南湘潭)“湘潭是我家,爱护靠大家.”自我市开展整治“六乱”行动以来,我市学生更加自觉遵守交通规则.某校学生小明每天骑自行车上学时都要经过一个十字路口,该十字路口有红、黄、绿三色交通信号灯,他在路口遇到红灯的概率为13,遇到黄灯的概率为19,那么他遇到绿灯的概率为()
A.13B.23C.49D.59
3.(2012湖南长沙)任意抛掷一枚硬币,则“正面朝上”是__________事件.
4.(2012湖南娄底)在-1,0,13,1,2,3中任取一个数,取到无理数的概率是__________.
5.(2012湖南怀化)投掷一枚普通的正方体骰子24次,
(1)你认为下列四种说法哪几种是正确的?
①出现1点的概率等于出现3点的概率;
②投掷24次,2点一定会出现4次;
③投掷前默念几次“出现4点”,投掷结果出现4点的可能性就会加大;
④连续投掷6次,出现的点数之和不可能等于37.
(2)求出现5点的概率.
(3)出现6点大约有多少次?
1.某中学举行数学竞赛,经预赛,七、八年级各有一名同学进入决赛,九年级有两名同学进入决赛,那么九年级同学获得前两名的概率是()
A.12B.13C.14D.16
2.在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为23,则黄球的个数为()
A.2B.4C.12D.16
3.已知抛一枚均匀硬币正面朝上的概率为12,下列说法错误的是()
A.连续抛一枚均匀硬币2次必有1次正面朝上
B.连续抛一枚均匀硬币10次都可能正面朝上
C.大量反复抛一枚均匀硬币,平均100次出现正面朝上50次
D.通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的
4.在x22xyy2的空格中,分别填上“+”或“-”,在所得的代数式中,能构成完全平方式的概率是()
A.1B.34C.12D.14
5.在半径为2的圆中有一个内接正方形,现随机地往圆内投一粒米,落在正方形内的概率为__________.(注:π取3)
6.从-2,-1,2这三个数中任取两个不同的数作为点的坐标,该点在第四象限的概率是__________.
7.如图所示,一个圆形转盘被等分为八个扇形区域,上面分别标有数字1,2,3,4,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有“3”所在区域的概率为P(3),指针指向标有“4”所在区域的概率为P(4),则P(3)__________P(4).(填“>”、“<”或“=”)
8.某市准备为青少年举行一次网球知识讲座,小明和妹妹都是网球球迷,要求爸爸去买门票,但爸爸只买回一张门票,那么谁去就成了问题,小明想到一个办法:他拿出一个装有质地、大小相同的2x个红球与3x个白球的袋子,让爸爸摸出一个球,如果摸出的是红球,妹妹去听讲座,如果摸到的是白球,小明去听讲座.
(1)爸爸说这个办法不公平,请你用概率的知识解释原因;
(2)若爸爸从袋中取出3个白球,再用小明提出的办法来确定谁去听讲座,请问摸球的结果是对小明有利还是对妹妹有利,说明理由.
参考答案
【知识梳理】
一、1.一定会2.一定不会3.发生不发生
二、1.大小
2.(1)有限(2)相等
3.(1)列表画树状图
三、2.常数常数
导学必备知识
自主测试
1.D摸到红球是随机事件,故选项A错误;
摸到白球是随机事件,故选项B错误;
根据不透明的盒子中装有2个红球和1个白球,得出摸到红球比摸到白球的可能性大,故选项C错误;
根据不透明的盒子中装有2个红球和1个白球,得出摸到红球比摸到白球的可能性大,故选项D正确.
2.A因为根据题意可得:一个不透明口袋中装着只有颜色不同的1个红球和2个白球,共3个,任意摸出1个,摸到白球的概率是2÷3=23.
3.600
4.14因为长度为2cm,3cm,4cm,7cm的四条线段,从中任取三条线段共有2,3,4;3,4,7;2,4,7;3,4,7四种情况,而能组成三角形的有2,3,4,共有1种情况,
所以能组成三角形的概率是14.
5.解:(1)P(白子)=14.
(2)方法一:所有等可能的结果,画树状图如下:
∴P(一黑一白)=612=12.
方法二:所有等可能的结果,列表如下.
∴P(一黑一白)=612=12.
探究考点方法
触类旁通1.D
触类旁通2.解:(1)列表法如下:
甲乙丙丁
甲乙甲丙甲丁甲
乙甲乙丙乙丁乙
丙甲丙乙丙丁丙
丁甲丁乙丁丙丁
所有可能出现的情况有12种,其中甲、乙两位同学组合的情况有两种,所以P=212=16.
(2)若已确定甲打第一场,再从其余三位同学中随机选取一位,共有3种情况,选中乙的情况有一种,所以P(恰好选中乙同学)=13.
触类旁通3.解:(1)通过计算,发芽频率从左到右依次为:0.9,0.92,0.92,0.916,0.914,0.911,0.911.
(2)由(1)知,发芽频率逐渐稳定在0.911,因此可以估计种子的发芽概率为0.911.
触类旁通4.(1)B在四个图案中,是中心对称图形的图案有2个,所以正面图案是中心对称图形的概率为12.
(2)A列树形图可知共有9种等可能的结果,所以上午选中孔氏南宗庙,下午选中江郎山这两个地点的概率是19.
品鉴经典考题
1.C2.D1-13+19=59.3.随机
4.13这六个数中,无理数有2,3,∴取到无理数的概率是26=13.
5.解:(1)①④正确;
(2)出现5点的概率为16;
(3)因为出现6点的概率为16,故投掷骰子24次出现6点大约有24×16=4(次).
研习预测试题
1.D2.B3.A4.C5.236.137.>
8.解:(1)∵P(小明胜)=35,P(妹妹胜)=25,
∴P(小明胜)≠P(妹妹胜).
∴这个办法不公平.
(2)当x>3时对小明有利,当x<3时对妹妹有利,
当x=3时是公平的.JAB88.coM
扩展阅读
初三数学第25章概率初步导学案
一般给学生们上课之前,老师就早早地准备好了教案课件,大家静下心来写教案课件了。必须要写好了教案课件计划,未来的工作就会做得更好!你们会写一段优秀的教案课件吗?考虑到您的需要,小编特地编辑了“初三数学第25章概率初步导学案”,相信能对大家有所帮助。
《概率初步》1第一节随机事件导学案
主编人:占利华主审人:
班级:学号:姓名:
学习目标:
【知识与技能】
了解必然发生的事件、不可能发生的事件、随机事件的特点。
【过程与方法】
经历体验、操作、观察、归纳、总结的过程,发展从纷繁复杂的表象中,提炼出本质特征并加以抽象概括的能力。
【情感、态度与价值观】
通过亲身体验、亲自演示,感受数学就在身边,使学生乐于亲近数学,感受数学,喜欢数学。
【重点】
随机事件的特点
【难点】
判断现实生活中哪些事件是随机事件。
学习过程:
一、自主学习
(一)复习巩固
5名同学参加演讲比赛,以抽签方式决定每个人的出场顺序。签筒中有5根形状大小相同的纸签,上面分别标有出场的序号1,2,3,4,5。小军首先抽签,他在看不到的纸签上的数字的情况从签筒中随机(任意)地取一根纸签。请考虑以下问题:
1、抽到的序号有几种可能的结果?
2、抽到的序号是0,可能吗?
3、抽到的序号小于6,可能吗?
4、抽到的序号是1,可能吗?
5、你能列举与问题4相似的事件吗?
(二)自主探究
小伟掷一个质地均匀的正方形骰子,骰子的六个面上分别刻有1至6的点数。请考虑以下问题,掷一次骰子,观察骰子向上的一面:
1、可能出现哪些点数?
2、出现的点数是7,可能吗?213、出现的点数大于0,可能吗?
4、出现的点数是4,可能吗?
(三)、归纳总结:
1.必然事件是指
上述两个实验中哪些是必然事件:
2、不可能事件是指:
上述两个实验中哪些是不可能事件:
必然事件与不可能事件统称为:
3、怎样的事件称为随机事件呢?
举例说明:
(四)自我尝试:
指出下列事件中哪些是必然发生的,哪些是不可能发生的,哪些是随机事件?
1.通常加热到100°C时,水沸腾;
2.姚明在罚球线上投篮一次,命中;
3.掷一次骰子,向上的一面是6点;
4.度量三角形的内角和,结果是360°;
5.经过城市中某一有交通信号灯的路口,遇到红灯;
6.某射击运动员射击一次,命中靶心;
7.太阳东升西落;
8.人离开水可以正常生活100天;
9.正月十五雪打灯;
10.宇宙飞船的速度比飞机快.
二、教师点拔
1、必然事件是?不可能事件是?确定事件是?
2、随机事件是?
3、本节学习的数学方法是动手操作和合理想象。
三、课堂检测
练习(一)指出下列事件中,哪些是必然事件,哪些是不可能事件,哪些是随机事件。
(1)两直线平行,内错角相等;
(2)刘翔再次打破110米栏的世界纪录;
(3)打靶命中靶心;(
4)掷一次骰子,向上一面是3点;
(5)13个人中,至少有两个人出生的月份相同;
(6)经过有信号灯的十字路口,遇见红灯;
(7)在装有3个球的布袋里摸出4个球
(8)物体在重力的作用下自由下落。21世纪教育网
(9)抛掷一千枚硬币,全部正面朝上。
练习(二)下列问题哪些是必然事件()哪些是不可能事件()哪些是随机事件()(填序号即可)
①在标准大气压下且温度低于0℃时,冰融化;
②某人的体温是40℃;
③掷一枚硬币,出现正面向上;
④导体通电后发热;
⑤没有水分,种子发芽;
练习(三)下列问题哪些是必然事件哪些是不可能事件()哪些是随机事件()?(填序号即可)
①如果ab,那么a-b0;
②a2+b2=-1(其中a,b都是实数);
③一元二次方程x2+2x+3=0无实数解;
④2010年2月有29天;
⑤相等的圆心角所对的弧相等。
四、课外训练
1:指出下列事件中,必然事件是;不可能事件是;随机事件的是。(填序号即可)
(1)两直线平行,内错角相等;(2)刘翔再次打破110米栏的世界纪录;
(3)打靶命中靶心;(4)掷一次骰子,向上一面是3点;
(5)13个人中,至少有两个人出生的月份相同;(6)经过有信号灯的十字路口,遇见红灯;(7)在装有3个球的布袋里摸出4个球(8)物体在重力的作用下自由下落。
(9)抛掷一百枚硬币,全部正面朝上。
2、下列事件是随机事件的是()
A:人长生不老B:2010年广州亚运会会中国队获180枚金牌
C:掷两枚质地均匀的正方体骰子朝上一面的点数之积为21D:一个星期为七天
3、下列事件是随机事件()
①小王数学下次月考考150分②多哈亚运会中国队金牌总数第一名③异性电荷,相互吸引④明天下雪⑤一袋中有若干球,其中有2个红球,小红从中摸出3个球,都是红球
(A)①③⑤(B)②④(C)①④(D)②⑤
4、下列成语故事所描述事件为必然发生的是()
A水中捞月B拔苗助长C守株待兔D瓮中捉鳖
5、.在1,2,3,…,10这10个数字中,任取3个数字,那么“这三个数字的和大于6”这一事件是()
A.必然事件B.不可能事件C.随机事件D.以上选项均不正确
6、下列说法错误的是()
A.“在标准大气压下,水加热到100℃时沸腾”是必然事件
B.“姚明在一场比赛中投球的命中率为60%”是随机事件
C.“在不受外力作用的条件下,做匀速直线运动的物体改变其匀速直线运动状态”是不可能事件
D.“赤峰市明年今天的天气与今天一样”是必然事件
7、小伟掷一个质地均匀的正方形骰子,骰子的六个面上分别刻有1至6的点数。请考虑以下问题,掷一次骰子,观察骰子向上的一面:
(1)出现的点数是8,可能吗?这是什么事件?
(2)出现的点数大于0,可能吗?这是什么事件?
(3)出现的点数是3,可能吗?这是什么事件?
初三数学图表信息专题总复习
专题一图表信息
图表信息问题主要考查收集信息和处理信息的能力.解答这类问题时要把图表信息和相应的数学知识、数学模型相联系,要结合问题提供的信息,灵活运用数学知识进行联想、探索、发现和综合处理,准确地使用数学模型来解决问题.
这种题型命题广泛,应用知识多,是中考的一种新题型,也是今后命题的热点,考查形式有选择题、填空题、解答题.
考向一表格信息问题
表格信息问题涉及知识点比较广泛,主要有统计、方程(组)、不等式(组)、函数等.解答时关键要根据表格提供的信息,建立相应的数学模型.
【例1】2011年4月25日,全国人大常委会公布《中华人民共和国个人所得税法修正案(草案)》,向社会公开征集意见.草案规定,公民全月工薪不超过3000元的部分不必纳税,超过3000元的部分为全月应纳税所得额.此项税款按下表分段累进计算.
级数全月应纳税所得额税率
1不超过1500元的部分5%
2超过1500元至4500元的部分10%
3超过4500元至9000元的部分20%
………………
依据草案规定,解答下列问题:
(1)李工程师的月工薪为8000元,则他每月应当纳税多少元?
(2)若某纳税人的月工薪不超过10000元,他每月的纳税金额能超过月工薪的8%吗?若能,请给出该纳税人的月工薪范围;若不能,请说明理由.
分析:(1)由于当工资为8000元时,应该纳税,而且应该按照三个级别分别纳税;(2)由于工资为10000元时,要分三种情况进行讨论:①工资小于等于4500元;②工资大于4500元但小于等于7500元;③工资大于7500元小于10000元.
解:(1)李工程师每月纳税:1500×5%+3000×10%+(8000-7500)×20%
=75+300+100=475(元)
(2)设该纳税人的月工薪为x元,则
当x≤4500时,显然纳税金额达不到月工薪的8%.
当4500<x≤7500时,由1500×5%+(x-4500)×10%8%x,
得x>18750,不满足条件.
当7500<x≤10000时,由1500×5%+3000×10%+(x-7500)×20%8%x,
解得x>9375,故9375<x≤10000.
答:若该纳税人月工薪大于9375元且不超过10000元时,他的纳税金额能超过月工薪的8%.
方法归纳本题涉及的数学思想是分类思想.解题时分类讨论是解决问题的关键.
考向二图象信息问题
图象信息问题涉及的知识点主要是函数问题.解答时要注意分析图象中特殊“点”反映的信息.
【例2】在一条直线上依次有A,B,C三个港口,甲、乙两船同时分别从A,B港口出发,沿直线匀速驶向C港,最终达到C港.设甲、乙两船行驶x(h)后,与B港的距离分别为y1,y2(km),y1,y2与x的函数关系如图所示.
(1)填空:A,C两港口间的距离为__________km,a=__________;
(2)求图中点P的坐标,并解释该点坐标所表示的实际意义;
(3)若两船的距离不超过10km时能够相互望见,求甲、乙两船可以相互望见时x的取值范围.
分析:根据函数图象,容易发现A,B,C三港口位置示意图如下:
图象中点P表示当甲到达B港口后再经过一段时间,甲、乙二船与B港口的距离相等,因此可以有两种解法,一种是利用函数解析式来求交点坐标;另一种则是利用追及问题一般方法来解,设甲船追上乙船时,用了t小时,则可知甲船t小时比乙船多行了30km,由图容易知道甲、乙两船的速度分别是60km/h,30km/h,于是可列方程60t=30t+30轻松求解.对于第(3)小题,应该通过分类讨论来解决问题.
解:(1)1202
(2)由点(3,90)求得,y2=30x.
当x>0.5时,由点(0.5,0),(2,90)求得y1=60x-30.
当y1=y2时,60x-30=30x,解得x=1.
此时y1=y2=30.所以点P的坐标为(1,30).
该点坐标的意义为:两船出发1h后,甲船追上乙船,此时两船离B港的距离为30km.
求点P的坐标的另一种方法:
由图可得,甲的速度为300.5=60(km/h),
乙的速度为903=30(km/h).
则甲追上乙所用的时间为3060-30=1(h).
此时乙船行驶的路程为30×1=30(km).
所以点P的坐标为(1,30).
(3)①当x≤0.5时,由点(0,30),(0.5,0)求得,y1=-60x+30.
依题意,(-60x+30)+30x≤10.
解得x≥23,不合题意.
②当0.5<x≤1时,依题意,30x-(60x-30)≤10.
解得x≥23.所以23≤x≤1.
③当x>1时,依题意,(60x-30)-30x≤10.
解得x≤43.所以1<x≤43.
综上所述,当23≤x≤43时,甲、乙两船可以相互望见.
方法归纳本题涉及数形结合、分类讨论的数学思想.解题的关键是确定三个港口的位置.难点是对P点的含义理解.
考向三图表综合问题
图表综合问题主要分布于统计之中.解题时注意将图表中的信息综合在一起分析解答.
【例3】某市“希望”中学为了了解学生“大间操”的活动情况,在七、八、九年级的学生中,分别抽取相同数量的学生对“你最喜欢的运动项目”进行调查(每人只能选一项).调查结果的部分数据如下表(图)所示,其中七年级最喜欢跳绳的人数比八年级多5人,九年级最喜欢排球的人数为10.
七年级学生最喜欢的运动项目人数统计表
项目排球篮球跳绳踢毽其他
人数/人78146
八年级学生最喜欢的运动项目人数统计图
九年级学生最喜欢的运动项目人数统计图
请根据统计表(图)解答下列问题:
(1)本次调查抽取了多少名学生?
(2)补全统计表和统计图,并求出“最喜欢跳绳”的学生占抽样总人数的百分比;
(3)该校共有学生1800人,学校想对“最喜欢踢毽”的学生每4人提供一个毽子,那么学校在“大间操”时至少应提供多少个毽子?
分析:(1)因为三个年级都抽取了相同数量的学生,所以只需算出一个年级抽取的学生数即可;(2)根据(1)补充完整表格与统计图;(3)至少应提供的毽子个数=该校学生总人数乘以最喜欢踢毽人数所占的比例再除以4.
解:(1)10÷20%=50(人),50×3=150(人).
(2)七年级学生最喜欢的运动项目人数统计表
项目排球篮球跳绳踢毽其他
人数/人7815146
八年级学生最喜欢的运动项目人数统计图
九年级学生最喜欢的运动项目人数统计图
“最喜欢跳绳”的学生占抽样总人数的百分比为22%.
(3)14+13+15150×1800÷4=126(个).
方法归纳本题考查了统计图、统计表及根据样本估计总体,也是考查统计知识常见题型.解题时读懂图表并将图表信息综合考虑是关键.
一、选择题
1.某住宅小区6月份1日至5日每天用水量变化情况如图所示,那么这5天平均每天的用水量是()
A.30吨B.31吨C.32吨D.33吨
2.(2011浙江台州)如图,反比例函数y=mx的图象与一次函数y=kx+b的图象交于点M,N,已知点M的坐标为(1,3),点N的纵坐标为-1,根据图象信息可得关于x的方程mx=kx+b的解为()
A.-3,1B.-3,3C.-1,1D.3,-1
二、填空题
3.上、下底面为全等的正六边形礼盒,其主视图与左视图均由矩形构成,主视图中大矩形边长如图所示,左视图中包含两全等的矩形,如果用彩色胶带如图包扎礼盒,所需胶带长度至少为____________.
4.某村分给小慧家一套价格为12万元的住房.按要求,需首期(第一年)付房款3万元,从第二年起,每年应付房款0.5万元与上一年剩余房款的利息的和.假设剩余房款年利率为0.4%,小慧列表推算如下:
第一年第二年第三年…
应还款(万元)30.5+9×0.4%0.5+8.5×0.4%…
剩余房款(万元)98.58…
若第n年小慧家仍需还款,则第n年应还款__________万元(n>1).
三、解答题
5.2012年5月20日是第23个中国学生营养日,某校社会实践小组在这天开展活动,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息(如图).根据信息,解答下列问题.
(1)求这份快餐中所含脂肪质量;
(2)若碳水化合物占快餐总质量的40%,求这份快餐所含蛋白质的质量;
(3)若这份快餐中蛋白质和碳水化合物所占百分比的和不高于85%,求其中所含碳水化合物质量的最大值.
6.如图①,A,B,C三个容积相同的容器之间有阀门连接,从某一时刻开始,打开A容器阀门,以4升/分的速度向B容器内注水5分钟,然后关闭,接着打开B容器阀门,以10升/分的速度向C容器内注水5分钟,然后关闭.设A,B,C三个容器内的水量分别为yA,yB,yC(单位:升),时间为t(单位:分).开始时,B容器内有水50升,yA,yC与t的函数图象如图②所示.请在0≤t≤10的范围内解答下列问题:
(1)求t=3时,yB的值;
(2)求yB与t的函数关系式,并在图②中画出其函数图象;
(3)求yA∶yB∶yC=2∶3∶4时t的值.
图①图②
7.某企业为重庆计算机产业基地提供电脑配件.受美元走低的影响,从去年1至9月,该配件的原材料价格一路攀升,每件配件的原材料价格y1(元)与月份x(1≤x≤9,且x取整数)之间的函数关系如下表:
月份x123456789
价格y1(元/件)560580600620640660680700720
随着国家调控措施的出台,原材料价格的涨势趋缓,10至12月每件配件的原材料价格y2(元)与月份x(10≤x≤12,且x取整数)之间存在如图所示的变化趋势:
(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y1与x之间的函数关系式,根据如图所示的变化趋势,直接写出y2与x之间满足的一次函数关系式;
(2)若去年该配件每件的售价为1000元,生产每件配件的人力成本为50元,其他成本30元,该配件在1至9月的销售量p1(万件)与月份x满足关系式p1=0.1x+1.1(1≤x≤9,且x取整数),10至12月的销售量p2(万件)与月份x满足关系式p2=-0.1x+2.9(10≤x≤12,且x取整数),求去年哪个月销售该配件的利润最大,并求出这个最大利润;
(3)今年1至5月,每件配件的原材料价格均比去年12月上涨60元,人力成本比去年增加20%,其他成本没有变化,该企业将每件配件的售价在去年的基础上提高a%,与此同时每月销售量均在去年12月的基础上减少0.1a%.这样,在保证每月上万件配件销量的前提下,完成1至5月的总利润1700万元的任务,请你参考以下数据,估算出a的整数值.(参考数据:992=9801,982=9604,972=9409,962=9216,952=9025)
参考答案
专题提升演练
1.C根据平均数公式可得这5天平均每天的用水量是30+32+36+28+345=32(吨).
2.A把M点的坐标代入y=mx,求得m=3,所以得y=3x,再把y=-1代入y=3x求得x=-3,故关于x的方程mx=kx+b的解为x=-3,或1.
3.431.76cm由图可知,正六边形的对角线长为60cm,则其半径为30cm,边心距为153cm,故所需胶带长度至少为153×12+20×6≈431.76(cm).
4.0.54-0.002n(填0.5+[9-(n-2)×0.5]×0.4%)
关键是要理解付款的方式,第一年还掉3万元后,第二年付0.5万元和剩下的9万元的利息,第三年还0.5万元和剩下的(9-0.5)万元的利息,第四年则要还0.5万元和剩下的(9-2×0.5)万元的利息,…,所以除了第一年以外,第n年都是要还0.5万元和剩下的[9-(n-2)0.5]万元的利息,可列式:0.5+[9-(n-2)×0.5]×0.4%,化简可知第n年应还款(0.54-0.002n)万元.
5.解:(1)400×5%=20(克).
答:这份快餐中所含脂肪质量为20克.
(2)设所含矿物质的质量为x克,由题意得:x+4x+20+400×40%=400,
∴x=44,∴4x=176.
答:所含蛋白质的质量为176克.
(3)解法一:设所含矿物质的质量为y克,则所含碳水化合物的质量为(380-5y)克,∴4y+(380-5y)≤400×85%,
∴y≥40,∴380-5y≤180,
∴所含碳水化合物质量的最大值为180克.
解法二:设所含矿物质的质量为n克,则n≥(1-85%-5%)×400,∴n≥40,∴4n≥160,∴400×85%-4n≤180,
∴所含碳水化合物质量的最大值为180克.
6.解:(1)当t=3时,yB=50+4×3=62(升).
(2)根据题意,
当0≤t≤5时,yB=50+4t.
当5<t≤10时,
yB=70-10(t-5)=-10t+120.
yB与t的函数图象如图所示.
图②
(3)根据题意,设yA=2x,yB=3x,yC=4x.
2x+3x+4x=50+60+70.解得x=20.
∴yA=2x=40,yB=3x=60,yC=4x=80.
由图象可知,当yA=40时,5≤t≤10,此时yB=-10t+120,yC=10t+20.
∴-10t+120=60,解得t=6.
10t+20=80,解得t=6.
∴当t=6时,yA∶yB∶yC=2∶3∶4.
7.解:(1)y1与x之间的函数关系式为y1=20x+540,
y2与x之间满足的一次函数关系式为y2=10x+630.
(2)去年1至9月时,销售该配件的利润w=p1(1000-50-30-y1)
=(0.1x+1.1)(1000-50-30-20x-540)
=(0.1x+1.1)(380-20x)=-2x2+16x+418
=-2(x-4)2+450,(1≤x≤9,且x取整数)
∵-2<0,1≤x≤9,∴当x=4时,w最大=450(万元);
去年10至12月时,销售该配件的利润w=p2(1000-50-30-y2)
=(-0.1x+2.9)(1000-50-30-10x-630)
=(-0.1x+2.9)(290-10x)=(x-29)2,(10≤x≤12,且x取整数)
当10≤x≤12时,∵x<29,∴自变量x增大,函数值w减小,
∴当x=10时,w最大=361(万元),∵450>361,
∴去年4月份销售该配件的利润最大,最大利润为450万元.
(3)去年12月份销售量为:-0.1×12+2.9=1.7(万件),
今年原材料的价格为:750+60=810(元),
今年人力成本为:50×(1+20%)=60(元),
由题意,得5×[1000(1+a%)-810-60-30]×1.7(1-0.1a%)=1700,
设t=a%,整理,得10t2-99t+10=0,解得t=99±940120,
∵972=9409,962=9216,而9401更接近9409,
∴9401≈97.
∴t1≈0.1或t2≈9.8,∴a1≈10或a2≈980.
∵1.7(1-0.1a%)≥1,∴a2≈980舍去,∴a≈10.
答:a的整数值为10.
初三数学开放与探索总复习
专题三开放与探索
开放探索型问题有条件开放与探索、结论开放与探索、条件结论都开放与探索等,这类题目新颖,思考方向不确定,因此比一般综合题更能考查学生综合运用知识的能力,从而深受命题者的青睐.题型以填空题、解答题为主.
考向一条件开放问题
条件开放探索问题的特征是缺少确定的条件,所需补充的条件不能由结论直接推出,而满足结论的条件往往也是不唯一的.
【例1】如图,已知AC⊥BD于点P,AP=CP,请增加一个条件:使△ABP≌△CDP(不能添加辅助线),你增加的条件是__________.
解析:要证明△ABP≌△CDP,已经给出了两个条件:AP=CP,AC⊥BD(即∠APB=∠CPD=90°),根据证明两个三角形全等的判断方法,可以添加一个条件角或者边.
答案:∠A=∠C,∠B=∠D,AB∥CD,BP=DP,AB=CD.(任选其中一个)
方法归纳解决此类题的方法是:从所给的结论出发,设想出合乎要求的一些条件,逐一列出,运用所学的定理,进行逻辑推理,从而找出满足结论的条件.
考向二结论开放问题
结论开放探索问题是给出问题的条件,让解题者根据条件探索相应的结论,符合条件的结论往往呈现多样性.
【例2】(2011广东河源)如图1,已知线段AB的长为2a,点P是AB上的动点(P不与A,B重合),分别以AP,PB为边向线段AB的同一侧作正△APC和正△PBD.
(1)当△APC与△PBD的面积之和取最小值时,AP=__________.(直接写结果)
(2)连接AD,BC,相交于点Q,设∠AQC=α,那么α的大小是否会随点P的移动而变化?请说明理由.
(3)如图2,若点P固定,将△PBD绕点P按顺时针方向旋转(旋转角小于180°),此时α的大小是否发生变化?(只需直接写出你的猜想,不必证明)
图1图2
分析:(1)设等边△APC边长为x,高为32x,则面积为34x2,则等边△BDP边长为2a-x,高为32(2a-x),则面积为34(2a-x)2,
面积之和为S=34x2+34(2a-x)2=32x2-3ax+3a2,这是一个二次函数的最值问题.
当x=a时,S最小=32a2.
(2)判别α的大小是否会随点P的移动而变化,只需计算∠AQC.
(3)根据(2)证明过程或直观可得结论.
解:(1)a
(2)α的大小不会随点P的移动而变化.
理由:∵△APC是等边三角形,
∴PA=PC,∠APC=60°.
∵△BDP是等边三角形,
∴PB=PD,∠BPD=60°,∴∠APC=∠BPD,
∴∠APD=∠CPB,∴△APD≌△CPB,
∴∠PAD=∠PCB.
∵∠QAP+∠QAC+∠ACP=120°,
∴∠QCP+∠QAC+∠ACP=120°,
∴∠AQC=180°-120°=60°.
(3)此时α的大小不会发生改变,始终等于60°.
方法归纳解答本题将等边三角形的面积用二次函数表示是解答本题的难点.解答结论开放性问题常常需要借助直观或特殊化方法探求.
考向三条件与结论开放问题
条件、结论开放探索问题是指条件和结论都不唯一,此类问题没有明确的条件和结论,并且符合条件的结论具有开放性,它要求学生通过自己的观察和思考,将已知的信息集中进行分析,通过这一思维活动揭示事物的内在联系.
【例3】(1)如图1,在正方形ABCD中,M是BC边(不含端点B,C)上任意一点,P是BC延长线上一点,N是∠DCP的平分线上一点.若∠AMN=90°,求证:AM=MN.
下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明.
证明:在边AB上截取AE=MC,连接ME.正方形ABCD中,∠B=∠BCD=90°,AB=BC.
∴∠NMC=180°-∠AMN-∠AMB=180°-∠B-∠AMB=∠MAB=∠MAE.
(下面请你完成余下的证明过程)
图1图2
(2)若将(1)中的“正方形ABCD”改为“正三角形ABC”(如图2),N是∠ACP的平分线上一点,则当∠AMN=60°时,结论AM=MN是否还成立?请说明理由.
(3)若将(1)中的“正方形ABCD”改为“正n边形ABCD…X”,请你作出猜想:当∠AMN=__________时,结论AM=MN仍然成立.(直接写出答案,不需要证明)
分析:证两条线段相等,最常用的方法是证明两条线段所在三角形全等.(1)中给出了线段EM,即想提示考生证明△AEM≌△MCN.由题目中的条件知,只需再找一角即可.(2)中解法同(1),在AB上构造出线段AE=MC,连接ME.进一步证明△AEM≌△MCN.(3)是将(1)(2)中特殊问题推广到一般情况,应抓住本质:∠AMN与正多边形的内角度数相等.
解:(1)∵AE=MC,∴BE=BM,
∴∠BEM=∠EMB=45°,∴∠AEM=135°.
∵CN平分∠DCP,∴∠PCN=45°,∴∠AEM=∠MCN=135°.
在△AEM和△MCN中,∵∠AEM=∠MCN,AE=MC,∠EAM=∠CMN,
∴△AEM≌△MCN,∴AM=MN.
(2)仍然成立.
在边AB上截取AE=MC,连接ME.
∵△ABC是等边三角形,
∴AB=BC,∠B=∠ACB=60°,
∴∠ACP=120°.
∵AE=MC,∴BE=BM,
∴∠BEM=∠EMB=60°,
∴∠AEM=120°.
∵CN平分∠ACP,∴∠PCN=60°,
∴∠AEM=∠MCN=120°.
∵∠CMN=180°-∠AMN-∠AMB=180°-∠B-∠AMB=∠BAM,∴△AEM≌△MCN,∴AM=MN.
(3)(n-2)180°n.
方法归纳解答本题的关键是结合已给出的材料借助类比思想进行.一般地,解答条件、结论开放探索问题,即条件和结论都不确定,首先要认定条件和结论,然后组成一个新的命题并加以证明或判断.
一、选择题
1.如图,在网格中有一个直角三角形(网格中的每个小正方形的边长均为1个单位长度),若以该三角形一边为公共边画一个新三角形与原来的直角三角形一起组成一个等腰三角形,要求新三角形与原来的直角三角形除了有一条公共边外,没有其他的公共点,新三角形的顶点不一定在格点上,那么符合要求的新三角形有()
A.4个B.6个C.7个D.9个
2.根据图1所示的程序,得到了y与x的函数图象(如图2),过点M作PQ∥x轴交图象于点P,Q,连接OP,OQ.则以下结论
①x<0时,y=2x,
②△OPQ的面积为定值,
③x>0时,y随x的增大而增大,
④MQ=2PM,
⑤∠POQ可以等于90°.
图1图2
其中正确的结论是()
A.①②④B.②④⑤C.③④⑤D.②③⑤
二、填空题
3.在四边形ABCD中,AB=DC,AD=BC.请再添加一个条件,使四边形ABCD是矩形.你添加的条件是__________.(写出一种即可)
4.若关于x的方程x2-mx+3=0有实数根,则m的值可以为__________.(任意给出一个符合条件的值即可)
三、解答题
5.如图,将△ABC的顶点A放在⊙O上,现从AC与⊙O相切于点A(如图1)的位置开始,将△ABC绕着点A顺时针旋转,设旋转角为α(0°α120°),旋转后AC,AB分别与⊙O交于点E,F,连接EF(如图2).已知∠BAC=60°,∠C=90°,AC=8,⊙O的直径为8.
图1图2备用图
(1)在旋转过程中,有以下几个量:①弦EF的长;②EF的长;③∠AFE的度数;④点O到EF的距离.其中不变的量是__________(填序号).
(2)当BC与⊙O相切时,请直接写出α的值,并求此时△AEF的面积.
6.如图1,△ABC与△EFD为等腰直角三角形,AC与DE重合,AB=AC=EF=9,∠BAC=∠DEF=90°,固定△ABC,将△DEF绕点A顺时针旋转,当DF边与AB边重合时,旋转中止.不考虑旋转开始和结束时重合的情况,设DE,DF(或它们的延长线)分别交BC(或它的延长线)于G,H点,如图2.
(1)问:始终与△AGC相似的三角形有__________及__________;
(2)设CG=x,BH=y,求y关于x的函数关系式(只要求根据图2情形说明理由);
(3)问:当x为何值时,△AGH是等腰三角形?
图1图2
7.已知:如图所示的一张矩形纸片ABCD(ADAB),将纸片折叠一次,使点A与点C重合,再展开,折痕EF交AD边于点E,交BC边于点F,分别连接AF和CE.
(1)求证:四边形AFCE是菱形;
(2)若AE=10cm,△ABF的面积为24cm2,求△ABF的周长;
(3)在线段AC上是否存在一点P,使得2AE2=ACAP?若存在,请说明点P的位置,并予以证明;若不存在,请说明理由.
8.已知:二次函数y=x2+bx-3的图象经过点P(-2,5).
(1)求b的值,并写出当1<x≤3时y的取值范围.
(2)设点P1(m,y1),P2(m+1,y2),P3(m+2,y3)在这个二次函数的图象上.
①当m=4时,y1,y2,y3能否作为同一个三角形的三边的长?请说明理由.
②当m取不小于5的任意实数时,y1,y2,y3一定能作为同一个三角形三边的长,请说明理由.
参考答案
专题提升演练
1.C以较短的直角边为公共边可以画三个符合要求的三角形,以较长的直角边为公共边也可以画三个符合要求的三角形,以斜边为公共边也可以画一个符合要求的三角形,这样可以画七个符合要求的三角形,故选C.
2.B根据图中所示程序,可得y与x的函数关系式为y=-2x(x0),4x(x0),易知①错误;∵PQ∥x轴,∴点P在y=-2x上,∴S△POM=12×OM×PM=12|k|=1,同理可得S△QOM=2,∴S△POQ=S△POM+S△QOM=1+2=3,∴②正确;当x>0时,y=4x,y随x的增大而减小,∴③错误;设OM=a,当y=a时,P点的横坐标为-2a,Q点的横坐标为4a,则PM=2a,MQ=4a,则MQ=2PM,∴④正确;当点M在y轴的正半轴上由下向上运动时,∠POQ由180°逐渐变小至0°,∴∠POQ可以等于90°,∴⑤正确.
3.∠A=90°或∠B=90°或∠C=90°或∠D=90°或AC=BD(答案不唯一,写出一种即可)由已知条件AB=DC,AD=BC,根据两组对边分别相等的四边形是平行四边形,再要使ABCD是矩形,根据判定矩形的方法,只需有一个角为直角的平行四边形即为矩形,或者对角线相等的平行四边形是矩形,所以可添的条件为角是直角或对角线相等.
4.答案不唯一,所填写的数值只要满足m2≥12即可,如4等由于这个方程有实数根,因此Δ=b2-4ac=(-m)2-12=m2-12≥0,即m2≥12.
5.解:(1)①②④
(2)α=90°.依题意可知,△ACB旋转90°后AC为⊙O直径,且点C与点E重合,因此∠AFE=90°.∵AC=8,∠BAC=60°,∴AF=12AC=4,EF=43,∴S△AEF=12×4×43=83.
6.解:(1)△HGA△HAB
(2)由(1)可知△AGC∽△HAB,
∴CGAB=ACBH,即x9=9y,
∴y=81x.
(3)由(1)知△AGC∽△HGA.
∴要使△AGH是等腰三角形,只要△AGC是等腰三角形即可.
有两种情况,(1)CG为底,AC=AG时,得AG=9,此时CG等于92,(2)CG为腰,CG=AG时,此时CG=922.
7.解:(1)证明:由折叠可知EF⊥AC,AO=CO.
∵AD∥BC,
∴∠EAO=∠FCO,∠AEO=∠CFO.
∴△AOE≌△COF.
∴EO=FO.
∴四边形AFCE是菱形.
(2)由(1)得AF=AE=10.
设AB=a,BF=b,得
a2+b2=100①,ab=48②.
①+2×②得(a+b)2=196,得a+b=14(另一负值舍去).
∴△ABF的周长为24cm.
(3)存在,过点E作AD的垂线交AC于点P,则点P符合题意.
证明:∵∠AEP=∠AOE=90°,∠EAP=∠OAE,
∴△AOE∽△AEP.
∴AOAE=AEAP,得AE2=AOAP,即2AE2=2AOAP.
又AC=2AO,
∴2AE2=ACAP.
8.解:(1)把点P代入二次函数解析式,得5=(-2)2-2b-3,解得b=-2.
所以二次函数解析式为y=x2-2x-3.
当x=1时,y=-4,当x=3时,y=0,
所以当1<x≤3时,y的取值范围为-4<y≤0.
(2)①m=4时,y1,y2,y3的值分别为5,12,21,
由于5+12<21,不能成为三角形的三边长.
②当m取不小于5的任意实数时,由图象知y1<y2<y3,y1,y2,y3的值分别为m2-2m-3,m2-4,m2+2m-3,y1+y2-y3=(m2-2m-3)+(m2-4)-(m2+2m-3)=m2-4m-4=(m-2)2-8,当m不小于5时成立,(m-2)2≥9,所以(m-2)2-8>0,即y1+y2>y3成立.
所以当m取不小于5的任意实数时,y1,y2,y3一定能作为同一个三角形三边的长.