88教案网

你的位置: 教案 > 高中教案 > 导航 > 高三理科数学算法初步总复习教学案

发表时间:2020-12-01

高三理科数学算法初步总复习教学案。

俗话说,凡事预则立,不预则废。高中教师要准备好教案,这是高中教师需要精心准备的。教案可以让学生更容易听懂所讲的内容,帮助授课经验少的高中教师教学。所以你在写高中教案时要注意些什么呢?也许下面的“高三理科数学算法初步总复习教学案”正合你意!供你参考,希望能帮到你。

第十一章算法初步

高考导航

考试要求重难点击命题展望
1.了解算法的含义,了解算法的思想.
2.理解程序框图的三种基本逻辑结构:顺序结构、条件结构、循环结构.
3.理解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句的含义.
4.了解几个古代的算法案例,能用辗转相除法及更相减损术求最大公约数;用秦九韶算法求多项式的值;了解进位制,会进行不同进位制之间的转化.本章重点:1.算法的三种基本逻辑结构即顺序结构、条件结构和循环结构;2.输入语句、输出语句、赋值语句、条件语句、循环语句(两种形式)的结构、作用与功能及各种语句的格式要求.
本章难点:1.用自然语言表示算法和运用程序框图表示算法;2.用算法的基本思想编写程序解决简单问题.弄清三种基本逻辑结构的区别,把握程序语言中所包含的一些基本语句结构.算法初步作为数学新增部分,在高考中一定会体现出它的重要性和实用性.
高考中将重点考查对变量赋值的理解和掌握、对条件结构和循环结构的灵活运用,学会根据要求画出程序框图;预计高考中,将考查程序框图、循环结构和算法思想,并结合函数与数列考查逻辑思维能力.因此算法知识与其他知识的结合将是高考的重点,这也恰恰体现了算法的普遍性、工具性,当然难度不会太大,重在考查算法的概念及其思想.
1.以选择题、填空题为主,重点考查算法的含义、程序框图、基本算法语句以及算法案例等内容.
2.解答题中可要求学生设计一个计算的程序并画出程序框图,能很好地考查学生分析问题、解决问题的能力.

知识网络

11.1算法的含义与程序框图
典例精析
题型一算法的含义
【例1】已知球的表面积是16π,要求球的体积,写出解决该问题的一个算法.
【解析】算法如下:
第一步,s=16π.
第二步,计算R=s4π.
第三步,计算V=4πR33.
第四步,输出V.
【点拨】给出一个问题,设计算法应该注意:
(1)认真分析问题,联系解决此问题的一般数学方法,此问题涉及到的各种情况;
(2)将此问题分成若干个步骤;
(3)用简练的语句将各步表述出来.
【变式训练1】设计一个计算1×3×5×7×9×11×13的算法.图中给出程序的一部分,则在横线①上不能填入的数是()
A.13
B.13.5
C.14
D.14.5
【解析】当I<13成立时,只能运算
1×3×5×7×9×11.故选A.

题型二程序框图
【例2】图一是某县参加2010年高考的学生身高条形统计图,从左到右的各条形表示的学生人数依次记为A1,A2,…,A10(如A2表示身高(单位:cm)在[150,155)内的学生人数).图二是统计图一中身高在一定范围内学生人数的一个算法流程图.现要统计身高在160~180cm(含160cm,不含180cm)的学生人数,那么在流程图中的判断框内应填写的条件是()
A.i<6?B.i<7?C.i<8?D.i<9?
图一

【解析】根据题意可知,i的初始值为4,输出结果应该是A4+A5+A6+A7,因此判断框中应填写i<8?,选C.
【点拨】本题的命题角度较为新颖,信息量较大,以条形统计图为知识点进行铺垫,介绍了算法流程图中各个数据的引入来源,其考查点集中于循环结构的终止条件的判断,考查了学生合理地进行推理与迅速作出判断的解题能力,解本题的过程中不少考生误选A,实质上本题中的数据并不大,考生完全可以直接从头开始限次按流程图循环观察,依次写出每次循环后的变量的赋值,即可得解.
【变式训练2】(2009辽宁)某店一个月的收入和支出,总共记录了N个数据a1,a2,…,aN.其中收入记为正数,支出记为负数,该店用如图所示的程序框图计算月总收入S和月净盈利V,那么在图中空白的判断框和处理框中,应分别填入下列四个选项中的()
A.A>0?,V=S-T
B.A<0?,V=S-T
C.A>0?,V=S+T
D.A<0?,V=S+T
【解析】选C.
题型三算法的条件结构
【例3】某快递公司规定甲、乙两地之间物品的托运费用根据下列方法计算:
f=
其中f(单位:元)为托运费,ω为托运物品的重量(单位:千克),试写出一个计算费用f的算法,并画出相应的程序框图.
【解析】算法如下:
第一步,输入物品重量ω.
第二步,如果ω≤50,那么f=0.53ω,
否则,f=50×0.53+(ω-50)×0.85.
第三步,输出托运费f.
程序框图如图所示.
【点拨】求分段函数值的算法应用到条件结构,因此在程序框图的画法中需要引入判断框,要根据题目的要求引入判断框的个数,而判断框内的条件不同,对应的框图中的内容或操作就相应地进行变化.
【变式训练3】(2010天津)阅读如图的程序框图,若输出s的值为-7,则判断框内可填写()
A.i<3?
B.i<4?
C.i<5?
D.i<6?
【解析】i=1,s=2-1=1;
i=3,s=1-3=-2;
i=5,s=-2-5=-7.所以选D.
题型四算法的循环结构
【例4】设计一个计算10个数的平均数的算法,并画出程序框图.
【解析】算法步骤如下:
第一步,令S=0.
第二步,令I=1.
第三步,输入一个数G.
第四步,令S=S+G.
第五步,令I=I+1.
第六步,若I>10,转到第七步,
若I≤10,转到第三步.
第七步,令A=S/10.
第八步,输出A.
据上述算法步骤,程序框图如图.
【点拨】(1)引入变量S作为累加变量,引入I为计数变量,对于这种多个数据的处理问题,可通过循环结构来达到;(2)计数变量用于记录循环次数,同时它的取值还用于判断循环是否终止,累加变量用于输出结果.
【变式训练4】设计一个求1×2×3×…×10的程序框图.
【解析】程序框图如下面的图一或图二.
图一图二

总结提高
1.给出一个问题,设计算法时应注意:
(1)认真分析问题,联系解决此问题的一般数学方法;
(2)综合考虑此类问题中可能涉及的各种情况;
(3)借助有关的变量或参数对算法加以表述;
(4)将解决问题的过程划分为若干个步骤;
(5)用简练的语言将各个步骤表示出来.
2.循环结构有两种形式,即当型和直到型,这两种形式的循环结构在执行流程上有所不同,当型循环是当条件满足时执行循环体,不满足时退出循环体;而直到型循环则是当条件不满足时执行循环体,满足时退出循环体.所以判断框内的条件,是由两种循环语句确定的,不得随便更改.
3.条件结构主要用在一些需要依据条件进行判断的算法中.如分段函数的求值,数据的大小关系等问题的算法设计.

11.2基本算法语句

典例精析
题型一输入、输出与赋值语句的应用
【例1】阅读程序框图(如下图),若输入m=4,n=6,则输出a=,i=.
【解析】a=12,i=3.
【点拨】赋值语句是一种重要的基本语句,也是程序必不可少的重要组成部分,使用赋值语句,要注意其格式要求.
【变式训练1】(2010陕西)如图是求样本x1,x2,…,x10的平均数的程序框图,则图中空白框中应填入的内容为()
A.S=S+xnB.S=S+xnnC.S=S+nD.S=S+1n
【解析】因为此步为求和,显然为S=S+xn,故选A.
题型二循环语句的应用
【例2】设计算法求11×2+12×3+13×4+…+199×100的值.要求画出程序框图,写出用基本语句编写的程序.
【解析】这是一个累加求和问题,共99项相加,可设计一个计数变量,一个累加变量,用循环结构实现这一算法.程序框图如下图所示:
程序如下:
s=0
k=1
DO
s=s+1/(k*(k+1))
k=k+1
LOOPUNTILk>99
PRINTs
END
【点拨】(1)在用WHILE语句和UNTIL语句编写程序解决问题时,一定要注意格式和条件的表述方法,WHILE语句是当条件满足时执行循环体,UNTIL语句是当条件不满足时执行循环体.
(2)在解决一些需要反复执行的运算任务,如累加求和、累乘求积等问题中应注意考虑利用循环语句来实现.
(3)在循环语句中,也可以嵌套条件语句,甚至是循环语句,此时需要注意嵌套的这些语句,保证语句的完整性,否则就会造成程序无法执行.

【变式训练2】下图是输出某个有限数列各项的程序框图,则该框图所输出的最后一个数据是.

【解析】由程序框图可知,当N=1时,A=1;N=2时,A=13;N=3时,A=15,…,即输出各个A值的分母是以1为首项以2为公差的等差数列,故当N=50时,A=11+(50-1)×2=199,即为框图最后输出的一个数据.故填199.
题型三算法语句的实际应用
【例3】某电信部门规定:拨打市内电话时,如果通话时间3分钟以内,收取通话费0.2元,如果通话时间超过3分钟,则超过部分以每分钟0.1元收取通话费(通话不足1分钟时按1分钟计算).试设计一个计算通话费用的算法,要求写出算法,编写程序.
【解析】我们用c(单位:元)表示通话费,t(单位:分钟)表示通话时间,
则依题意有
算法步骤如下:
第一步,输入通话时间t.
第二步,如果t≤3,那么c=0.2;否则c=0.2+0.1×[t-2].
第三步,输出通话费用c.
程序如下:
INPUTt
IFt<3THEN
c=0.2
ELSE
c=0.2+0.1*INT(t-2)
ENDIF
PRINTc
END
【点拨】在解决实际问题时,要正确理解其中的算法思想,根据题目写出其关系式,再写出相应的算法步骤,画出程序框图,最后准确地编写出程序,同时要注意结合题意加深对算法的理解.
【变式训练3】(2010江苏)下图是一个算法流程图,则输出S的值是.
【解析】n=1时,S=3;n=2时,S=3+4=7;n=3时,S=7+8=15;n=4时,S=15+24=31;n=5时,S=31+25=63.因为63≥33,所以输出的S值为63.
总结提高
1.输入、输出语句可以设计提示信息,加引号表示出来,与变量之间用分号隔开.
2.赋值语句的赋值号左边只能是变量而不能是表达式;赋值号左右两边不能对换,不能利用赋值语句进行代数式计算,利用赋值语句可以实现两个变量值的互换,方法是引进第三个变量,用三个赋值语句完成.
3.在某些算法中,根据需要,在条件语句的THEN分支或ELSE分支中又可以包含条件语句.遇到这样的问题,要分清内外条件结构,保证结构的完整性.
4.分清WHILE语句和UNTIL语句的格式,在解决一些需要反复执行的运算任务,如累加求和,累乘求积等问题中应主要考虑利用循环语句来实现,但也要结合其他语句如条件语句.
5.编程的一般步骤:
(1)算法分析;(2)画出程序框图;(3)写出程序.

11.3算法案例

典例精析
题型一求最大公约数
【例1】(1)用辗转相除法求840与1764的最大公约数;
(2)用更相减损术求440与556的最大公约数.
【解析】(1)用辗转相除法求840与1764的最大公约数:
1764=840×2+84,
840=84×10+0.
所以840与1764的最大公约数是84.
(2)用更相减损术求440与556的最大公约数:
556-440=116,
440-116=324,
324-116=208,
208-116=92,
116-92=24,
92-24=68,
68-24=44,
44-24=20,
24-20=4,
20-4=16,
16-4=12,
12-4=8,
8-4=4.
所以440与556的最大公约数是4.
【点拨】(1)辗转相除法与更相减损术是求两个正整数的最大公约数的方法,辗转相除法用较大的数除以较小的数,直到大数被小数除尽结束运算,较小的数就是最大公约数;更相减损术是用两数中较大的数减去较小的数,直到所得的差和较小数相等为止,这个较小数就是这两个数的最大公约数.一般情况下,辗转相除法步骤较少,而更相减损术步骤较多,但运算简易,解题时要灵活运用.
(2)两个以上的数求最大公约数,先求其中两个数的最大公约数,再用所得的公约数与其他各数求最大公约数即可.
【变式训练1】求147,343,133的最大公约数.
【解析】先求147与343的最大公约数.
343-147=196,
196-147=49,
147-49=98,
98-49=49,
所以147与343的最大公约数为49.
再求49与133的最大公约数.
133-49=84,
84-49=35,
49-35=14,
35-14=21,
21-14=7,
14-7=7.
所以147,343,133的最大公约数为7.
题型二秦九韶算法的应用
【例2】用秦九韶算法写出求多项式f(x)=1+x+0.5x2+0.01667x3+0.04167x4+0.00833x5在x=-0.2时的值的过程.
【解析】先把函数整理成f(x)=((((0.00833x+0.04167)x+0.16667)x+0.5)x+1)x+1,
按照从内向外的顺序依次进行.
x=-0.2,
a5=0.00833,v0=a5=0.00833;
a4=0.04167,v1=v0x+a4=0.04;
a3=0.01667,v2=v1x+a3=0.00867;
a2=0.5,v3=v2x+a2=0.49827;
a1=1,v4=v3x+a1=0.90035;
a0=1,v5=v4x+a0=0.81993;
所以f(-0.2)=0.81993.
【点拨】秦九韶算法是多项式求值的最优算法,特点是:
(1)将高次多项式的求值化为一次多项式求值;
(2)减少运算次数,提高效率;
(3)步骤重复实施,能用计算机操作.
【变式训练2】用秦九韶算法求多项式f(x)=8x7+5x6+3x4+2x+1当x=2时的值为.
【解析】1397.
题型三进位制之间的转换
【例3】(1)将101111011(2)转化为十进制的数;
(2)将53(8)转化为二进制的数.
【解析】(1)101111011(2)=1×28+0×27+1×26+1×25+1×24+1×23+0×22+1×21+1=379.
(2)53(8)=5×81+3=43.

所以53(8)=101011(2).
【点拨】将k进制数转换为十进制数,关键是先写成幂的积的形式再求和,将十进制数转换为k进制数,用“除k取余法”,余数的书写是由下往上,顺序不能颠倒,k进制化为m进制(k,m≠10),可以用十进制过渡.
【变式训练3】把十进制数89化为三进制数.
【解析】具体的计算方法如下:
89=3×29+2,
29=3×9+2,
9=3×3+0,
3=3×1+0,
1=3×0+1,
所以89(10)=10022(3).
总结提高
1.辗转相除法和更相减损术都是用来求两个数的最大公约数的方法.其算法不同,但二者的原理却是相似的,主要区别是一个是除法运算,一个是减法运算,实质都是一个递推的过程.用秦九韶算法计算多项式的值,关键是正确的将多项式改写,然后由内向外,依次计算求解.
2.将k进制数转化为十进制数的算法和将十进制数转化为k进制数的算法操作性很强,要掌握算法步骤,并熟练转化;要熟练应用“除基数,倒取余,一直除到商为0”.

相关阅读

高三理科数学排列组合总复习教学案


一名优秀负责的教师就要对每一位学生尽职尽责,高中教师要准备好教案,这是高中教师需要精心准备的。教案可以让学生能够在课堂积极的参与互动,帮助高中教师能够更轻松的上课教学。高中教案的内容具体要怎样写呢?下面是小编精心为您整理的“高三理科数学排列组合总复习教学案”,希望对您的工作和生活有所帮助。

第十二章排列组合、二项式定理、概率

高考导航
考试要求重难点击命题展望
排列

组合1.理解并运用分类加法计数原理或分步乘法计数原理解决一些简单的实际问题;
2.理解排列、组合的概念;能利用计数原理推导排列数公式、组合数公式,并能解决简单的实际问题;
3.能用计数原理证明二项式定理;会用二项式定理解决与二项展开式有关的简单问题.本章重点:排列、组合的意义及其计算方法,二项式定理的应用.
本章难点:用二项式定理解决与二项展开式有关的问题.排列组合是学习概率的基础,其核心是两个基本原理.高考中着重考查两个基本原理,排列组合的概念及二项式定理.
随机事件的概率1.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义以及频率与概率的区别;
2.了解两个互斥事件的概率加法公式和相互独立事件同时发生的概率乘法公式;
3.理解古典概型及其概率计算公式;会计算一些随机事件所包含的基本事件的个数及事件发生的概率;
4.了解随机数的意义,能运用模拟方法估计概率,了解几何概型的意义.本章重点:1.随机事件、互斥事件及概率的意义,并会计算互斥事件的概率;2.古典概型、几何概型的概率计算.
本章难点:1.互斥事件的判断及互斥事件概率加法公式的应用;2.可以转化为几何概型求概率的问题.本部分要求考生能从集合的思想观点认识事件、互斥事件与对立事件,进而理解概率的性质、公式,还要求考生了解几何概型与随机数的意义.在高考中注重考查基础知识和基本方法的同时,还常考查分类与整合,或然与必然的数学思想方法,逻辑思维能力以及运用概率知识解决实际问题的能力.
离散型随机变量1.理解取有限值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性;
2.理解超几何分布及其导出过程,并能进行简单的应用;
3.了解条件概率和两个事件相互独立的概念,理解n次独立重复试验的模型及二项分布,并能解决一些简单的实际问题;
4.理解取有限值的离散型随机变量均值、方差的概念,能计算简单离散型随机变量的均值、方差,并能解决一些实际问题;
5.利用实际问题的直方图,认识正态分布曲线的特点及曲线所表示的意义.本章重点:1.离散型随机变量及其分布列;2.独立重复试验的模型及二项分布.
本章难点:1.利用离散型随机变量的均值、方差解决一些实际问题;2.正态分布曲线的特点及曲线所表示的意义.求随机变量的分布列与期望,以及在此基础上进行统计分析是近几年来较稳定的高考命题态势.考生应注重对特殊分布(如二项分布、超几何分布)的理解和对事件的意义的理解.

知识网络

12.1分类加法计数原理与分步乘法计数原理

典例精析
题型一分类加法计数原理的应用
【例1】在1到20这20个整数中,任取两个数相加,使其和大于20,共有种取法.
【解析】当一个加数是1时,另一个加数只能是20,有1种取法;
当一个加数是2时,另一个加数可以是19,20,有2种取法;
当一个加数是3时,另一个加数可以是18,19,20,有3种取法;
……
当一个加数是10时,另一个加数可以是11,12,…,19,20,有10种取法;
当一个加数是11时,另一个加数可以是12,13,…,19,20,有9种取法;
……
当一个加数是19时,另一个加数只能是20,有1种取法.
由分类加法计数原理可得共有1+2+3+…+10+9+8+…+1=100种取法.
【点拨】采用列举法分类,先确定一个加数,再利用“和大于20”确定另一个加数.
【变式训练1】(2010济南市模拟)从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为()
A.3B.4C.6D.8
【解析】当公比为2时,等比数列可为1,2,4或2,4,8;当公比为3时,等比数列可为1,3,9;当公比为32时,等比数列可为4,6,9.同理,公比为12、13、23时,也有4个.故选D.
题型二分步乘法计数原理的应用
【例2】从6人中选4人分别到张家界、韶山、衡山、桃花源四个旅游景点游览,要求每个旅游景点只有一人游览,每人只游览一个旅游景点,且6个人中甲、乙两人不去张家界游览,则不同的选择方案共有种.
【解析】能去张家界的有4人,依此能去韶山、衡山、桃花源的有5人、4人、3人.则由分步乘法计数原理得不同的选择方案有4×5×4×3=240种.
【点拨】根据题意正确分步,要求各步之间必须连续,只有按照这几步逐步地去做,才能完成这件事,各步之间既不能重复也不能遗漏.
【变式训练2】(2010湘潭市调研)要安排一份5天的值班表,每天有一人值班,现有5人,每人可以值多天班或不值班,但相邻两天不准由同一人值班,问此值班表共有种不同的排法.
【解析】依题意,值班表须一天一天分步完成.第一天有5人可选有5种方法,第二天不能用第一天的人有4种方法,同理第三天、第四天、第五天也都有4种方法,由分步乘法计数原理共有5×4×4×4×4=1280种方法.
题型三分类和分步计数原理综合应用
【例3】(2011长郡中学)如图,用4种不同的颜色对图中5个区域涂色(4种颜色全部使用),要求每个区域涂一种颜色,相邻的区域不能涂相同的颜色,则不同的涂色种数有.
【解析】方法一:由题意知,有且仅有两个区域涂相同的颜色,分为4类:1与5同;2与5同;3与5同;1与3同.对于每一类有A44种涂法,共有4A44=96种方法.
方法二:第一步:涂区域1,有4种方法;第二步:涂区域2,有3种方法;第三步:涂区域4,有2种方法(此前三步已经用去三种颜色);第四步:涂区域3,分两类:第一类,3与1同色,则区域5涂第四种颜色;第二类,区域3与1不同色,则涂第四种颜色,此时区域5就可以涂区域1或区域2或区域3中的任意一种颜色,有3种方法.所以,不同的涂色种数有4×3×2×(1×1+1×3)=96种.
【点拨】染色问题是排列组合中的一类难题.本题能运用两个基本原理求解,要注意的是分类中有分步,分步后有分类.
【变式训练3】(2009深圳市调研)用红、黄、蓝三种颜色去涂图中标号为1,2,…,9的9个小正方形,使得任意相邻(有公共边)小正方形所涂颜色都不相同,且1,5,9号小正方形涂相同颜色,则符合条件的所有涂法有多少种?
【解析】第一步,从三种颜色中选一种颜色涂1,5,9号有C13种涂法;
第二步,涂2,3,6号,若2,6同色,有4种涂法,若2,6不同色,有2种涂法,故共有6种涂法;
第三步,涂4,7,8号,同第二步,共有6种涂法.
由分步乘法原理知共有3×6×6=108种涂法.
总结提高
分类加法计数原理和分步乘法计数原理回答的都是完成一件事有多少种不同方法或种数的问题,其区别在于:分类加法计数原理是完成一件事要分若干类,类与类之间要互斥,用任何一类中的任何一种方法都可以独立完成这件事;分步乘法计数原理是完成一件事要分若干步,步骤之间相互独立,各个步骤相互依存,缺少其中任何一步都不能完成这件事,只有当各个步骤都完成之后,才能完成该事件.因此,分清完成一件事的方法是分类还是分步,是正确使用这两个基本计数原理的基础.

12.2排列与组合

典例精析
题型一排列数与组合数的计算
【例1】计算:(1)8!+A66A28-A410;(2)C33+C34+…+C310.
【解析】(1)原式=8×7×6×5×4×3×2×1+6×5×4×3×2×18×7-10×9×8×7=57×6×5×4×3×256×(-89)=-5130623.
(2)原式=C44+C34+C35+…+C310=C45+C35+…+C310=C46+C36+…+C310=C411=330.
【点拨】在使用排列数公式Amn=n!(n-m)!进行计算时,要注意公式成立的条件:m,n∈N+,m≤n.另外,应注意组合数的性质的灵活运用.
【变式训练1】解不等式>6.
【解析】原不等式即9!(9-x)!>6×9!(11-x)!,
也就是1(9-x)!>,
化简得x2-21x+104>0,
解得x<8或x>13,又因为2≤x≤9,且x∈N*,
所以原不等式的解集为{2,3,4,5,6,7}.
题型二有限制条件的排列问题
【例2】3男3女共6个同学排成一行.
(1)女生都排在一起,有多少种排法?
(2)女生与男生相间,有多少种排法?
(3)任何两个男生都不相邻,有多少种排法?
(4)3名男生不排在一起,有多少种排法?
(5)男生甲与男生乙中间必须排而且只能排2位女生,女生又不能排在队伍的两端,有几种排法?
【解析】(1)将3名女生看作一人,就是4个元素的全排列,有A44种排法.又3名女生内部可有A33种排法,所以共有A44A33=144种排法.
(2)男生自己排,女生也自己排,然后相间插入(此时有2种插法),所以女生与男生相间共有2A33A33=72种排法.
(3)女生先排,女生之间及首尾共有4个空隙,任取其中3个安插男生即可,因而任何两个男生都不相邻的排法共有A33A34=144种.
(4)直接分类较复杂,可用间接法.即从6个人的排列总数中,减去3名男生排在一起的排法种数,得3名男生不排在一起的排法种数为A66-A33A44=576种.
(5)先将2个女生排在男生甲、乙之间,有A23种排法.又甲、乙之间还有A22种排法.这样就有A23A22种排法.然后把他们4人看成一个元素(相当于一个男生),这一元素及另1名男生排在首尾,有A22种排法.最后将余下的女生排在其间,有1种排法.故总排法为A23A22A22=24种.
【点拨】排列问题的本质就是“元素”占“位子”问题,有限制条件的排列问题的限制主要表现在:某些元素“排”或“不排”在哪个位子上,某些元素“相邻”或“不相邻”.对于这类问题,在分析时,主要按照“优先”原则,即优先安排特殊元素或优先满足特殊位子,对于“相邻”问题可用“捆绑法”,对于“不相邻”问题可用“插空法”.对于直接考虑较困难的问题,可以采用间接法.
【变式训练2】把1,2,3,4,5这五个数字组成无重复数字的五位数,并把它们按由小到大的顺序排列构成一个数列.
(1)43251是这个数列的第几项?
(2)这个数列的第97项是多少?
【解析】(1)不大于43251的五位数A55-(A44+A33+A22)=88个,即为此数列的第88项.
(2)此数列共有120项,而以5开头的五位数恰好有A44=24个,所以以5开头的五位数中最小的一个就是该数列的第97项,即51234.
题型三有限制条件的组合问题
【例3】要从12人中选出5人去参加一项活动.
(1)A,B,C三人必须入选有多少种不同选法?
(2)A,B,C三人都不能入选有多少种不同选法?
(3)A,B,C三人只有一人入选有多少种不同选法?
(4)A,B,C三人至少一人入选有多少种不同选法?
(5)A,B,C三人至多二人入选有多少种不同选法?
【解析】(1)只须从A,B,C之外的9人中选择2人,C29=36种不同选法.
(2)由A,B,C三人都不能入选只须从余下9人中选择5人,即有C59=C49=126种选法.
(3)可分两步,先从A,B,C三人中选出1人,有C13种选法,再从余下的9人中选4人,有C49种选法,所以共有C13C49=378种选法.
(4)可考虑间接法,从12人中选5人共有C512种,再减去A,B,C三人都不入选的情况C59,共有C512-C59=666种选法.
(5)可考虑间接法,从12人中选5人共有C512种,再减去A,B,C三人都入选的情况C29种,所以共有C512-C29=756种选法.
【点拨】遇到至多、至少的有关计数问题,可以用间接法求解.对于有限制条件的问题,一般要根据特殊元素分类.
【变式训练3】四面体的顶点和各棱中点共有10个点.
(1)在其中取4个共面的点,共有多少种不同的取法?
(2)在其中取4个不共面的点,共有多少种不同的取法?
【解析】(1)四个点共面的取法可分三类.第一类:在同一个面上取,共有4C46种;第二类:在一条棱上取三点,再在它所对的棱上取中点,共有6种;第三类:在六条棱的六个中点中取,取两对对棱的4个中点,共有C23=3种.故有69种.
(2)用间接法.共C410-69=141种.
总结提高
解有条件限制的排列与组合问题的思路:
(1)正确选择原理,确定分类或分步计数;
(2)特殊元素、特殊位置优先考虑;
(3)再考虑其余元素或其余位置.

12.3二项式定理

典例精析
题型一二项展开式的通项公式及应用
【例1】已知的展开式中,前三项系数的绝对值依次成等差数列.
(1)求证:展开式中没有常数项;
(2)求展开式中所有的有理项.
【解析】由题意得2C1n=1+C2n()2,
即n2-9n+8=0,所以n=8,n=1(舍去).
所以Tr+1=()
=(-)r
=(-1)r(0≤r≤8,r∈Z).
(1)若Tr+1是常数项,则16-3r4=0,即16-3r=0,
因为r∈Z,这不可能,所以展开式中没有常数项.
(2)若Tr+1是有理项,当且仅当16-3r4为整数,
又0≤r≤8,r∈Z,所以r=0,4,8,
即展开式中有三项有理项,分别是T1=x4,T5=358x,T9=1256x-2.
【点拨】(1)把握住二项展开式的通项公式,是掌握二项式定理的关键.除通项公式外,还应熟练掌握二项式的指数、项数、展开式的系数间的关系、性质;
(2)应用通项公式求二项展开式的特定项,如求某一项,含x某次幂的项,常数项,有理项,系数最大的项等,一般是应用通项公式根据题意列方程,在求得n或r后,再求所需的项(要注意n和r的数值范围及大小关系);
(3)注意区分展开式“第r+1项的二项式系数”与“第r+1项的系数”.
【变式训练1】若(xx+)n的展开式的前3项系数和为129,则这个展开式中是否含有常数项,一次项?如果有,求出该项,如果没有,请说明理由.
【解析】由题知C0n+C1n2+C2n22=129,
所以n=8,所以通项为Tr+1=Cr8(xx)8-r=,
故r=6时,T7=26C28x=1792x,
所以不存在常数项,而存在一次项,为1792x.
题型二运用赋值法求值
【例2】(1)已知(1+x)+(1+x)2+…+(1+x)n=a0+a1x+a2x2+…+anxn,且a1+a2+…+an-1=29-n,则n=;
(2)已知(1-x)n=a0+a1x+a2x2+…+anxn,若5a1+2a2=0,则a0-a1+a2-a3+…+(-1)nan=.
【解析】(1)易知an=1,令x=0得a0=n,所以a0+a1+…+an=30.
又令x=1,有2+22+…+2n=a0+a1+…+an=30,
即2n+1-2=30,所以n=4.
(2)由二项式定理得,
a1=-C1n=-n,a2=C2n=n(n-1)2,
代入已知得-5n+n(n-1)=0,所以n=6,
令x=-1得(1+1)6=a0-a1+a2-a3+a4-a5+a6,
即a0-a1+a2-a3+a4-a5+a6=64.
【点拨】运用赋值法求值时应充分抓住代数式的结构特征,通过一些特殊值代入构造相应的结构.
【变式训练2】设(3x-1)8=a0+a1x+a2x2+…+a7x7+a8x8.求a0+a2+a4+a6+a8的值.
【解析】令f(x)=(3x-1)8,
因为f(1)=a0+a1+a2+…+a8=28,
f(-1)=a0-a1+a2-a3+…-a7+a8=48,
所以a0+a2+a4+a6+a8=f(1)+f(-1)2=27×(1+28).
题型三二项式定理的综合应用
【例3】求证:4×6n+5n+1-9能被20整除.
【解析】4×6n+5n+1-9=4(6n-1)+5(5n-1)=4[(5+1)n-1]+5[(4+1)n-1]=20[(5n-1+C1n5n-2+…+Cn-1n)+(4n-1+C1n4n-2+…+Cn-1n)],是20的倍数,所以4×6n+5n+1-9能被20整除.
【点拨】用二项式定理证明整除问题时,首先需注意(a+b)n中,a,b中有一个是除数的倍数;其次展开式有什么规律,余项是什么,必须清楚.
【变式训练3】求0.9986的近似值,使误差小于0.001.
【解析】0.9986=(1-0.002)6=1+6×(-0.002)1+15×(-0.002)2+…+(-0.002)6.
因为T3=C26(-0.002)2=15×(-0.002)2=0.00006<0.001,
且第3项以后的绝对值都小于0.001,
所以从第3项起,以后的项都可以忽略不计.
所以0.9986=(1-0.002)6≈1+6×(-0.002)=1-0.012=0.988.
总结提高
1.利用通项公式可求展开式中某些特定项(如常数项、有理项、二项式系数最大项等),解决这些问题通常采用待定系数法,运用通项公式写出待定式,再根据待定项的要求写出n、r满足的条件,求出n和r,再确定所需的项;
2.赋值法是解决二项展开式的系数和、差问题的一个重要手段;
3.利用二项式定理解决整除问题时,关键是进行合理的变形,使得二项展开式的每一项都成为除数的倍数.对于余数问题,要注意余数的取值范围.

12.4随机事件的概率与概率的基本性质

典例精析
题型一频率与概率
【例1】某企业生产的乒乓球被08年北京奥委会指定为乒乓球比赛专用球.日前有关部门对某批产品进行了抽样检测,检查结果如下表所示.
抽取球数n5010020050010002000
优等品数m45921944709541902
优等品频率
(1)计算表中乒乓球优等品的频率;
(2)从这批乒乓球产品中任取一个,质量检查为优等品的概率是多少?(结果保留到小数点后三位)
【解析】(1)依据公式,计算出表中乒乓球优等品的频率依次是0.900,0.920,0.970,
0.940,0.954,0.951.
(2)由(1)知,抽取的球数n不同,计算得到的频率值不同,但随着抽取的球数的增多,却都在常数0.950的附近摆动,所以质量检查为优等品的概率为0.950.
【点拨】从表中所给的数据可以看出,当所抽乒乓球较少时,优等品的频率波动很大,但当抽取的球数很大时,频率基本稳定在0.95,在其附近摆动,利用概率的统计定义,可估计该批乒乓球的优等率.
【变式训练1】某篮球运动员在最近几场比赛中罚球的结果如下.
投篮次数n8101291016
进球次数m6897712
进球频率
(1)计算表中进球的频率;
(2)这位运动员投篮一次,进球的概率是多少?
【解析】(1)由公式计算出每场比赛该运动员罚球进球的频率依次为:
(2)由(1)知,每场比赛进球的频率虽然不同,但频率总在附近摆动,可知该运动员进球的概率为.
题型二随机事件间的关系
【例2】从一副桥牌(52张)中任取1张.判断下列每对事件是否为互斥事件,是否为对立事件.
(1)“抽出红桃”与“抽出黑桃”;
(2)“抽出红色牌”与“抽出黑色牌”;
(3)“抽出的牌点数为3的倍数”与“抽出的牌点数大于10”.
【解析】(1)是互斥事件但不是对立事件.因为“抽出红桃”与“抽出黑桃”在仅取一张时不可能同时发生,因而是互斥的.同时,不能保证其中必有一个发生,因为还可能抽出“方块”或“梅花”,因此两者不对立.
(2)是互斥事件又是对立事件.因为两者不可同时发生,但其中必有一个发生.
(3)不是互斥事件,更不是对立事件.因为“抽出的牌点数为3的倍数”与“抽出的牌点数大于10”这两个事件有可能同时发生,如抽得12.
【点拨】要区分互斥事件和对立事件的定义.
【变式训练2】抽查10件产品,设事件A:至少有两件次品,则A的对立事件为()
A.至多两件次品B.至多一件次品
C.至多两件正品D.至少两件正品
【解析】根据对立事件的定义得选项B.
题型三概率概念的应用
【例3】甲、乙两个班级进行数学考试,按照大于或等于85分为优秀,85分以下为非优秀,统计后,得到如下列联表.
优秀非优秀总计
甲10
乙30
总计105
已知从全部105人中随机抽取1人为优秀的概率为.
(1)请完成上面列联表;
(2)根据列联表的数据,若按95%的可靠性要求,能否认为“成绩与班级有关系”(参考数据P(K2>6.635)=0.05);
(3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10人按2到11进行编号,然后两次掷一枚均匀的骰子,出现的点数之和为被抽取人的编号.试求抽到6号或10号的概率.
【解析】(1)
优秀非优秀总计
甲104555
乙203050
总计3075105
(2)计算K2的一个观测值
k==6.109.
因为6.109<6.635,所以没有95%的把握认为成绩与班级有关.
(3)记被抽取人的序号为ζ,
则P(ζ=6)=,P(ζ=10)=,
所以P(ζ=6或ζ=10)=P(ζ=6)+P(ζ=10)==.
【点拨】本题考查概率的概念在实际生活中的应用.
【变式训练3】袋内有35个球,每个球上都记有从1~35中的一个号码,设号码为n的球的重量为-5n+20克,这些球以等可能性从袋里取出(不受重量、号码的影响).
(1)如果取出1球,试求其重量比号码数大5的概率;
(2)如果任意取出2球,试求它们重量相等的概率.
【解析】(1)由不等式-5n+20>n+5,得n>15或n<3,
由题意知n=1,2或者n=16,17,…,35,于是所求概率为.
(2)设第n号和第m号的两个球的重量相等,
其中n<m,则有-5n+20=-5m+20,
所以(n-m)(n+m-15)=0.
因为n≠m,所以n+m=15,
所以(n,m)=(1,14),(2,13),…,(7,8).
故所求概率为.
总结提高
1.对立事件是互斥事件的一种特殊情况,是指在一次试验中有且仅有一个发生的两个事件.集合A的对立事件记作,从集合的角度来看,事件所含结果的集合正是全集U中由事件A所含结果组成集合的补集,即A∪=U,A∩=.对立事件一定是互斥事件,但互斥事件不一定是对立事件.
事件A、B的和记作A+B,表示事件A、B至少有一个发生.当A、B为互斥事件时,事件A+B是由“A发生而B不发生”以及“B发生而A不发生”构成的.
当计算事件A的概率P(A)比较困难时,有时计算它的对立事件的概率则要容易些,为此有P(A)=1-P().
2.若A与B互相独立,则与,A与,与B都是相互独立事件.判断A与B是否独立的方法是看P(AB)=P(A)P(B)是否成立.

12.5古典概型

典例精析
题型一古典概率模型的计算问题
【例1】一汽车厂生产A、B、C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆),
轿车A轿车B轿车C
舒适型100150z
标准型300450600
现按分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类10辆.
(1)求z的值;
(2)用分层抽样的方法在C类轿车中抽取一个容量为5的样本,将该样本视为一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;
(3)用随机抽样方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4,8.6,9.2,
9.6,8.7,9.3,9.0,8.2把这8辆车的得分看成一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.
【解析】(1)依题意知,从每层抽取的比率为140,从而轿车的总数为50×40=2000辆,所以z=2000-100-150-300-450-600=400.
(2)由(1)知C类轿车共1000辆,又样本容量为5,故抽取的比率为1200,即5辆轿车中有2辆舒适型、3辆标准型,任取2辆,一共有n=10种不同取法,记事件A:至少有1辆舒适型轿车,则事件表示抽取到2辆标准型轿车,有m′=3种不同取法,从而事件A包含:基本事件数为m=7种,所以P(A)=710.
(3)样本平均数=18×(9.4+8.6+9.2+9.6+8.7+9.3+9.0+8.2)=9.0,记事件B:从样本中任取一数,该数与样本平均数的绝对值不超过0.5,则事件B包含的基本事件有6种,所以P(B)=68=34.
【点拨】利用古典概型求事件的概率时,主要弄清基本事件的总数,及所求事件所含的基本事件的个数.
【变式训练1】已知△ABC的三边是10以内(不包含10)的三个连续的正整数,求任取一个△ABC是锐角三角形的概率.
【解析】依题意不妨设a=n-1,b=n,c=n+1(n>1,n∈N),从而有a+b>c,即n>2,所以△ABC的最小边为2,要使△ABC是锐角三角形,只需△ABC的最大角C是锐角,cosC=(n-1)2+n2-(n+1)22(n-1)n=n-42(n-1)>0,所以n>4,
所以,要使△ABC是锐角三角形,△ABC的最小边为4.另一方面,从{2,3,4,…,9}中,“任取三个连续正整数”共有6种基本情况,“△ABC是锐角三角形”包含4种情况,故所求的概率为46=23.
题型二有放回抽样与不放回抽样
【例2】现有一批产品共有10件,其中8件为正品,2件为次品.
(1)如果从中取出一件,然后放回,再取一件,求连续3次取出的都是正品的概率;
(2)如果从中一次取3件,求3件都是正品的概率.
【解析】(1)有放回地抽取3次,按抽取顺序(x,y,z)记录结果,则x,y,z都有10种可能,所以试验结果有10×10×10=103种;设事件A为“连续3次都取正品”,则包含的基本事件共有8×8×8=83种,因此,P(A)==0.512.
(2)方法一:可以看作不放回抽样3次,顺序不同,基本事件不同,按抽取顺序记录(x,y,z),则x有10种可能,y有9种可能,z有8种可能,所以试验的所有结果为10×9×8=720种.设事件B为“3件都是正品”,则事件B包含的基本事件总数为8×7×6=336,所以P(B)=336720≈0.467.
方法二:可以看作不放回3次无顺序抽样,先按抽取顺序(x,y,z)记录结果,则x有10种可能,y有9种可能,z有8种可能,但(x,y,z),(x,z,y),(y,x,z),(y,z,x),(z,x,y),(z,y,x)是相同的,所以试验的所有结果有10×9×8÷6=120.按同样的方法,事件B包含的基本事件个数为8×7×6÷6=56,因此P(B)=56120≈0.467.
【点拨】关于不放回抽样,计算基本事件个数时,既可以看作是有顺序的,也可以看作是无顺序的,其结果是一样的,但不论选择哪一种方式,观察的角度必须一致,否则会导致错误.
【变式训练2】有5张卡片,上面分别写有0,1,2,3,4中的1个数.求:
(1)从中任取两张卡片,两张卡片上的数字之和等于4的概率;
(2)从中任取两次卡片,每次取一张,第一次取出卡片,记下数字后放回,再取第二次,两次取出的卡片上的数字之和恰好等于4的概率.
【解析】(1)两张卡片上的数字之和等于4的情形共有4种,任取两张卡片共有10种,所以概率为P=410=25;
(2)两张卡片上的数字之和等于4的情形共有5种,任取两张卡片共有25种,所以概率为P=525=15.
题型三古典概型问题的综合应用
【例3】甲、乙两袋装有大小相同的红球和白球,甲袋装有2个红球,2个白球;乙袋装有2个红球,n个白球.从甲、乙两袋中各任取2个球.
(1)若n=3,求取到的4个球全是红球的概率;
(2)若取到的4个球中至少有2个红球的概率为34,求n.
【解析】(1)记“取到的4个球全是红球”为事件A,
P(A)=C22C24C22C25=16×110=160.
(2)记“取到的4个球至多有1个红球”为事件B,“取到的4个球只有1个红球”为事件B1,“取到的4个球全是白球”为事件B2.
由题意,得P(B)=1-34=14.
P(B1)=C12C12C24C2nC2n+2+C22C24C12C1nC2n+2=2n23(n+2)(n+1),
P(B2)=C22C24C2nC2n+2=n(n-1)6(n+2)(n+1).
所以P(B)=P(B1)+P(B2)=2n23(n+2)(n+1)+n(n-1)6(n+2)(n+1)=14,化简得7n2-11n-6=0,解得n=2或n=-37(舍去),故n=2.
【变式训练3】甲、乙二人参加普法知识竞赛,共有10道不同的题目,其中选择题6道,判断题4道,甲、乙二人一次各抽取一题.
(1)甲抽到选择题,乙抽到判断题的概率是多少?
(2)甲、乙二人至少有一个抽到选择题的概率是多少?
【解析】(1)甲从选择题中抽到一题的可能结果有C16个,乙从判断题中抽到一题的的可能结果是C14,故甲抽到选择题,乙抽到判断题的可能结果为C16×C14=24.又甲、乙二人一次各抽取一题的结果有C110×C19=90,
所以概率为2490=415.
(2)甲、乙二人一次各抽取一题基本事件的总数是10×9=90.
方法一:(分类计数原理)
①只有甲抽到了选择题的事件数是:6×4=24;
②只有乙抽到了选择题的事件数是:6×4=24;
③甲、乙同时抽到选择题的事件数是:6×5=30.
故甲、乙二人至少有一个抽到选择题的概率是24+24+3090=1315.
方法二:(利用对立事件)
事件“甲、乙二人至少有一个抽到选择题”与事件“甲、乙两人都未抽到选择题”是对立事件.
事件“甲、乙两人都未抽到选择题”的基本事件个数是4×3=12.
故甲、乙二人至少有一个抽到选择题的概率是1-1290=1-215=1315.
总结提高
1.对古典概型首先必须使学生明确判断两点:①对于每个随机试验来说,所有可能出现的试验结果数n必须是有限个;②出现的各个不同的试验结果数m其可能性大小必须是相同的.只有在同时满足①、②的条件下,运用的古典概型计算公式P(A)=mn得出的结果才是正确的.使用公式P(A)=mn计算时,确定m、n的数值是关键所在.
2.对于n个互斥事件A1,A2,…,An,其加法公式为P(A1+A2+…+An)=P(A1)+P(A2)+…+P(An).
3.分类讨论思想是解决互斥事件有一个发生的概率的一个重要的指导思想.
4.在应用题背景条件下,能否把一个复杂事件分解为若干个互相排斥或相互独立、既不重复又不遗漏的简单事件是解答这类应用题的关键,也是考查学生分析问题、解决问题的能力的重要环节.

12.6几何概型

典例精析
题型一长度问题
【例1】如图,∠AOB=60°,OA=2,OB=5,在线段OB上任取一点C,
试求:
(1)△AOC为钝角三角形的概率;
(2)△AOC为锐角三角形的概率.
【解析】如图,由平面几何知识知:
当AD⊥OB时,OD=1;当OA⊥AE时,OE=4,BE=1.
(1)当且仅当点C在线段OD或BE上时,△AOC为钝角三角形.
记“△AOC为钝角三角形”为事件M,则P(M)=OD+EBOB=1+15=0.4,即△AOC为钝角三角形的概率为0.4.
(2)当且仅当点C在线段DE上时,△AOC为锐角三角形.
记“△AOC为锐角三角”为事件N,则P(N)=DEOB=35=0.6,即△AOC为锐角三角形的概率为0.6.
【点拨】我们把每一个事件理解为从某个特定的区域内随机地取一点,该区域中每一点被取到的机会都一样,而一个事件发生则理解为恰好在上述区域内的某个指定的区域内的点,这样的概率模型就可以用几何概型求解.
【变式训练1】点A为周长等于3的圆周上的一个定点,若在该圆周上随机取一点B,则劣弧AB的长度小于1的概率为.
【解析】如图
可设=1,则根据几何概率可知其整体事件是其周长3,则其概率是23.
题型二面积问题
【例2】两个CB对讲机(CB即CitizenBand民用波段的英文缩写)持有者,莉莉和霍伊都为卡尔货运公司工作,他们的对讲机的接收范围为25公里,在下午3:00时莉莉正在基地正东距基地30公里以内的某处向基地行驶,而霍伊在下午3:00时正在基地正北距基地40公里以内的某地向基地行驶,试问在下午3:00时他们能够通过对讲机交谈的概率有多大?
【解析】设x和y分别代表莉莉和霍伊距基地的距离,于是0≤x≤30,0≤y≤40.
他们所有可能的距离的数据构成有序点对(x,y),这里x,y都在它们各自的限制范围内,则所有这样的有序数对构成的集合即为基本事件组对应的几何区域,每一个几何区域中的点都代表莉莉和霍伊的一个特定的位置,他们可以通过对讲机交谈的事件仅当他们之间的距离不超过25公里时发生(如下图),因此构成该事件的点由满足不等式x2+y2≤25的数对组成,
此不等式等价于x2+y2≤625,右图中的方形区域代表基本事件组,阴影部分代表所求事件,方形区域的面积为1200平方公里,而事件的面积为(14)×π×(25)2=625π4,
于是有P=625×π41200=625π4800≈0.41.
【点拨】解决此类问题,应先根据题意确定该实验为几何概型,然后求出事件A和基本事件的几何度量,借助几何概型的概率公式求出.
【变式训练2】如图,以正方形ABCD的边长为直径作半圆,重叠部分为花瓣.现在向该正方形区域内随机地投掷一飞镖,求飞镖落在花瓣内的概率.
【解析】飞镖落在正方形区域内的机会是均等的,符合几何概型条件.记飞镖落在花瓣内为事件A,设正方形边长为2r,则
P(A)=S花瓣SABCD=12πr2×4-(2r)2(2r)2=π-22.
所以,飞镖落在花瓣内的概率为π-22.
题型三体积问题
【例3】在线段[0,1]上任意投三个点,设O至三点的三线段长为x、y、z,研究方法表明:x,y,z能构成三角形只要点(x,y,z)落在棱长为1的正方体T的内部由△ADC,△ADB,△BDC,△AOC,△AOB,△BOC所围成的区域G中(如图),则x,y,z能构成三角形与不能构成三角形这两个事件中哪一个事件的概率大?
【解析】V(T)=1,V(G)=13-3×13×12×13=12,
所以P=V(G)V(T)=12.
由此得,能与不能构成三角形两事件的概率一样大.
【点拨】因为任意投的三点x,y,z是随机的,所以使得能构成三角形只与能构成三角形的区域及基本事件的区域有关.
【变式训练3】已知正方体ABCD—A1B1C1D1内有一个内切球O,则在正方体ABCD—A1B1C1D1内任取点M,点M在球O内的概率是()
A.π4B.π8C.π6D.π12
【解析】设正方体的棱长为a,则点M在球O内的概率P=V球V正方体=43π(a2)3a3=π6,选C.
总结提高
1.几何概型是一种概率模型,它与古典概型的区别是试验的可能结果不是有限个.其特点是在一个区域内均匀分布,概率大小与随机事件所在区域的形状和位置无关,只与该区域的大小有关.如果随机事件所在区域是一个单点,其测度为0,则它出现的概率为0,但它不是不可能事件.如果随机事件所在区域是全部区域扣除一个单点,其测度为1,则它出现的概率为1,但它不是必然事件.
2.若试验的全部结果是一个包含无限个点的区域(长度,面积,体积),一个基本事件是区域中的一个点.此时用点数度量事件A包含的基本事件的多少就毫无意义.“等可能性”可以理解成“对任意两个区域,当它们的测度(长度,面积,体积,…)相等时,事件A对应点落在这两区域上的概率相等,而与形状和位置都无关”.
3.几何概型并不限于向平面(或直线、空间)投点的试验,如果一个随机试验有无限多个等可能的基本结果,每个基本结果可以用平面(或直线、空间)中的一点来表示,而所有基本结果对应于一个区域Ω,这时,与试验有关的问题即可利用几何概型来解决.

12.7条件概率与事件的独立性

典例精析
题型一条件概率的求法
【例1】一张储蓄卡的密码共6位数字,每位数字都可从0~9中任选一个.某人在银行自动提款机上取钱时,忘记了密码的最后一位数字,求:
(1)任意按最后一位数字,不超过2次就按对的概率;
(2)如果他记得密码的最后一位是偶数,不超过2次就按对的概率.
【解析】设第i次按对密码为事件Ai(i=1,2),则A=A1∪(A2)表示不超过2次就按对密码.
(1)因为事件A1与事件A2互斥,由概率的加法公式得P(A)=P(A1)+P(A2)=110+9×110×9=15.
(2)用B表示最后一位是偶数的事件,则
P(A|B)=P(A1|B)+P(A2|B)=15+4×15×4=25.
【点拨】此类问题解题时应注意着重分析事件间的关系,辨析所求概率是哪一事件的概率,再运用相应的公式求解.
【变式训练1】设某种动物从出生算起活到20岁以上的概率为0.8,活到25岁以上的概率为0.4.现有一只20岁的这种动物,问它能活到25岁以上的概率是.
【解析】设此种动物活到20岁为事件A,活到25岁为事件B,所求概率为P(B|A),由于BA,则P(AB)=P(B),所以P(B|A)=P(AB)P(A)=P(B)P(A)=0.40.8=12.
题型二相互独立事件的概率
【例2】三人独立破译同一份密码,已知三人各自破译出密码的概率分别为15,14,13,且他们是否破译出密码互不影响.
(1)求恰有二人破译出密码的概率;
(2)“密码被破译”与“密码未被破译”的概率哪个大?说明理由.
【解析】(1)记三人各自破译出密码分别为事件A,B,C,依题意知A,B,C相互独立,记事件D:恰有二人破译密码,
则P(D)=P(AB)+P(AC)+P(BC)
=15×14×(1-13)+15×(1-14)×13+(1-15)×14×13=960=320.
(2)记事件E:密码被破译,:密码未被破译,
则P()=P()=(1-15)×(1-14)×(1-13)=2460=25,
所以P(E)=1-P()=35,所以P(E)>P().
故密码被破译的概率大.
【点拨】解决事件的概率问题的一般步骤:①记取事件;②揭示事件的关系;③计算事件的概率.
【变式训练2】甲、乙、丙三个口袋内都分别装有6个只有颜色不相同的球,并且每个口袋内的6个球均有1个红球,2个黑球,3个无色透明的球,现从甲、乙、丙三个口袋中依次随机各摸出1个球,求恰好摸出红球、黑球和无色球各1个的概率.
【解析】由于各个袋中球的情况一样,而且从每一个袋中摸出红球、黑球、无色球的概率均分别为16,13,12,可得P=A33×16×13×12=16.
题型三综合问题
【例3】某公司招聘员工,指定三门考试课程,有两种考试方案.
方案一:三门课程中至少有两门及格为考试通过;
方案二:在三门课程中随机选取两门,这两门都及格为考试通过.
假设某应聘者对三门指定课程考试及格的概率分别是a,b,c,且三门课程考试是否及格相互之间没有影响.
(1)分别求该应聘者在方案一和方案二下考试通过的概率;
(2)试比较该应聘者在上述两种方案下考试通过的概率的大小,并说明理由.
【解析】记该应聘者对三门指定课程考试及格的事件分别为A,B,C,则P(A)=a,P(B)=b,P(C)=c.
(1)应聘者在方案一下考试通过的概率
P1=P(AB)+P(BC)+P(AC)+P(ABC)
=ab(1-c)+bc(1-a)+ac(1-b)+abc
=ab+bc+ca-2abc.
应聘者在方案二下考试通过的概率
P2=13P(AB)+13P(BC)+13P(AC)=13(ab+bc+ca).
(2)由a,b,c∈[0,1],则
P1-P2=23(ab+bc+ca)-2abc=23[ab(1-c)+bc(1-a)+ca(1-b)]≥0,
故P1≥P2,即采用第一种方案,该应聘者考试通过的概率较大.
【点拨】本题首先以相互独立事件为背景,考查两种方案的概率,然后比较概率的大小,要求运用a,b,c∈[0,1]这一隐含条件.
【变式训练3】甲,乙,丙三人分别独立地进行某项体能测试,已知甲能通过测试的概率是25,甲,乙,丙三人都能通过测试的概率是320,甲,乙,丙三人都不能通过测试的概率是340,且乙通过的概率比丙大.
(1)求乙,丙两人各自通过测试的概率分别是多少?
(2)测试结束后,最容易出现几人通过的情况?
【解析】(1)设乙、丙两人各自通过的概率分别为x,y,依题意得
即或(舍去),
所以乙、丙两人各自通过的概率分别为34,12.
(2)因为三人都不能通过测试的概率为P0=340,
三人都能通过测试的概率为P3=320=640,
三人中恰有一人通过测试的概率:
P1=25×(1-34)×(1-12)+(1-25)×34×(1-12)+(1-25)×(1-34)×12=720=1440,
三人恰有两人通过测试的概率:
P2=1-(P0+P1+P3)=1740,
所以测试结束后,最容易出现两人通过的情况.
总结提高
1.互斥事件、对立事件、相互独立事件的区别:
对于事件A、B,在一次试验中,A、B如果不能同时发生,则称A、B互斥.一次试验中,如果A、B互斥且A、B中必有一个发生,则称A、B对立.显然,A+为必然事件,A、B互斥则不能同时发生,但可能同时不发生.两事件相互独立是指一个事件的发生与否对另一事件的发生的概率没有影响.事实上:
A、B互斥,则P(AB)=0;
A、B对立,则P(AB)=0且P(A)+P(B)=1;
A、B相互独立,则P(AB)=P(A)P(B).
它们是不相同的.
2.由于当事件A、B相互独立时,P(AB)=P(A)P(B),因此式子1-P(A)P(B)表示相互独立事件A、B中至少有一个不发生的概率.对于n个随机事件A1,A2,…,An,有
P(A1+A2+…+An)=1-P(∩∩…∩),此称为概率的和与积的互补公式.

12.8离散型随机变量及其分布列

典例精析
题型一离散型随机变量的分布列
【例1】设离散型随机变量X的分布列为
X01234
P0.20.10.10.30.3
求:(1)2X+1的分布列;(2)|X-1|的分布列.
【解析】首先列表如下:
X01234
2X+113579
|X-1|10123
从而由上表得两个分布列如下:
2X+1的分布列:
2X+113579
P0.20.10.10.30.3
|X-1|的分布列:
|X-1|0123
P0.10.30.30.3
【点拨】由于X的不同的值,Y=f(X)会取到相同的值,这时要考虑所有使f(X)=Y成立的X1,X2,…,Xi的值,则P(Y)=P(f(X))=P(X1)+P(X2)+…+P(Xi),在第(2)小题中充分体现了这一点.
【变式训练1】某地有A、B、C、D四人先后感染了甲型H1N1流感,其中只有A到过渡区,B肯定是受A感染的,对于C,因为难以断定他是受A还是受B感染的,于是假定他受A和受B感染的概率都是12,同样也假定D受A、B、C感染的概率都为13,在这种假定之下,B、C、D中受A感染的人数X就是一个随机变量,写出X分布列,并求均值.
【解析】依题知X可取1、2、3,
P(X=1)=1×(1-12)×(1-13)=13,
P(X=2)=1×(1-12)×13+1×12×(1-13)=12,
P(X=3)=1×12×13=16,
所以X的分布列为
X123
P
均值E(X)=1×+2×+3×=.
题型二两点分布
【例2】在掷一枚图钉的随机试验中,令ξ=如果针尖向上的概率为p,试写出随机变量ξ的分布列.
【解析】根据分布列的性质,针尖向下的概率是1-p.于是,随机变量的分布列是
ξ01
P1-pp
【点拨】本题将两点分布与概率分布列的性质相结合,加深了两点分布的概念的理解.
【变式训练2】若离散型随机变量ξ=的分布列为:
ξ01
P9c2-c3-8c
(1)求出c;
(2)ξ是否服从两点分布?若是,成功概率是多少?
【解析】(1)由(9c2-c)+(3-8c)=1,解得c=13或23.
又9c2-c≥0,3-8c≥0,所以c=13.
(2)是两点分布.成功概率为3-8c=13.
题型三超几何分布
【例3】有10件产品,其中3件次品,7件正品,现从中抽取5件,求抽得次品数X的分布列.
【解析】X的所有可能取值为0,1,2,3,X=0表示取出的5件产品全是正品,
P(X=0)=C03C57C510=21252=112;
X=1表示取出的5件产品有1件次品4件正品,
P(X=1)=C13C47C510=105252=512;
X=2表示取出的5件产品有2件次品3件正品,
P(X=2)=C23C37C510=105252=512;
X=3表示取出的5件产品有3件次品2件正品,
P(X=3)=C33C27C510=21252=112.
所以X的分布列为
X0123
P
【点拨】在取出的5件产品中,次品数X服从超几何分布,只要代入公式就可求出相应的概率,关键是明确随机变量的所有取值.超几何分布是一个重要分布,要掌握它的特点.
【变式训练3】一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X是一个随机变量,其分布列为P(X),则P(X=4)的值为()
A.1220B.2755C.27220D.2125
【解析】由题意取出的3个球必为2个旧球1个新球,故P(X=4)=C23C19C312=27220.选C.
总结提高
1.求离散型随机变量分布列的问题,需要综合运用排列、组合、概率等知识和方法.
2.求离散型随机变量ξ的分布列的步骤:
(1)求出随机变量ξ的所有可能取值xi(i=1,2,3,…);
(2)求出各取值的概率P(ξ=xi)=pi;
(3)列出表格.

12.9独立重复试验与二项分布

典例精析
题型一相互独立事件同时发生的概率
【例1】甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为14,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为112,甲、丙两台机床加工的零件都是一等品的概率为29.
(1)分别求甲、乙、丙三台机床各自加工的零件是一等品的概率;
(2)从甲、乙、丙加工的零件中各取一个检验,求至少有一个一等品的概率.
【解析】(1)设A、B、C分别为甲、乙、丙三台机床各自加工的零件是一等品的事件.
由题设条件有

由①③解得P(C)=23,将P(C)=23分别代入③②可得P(A)=13,P(B)=14,即甲、乙、丙三台机床各自加工的零件是一等品的概率分别是13,14,23.
(2)记D为从甲、乙、丙加工的零件中各取一个检验,至少有一个一等品的事件,
则P(D)=1-P()=1-[1-P(A)][1-P(B)][1-P(C)]=1-23×34×13=56.
故从甲、乙、丙加工的零件中各取一个检验,至少有一个一等品的概率为56.
【点拨】相互独立事件是发生的概率互不影响的两个或多个事件.两个相互独立事件同时发生的概率满足P(AB)=P(A)P(B),对于求与“至少”、“至多”有关事件的概率,通常转化为求其对立事件的概率.
【变式训练1】甲、乙两人各进行3次射击,甲每次击中目标的概率为12,乙每次击中目标的概率为23.
(1)求乙至多击中目标2次的概率;
(2)求甲恰好比乙多击中目标2次的概率.
【解析】(1)乙至多击中目标2次的概率为1-C33(23)3=1927.
(2)设甲恰比乙多击中目标2次为事件A,甲恰击中目标2次且乙恰击中目标0次为事件B1,甲恰击中目标3次且乙恰击中目标1次为事件B2,则A=B1+B2,B1、B2为互斥事件.
P(A)=P(B1)+P(B2)=38×127+18×29=124.
所以,甲恰好比乙多击中目标2次的概率为124.
题型二独立重复试验
【例2】(2010天津)某射手每次射击击中目标的概率是23,且各次射击的结果互不影响.
(1)假设这名射手射击5次,求恰有2次击中目标的概率;
(2)假设这名射手射击5次,求有3次连续击中目标,另外2次未击中目标的概率.
【解析】(1)设X为射手在5次射击中击中目标的次数,则X~B(5,23).在5次射击中,恰有2次击中目标的概率P(X=2)=C25×(23)2×(1-23)3=40243.
(2)设“第i次射击击中目标”为事件Ai(i=1,2,3,4,5);“射手在5次射击中,有3次连续击中目标,另外2次未击中目标”为事件A,则
P(A)=P(A1A2A3)+P(A2A3A4)+P(A3A4A5)=(23)3×(13)2+13×(23)3×13+(13)2×(23)3=881.
【点拨】独立重复试验是同一试验的n次重复,每次试验成功的概率都相同,恰有k次试验成功的概率为Pn(k)=Cknpk(1-p)n-k.
【变式训练2】袋子A中装有若干个均匀的红球和白球,从中摸出一个红球的概率是13.从A中有放回地摸球,每次摸出一个,有3次摸到红球即停止.
(1)求恰好摸5次停止的概率;
(2)记5次之内(含5次)摸到红球的次数为ξ,求P(ξ≥2).
【解析】(1)P=C24×(13)2×(23)2×13=881.
(2)P(ξ=2)=C25×(13)2×(1-13)3=80243,
P(ξ=3)=C35×(13)3×(1-13)2=40243,
则P(ξ≥2)=P(ξ=2)+P(ξ=3)=4081.
题型三二项分布
【例3】一名学生每天骑车上学,从他家到学校的途中有6个交通岗,假设他在各个交通岗遇到红灯的事件是相互独立的,并且概率为13.
(1)设X为这名学生在途中遇到红灯的次数,求X的分布列;
(2)设Y为这名学生在首次遇到红灯前经过的路口数,求Y的分布列;
(3)求这名学生在途中至少遇到一次红灯的概率.
【解析】(1)依题意知X~B(6,13),
P(X=k)=Ck6(13)k(23)6-k,k=0,1,2,3,4,5,6.
所以X的分布列为
X0123
P
X456
P
(2)依题意知Y可取0,1,2,3,4,5,6,
P(Y=0)=13,
P(Y=1)=13×23=29,
P(Y=2)=13×(23)2=427,
P(Y=3)=13×(23)3=881,
P(Y=4)=13×(23)4=16243,
P(Y=5)=13×(23)5=32729,
P(Y=6)=(23)6=64729,
所以Y的分布列为
Y0123456
P
(3)这名学生在途中至少遇到一次红灯的概率为
P(X≥1)=1-P(X=0)=1-(23)6=665729.
【点拨】解决离散型随机变量的分布列问题时,要依据相关概念识别离散型随机变量服从什么分布,如第(1)问中X服从二项分布,而第(2)问中并不服从二项分布.
【变式训练3】某大厦的一部电梯从底层出发后只能在第18、19、20层停靠.若该电梯在底层载有5位乘客,且每位乘客在这三层的每一层下电梯的概率均为13,用ξ表示这5位乘客在第20层下电梯的人数.求随机变量ξ的分布列.
【解析】方法一:ξ的所有可能值为0,1,2,3,4,5.
P(ξ=0)=2535=32243,P(ξ=1)==80243,
P(ξ=2)==80243,P(ξ=3)==40243,
P(ξ=4)==10243,P(ξ=5)=135=1243.
从而ξ的分布列为
ξ012345
P
方法二:考察一位乘客是否在第20层下电梯为一次试验,这是5次独立重复试验.
故ξ~B(5,13),即有
P(ξ=k)=Ck5(13)k(23)5-k,k=0,1,2,3,4,5.
由此计算ξ的分布列如方法一.
总结提高
独立重复试验是同一试验的n次重复,每次试验结果的概率不受其他次结果的概率的影响,每次试验有两个可能结果:成功和失败.n次试验中A恰好出现了k次的概率为Cknpk(1-p)n-k,这k次是n次中的任意k次,若是指定的k次,则概率为pk(1-p)n-k.

12.10离散型随机变量的期望与方差

典例精析
题型一期望与方差的性质的应用
【例1】设随机变量ξ的分布列为P(ξ=k)=16(k=1,2,3,4,5,6),求E(ξ),E(2ξ+3)和D(ξ),D(2ξ+3).
【解析】E(ξ)=x1p1+x2p2+…+x6p6=3.5,
E(2ξ+3)=2E(ξ)+3=10,
D(ξ)=(x1-E(ξ))2p1+(x2-E(ξ))2p2+…+(x6-E(ξ))2p6=3512,D(2ξ+3)=4D(ξ)=353.
【点拨】在计算离散型随机变量的期望与方差时,首先要弄清其分布特征及分布列,再准确运用公式,特别是利用性质解题.
【变式训练1】袋中有20个大小相同的球,其中记上0号的有10个,记上n号的有n个(n=1,2,3,4).现从袋中任取一球,ξ表示所取球的标号.
(1)求ξ的分布列、期望和方差;
(2)若η=aξ+b,E(η)=1,D(η)=11,试求a,b的值.
【解析】(1)ξ的分布列为:
ξ01234
P
所以E(ξ)=0×12+1×120+2×110+3×320+4×15=1.5,
D(ξ)=(0-1.5)2×12+(1-1.5)2×120+(2-1.5)2×110+(3-1.5)2×320+(4-1.5)2×15=2.75.
(2)由D(η)=a2D(ξ),得a2×2.75=11,即a=±2.又E(η)=aE(ξ)+b,
所以当a=2时,由1=2×1.5+b,得b=-2;
当a=-2时,由1=-2×1.5+b,得b=4.
所以或
题型二期望与方差在风险决策中的应用
【例2】甲、乙两名工人加工同一种零件,两人每天加工的零件数相等,所得次品数分别为ξ、η,ξ和η的分布列如下:
ξ012
P

η012
P
试对这两名工人的技术水平进行比较.
【解析】工人甲生产出的次品数ξ的期望和方差分别为:
E(ξ)=0×610+1×110+2×310=0.7,
D(ξ)=(0-0.7)2×610+(1-0.7)2×110+(2-0.7)2×310=0.81.
工人乙生产出的次品数η的期望和方差分别为:
E(η)=0×510+1×310+2×210=0.7,D(η)=(0-0.7)2×510+(1-0.7)2×310+(2-0.7)2×210=0.61.
由E(ξ)=E(η)知,两人出次品的平均数相同,技术水平相当,但D(ξ)>D(η),可见乙的技术比较稳定.
【点拨】期望仅体现了随机变量取值的平均大小,但有时仅知道均值的大小还不够.如果两个随机变量的均值相等,还要看随机变量的取值如何在均值周围变化,即计算方差.方差大说明随机变量取值较分散,方差小说明取值分散性小或者取值比较集中、稳定.
【变式训练2】利用下列盈利表中的数据进行决策,应选择的方案是.
【解析】利用方案A1、A2、A3、A4盈利的期望分别是:
50×0.25+65×0.30+26×0.45=43.7;
70×0.25+26×0.30+16×0.45=32.5;
-20×0.25+52×0.30+78×0.45=45.7;
98×0.25+82×0.30-10×0.45=44.6.故选A3.
题型三离散型随机变量分布列综合问题
【例3】(2010浙江)如图,一个小球从M处投入,通过管道自上而下落入A或B或C.已知小球从每个叉口落入左右两个管道的可能性是相等的.某商家按上述投球方式进行促销活动,若投入的小球落到A,B,C,则分别设为1,2,3等奖.
(1)已知获得1,2,3等奖的折扣率分别为50%,70%,90%.记随机变量ξ为获得k(k=1,2,3)等奖的折扣率,求随机变量ξ的分布列及期望E(ξ);
(2)若有3人次(投入1球为1人次)参加促销活动,记随机变量η为获得1等奖或2等奖的人次,求P(η=2).
【解析】(1)由题意得ξ的分布列为
ξ50%70%90%
p
则E(ξ)=316×50%+38×70%+716×90%=34.
(2)由(1)可知,获得1等奖或2等奖的概率为316+38=916.由题意得η~(3,916),则P(η=2)=C23(916)2(1-916)=17014096.
【变式训练3】(2010北京市东城区)已知将一枚质地不均匀的硬币抛掷三次,三次正面均朝上的概率为127.
(1)求抛掷这样的硬币三次,恰有两次正面朝上的概率;
(2)抛掷这样的硬币三次后,抛掷一枚质地均匀的硬币一次,记四次抛掷后正面朝上的总次数为ξ,求随机变量ξ的分布列及期望E(ξ).
【解析】(1)设抛掷一次这样的硬币,正面朝上的概率为P,依题意有C33P3=127,解得
P=13.
所以抛掷这样的硬币三次,恰有两次正面朝上的概率为P3(2)=C23×(13)2×23=29.
(2)随机变量ξ的可能取值为0,1,2,3,4.
P(ξ=0)=C03×(23)3×12=427;
P(ξ=1)=C03×(23)3×12+C13×13×(23)2×12=1027;
P(ξ=2)=C13×13×(23)2×12+C23×(13)2×23×12=13;
P(ξ=3)=C23×(13)2×23×12+C33×(13)3×12=754;
P(ξ=4)=C33×(13)3×12=154.
所以ξ的分布列为
ξ01234
P
E(ξ)=0×427+1×1027+2×13+3×754+4×154=32.
总结提高
1.期望是算术平均值概念的推广,是概率意义下的平均;E(ξ)是一个实数,由ξ的分布列唯一确定,即作为随机变量ξ是可变的,可取不同值,而E(ξ)是不变的,它描述ξ取值的平均状态.
2.方差D(ξ)表示随机变量ξ对E(ξ)的平均偏离程度,统计中常用标准差D(ξ)描述ξ的分散程度.

12.11正态分布

典例精析
题型一研究正态总体在三个特殊区间内取值的概率值
【例1】某正态曲线的密度函数是偶函数,而且该函数的最大值为122π,求总体位于区间[-4,-2]的概率.
【解析】由正态曲线的密度函数是偶函数知μ=0,由最大值为122π知σ=2,
所以P(-2≤x≤2)=P(μ-σ≤x≤μ+σ)=0.6826,
P(-4≤x≤4)=P(μ-2σ≤x≤μ+2σ)=0.9544,
所以P(-4≤x≤-2)=12×(0.9544-0.6826)=0.1359.
【点拨】应当熟记:
P(μ-σ≤X≤μ+σ)=0.6826;
P(μ-2σ≤X≤μ+2σ)=0.9544;
P(μ-3σ≤X≤μ+3σ)=0.9974.
【变式训练1】设X~N(1,22),试求:
(1)P(-1<X≤3);
(2)P(X≥5).
【解析】因为X~N(1,22),所以μ=1,σ=2.
(1)P(-1<X≤3)=P(1-2<X≤1+2)=P(μ-σ<X≤μ+σ)=0.6826.
(2)因为P(X≥5)=P(X≤-3),
所以P(X≥5)=12[1-P(-3<X≤5)]
=12[1-P(1-4<X≤1+4)]
=12[1-P(μ-2σ<X≤μ+2σ)]
=12(1-0.9544)=0.0228.
题型二利用正态总体密度函数估计某区间的概率
【例2】已知某地区数学考试的成绩X~N(60,82)(单位:分),此次考生共有1万人,估计在60分到68分之间约有多少人?
【解析】由题意μ=60,σ=8,
因为P(μ-σ<X≤μ+σ)=0.6826,
所以P(52<X≤68)=0.6826,
又此正态曲线关于x=60对称,
所以P(60<X≤68)=12P(52<X≤68)=0.3413,
从而估计在60分到68分之间约有3413人.
【点拨】本题是教材变式题,将原题中单纯(μ-σ,μ+σ)的概率考查结合了正态曲线的对称性以及概率的意义,使题目更具实际意义.另外,还可将问题变为(44,76)、(68,76)等区间进行探讨.
【变式训练2】某人乘车从A地到B地,所需时间(分钟)服从正态分布N(30,100),求此人在40分钟至50分钟到达目的地的概率.
【解析】由μ=30,σ=10,P(μ-σ<X≤μ+σ)=0.6826知此人在20分钟至40分钟到达目的地的概率为0.6826,又由于P(μ-2σ<X≤μ+2σ)=0.9544,所以此人在10分钟至20分钟或40分钟至50分钟到达目的地的概率为0.9544-0.6826=0.2718,由正态曲线关于直线x=30对称得此人在40分钟至50分钟到达目的地的概率为0.1359.
总结提高
1.服从正态分布的随机变量X的概率特点
若随机变量X服从正态分布,则X在一点上的取值概率为0,即P(X=a)=0,而{X=a}并不是不可能事件,所以概率为0的事件不一定是不可能事件,从而P(X<a)=P(X≤a)是成立的,这与离散型随机变量不同.
2.关于正态总体在某个区间内取值的概率求法
(1)熟记P(μ-σ<X≤μ+σ),P(μ-2σ<X≤μ+2σ),P(μ-3σ<X≤μ+3σ)的值.
(2)充分利用正态曲线的对称性和曲线与x轴之间面积为1.
①正态曲线关于直线x=μ对称,从而在关于x=μ对称的区间上概率相同.
②P(X<a)=1-P(X≥a),P(X<μ-a)=P(X≥μ+a).

高三理科数学推理与证明总复习教学案


第十四章推理与证明

高考导航

考试要求重难点击命题展望
1.了解合情推理的含义.
2.能利用归纳与类比等进行简单的推理.
3.体会并认识合情推理在数学发现中的作用.
4.了解演绎推理的重要性.
5.掌握演绎推理的基本模式:“三段论”.
6.能运用演绎推理进行简单的推理.
7.了解演绎推理、合情推理的联系与区别.
8.了解直接证明的两种基本方法:分析法与综合法.
9.了解分析法与综合法的思维过程、特点.
10.了解反证法是间接证明的一种基本方法及反证法的思维过程、特点.
11.了解数学归纳法的原理.
12.能用数学归纳法证明一些简单的与自然数有关的数学命题.本章重点:1.利用归纳与类比进行推理;2.利用“三段论”进行推理与证明;3.运用直接证明(分析法、综合法)与间接证明(反证法)的方法证明一些简单的命题;4.数学归纳法的基本思想与证明步骤;运用数学归纳法证明与自然数n(n∈N*)有关的数学命题.
本章难点:1.利用归纳与类比的推理来发现结论并形成猜想命题;2.根据综合法、分析法及反证法的思维过程与特点选取适当的证明方法证明命题;3.理解数学归纳法的思维实质,特别是在第二个步骤要根据归纳假设进行推理与证明.“推理与证明”是数学的基本思维过程,也是人们学习和生活中经常使用的思维方式.本章要求考生通过对已有知识的回顾与总结,进一步体会直观感知、观察发现、归纳类比、空间想象、抽象概括、符号表示、运算求解、数据处理、演绎证明、反思与建构等数学思维过程以及合情推理、演绎推理之间的联系与差异,体会数学证明的特点,了解数学证明的基本方法.
本章是新课程考纲中新增的内容,考查的范围宽,内容多,涉及数学知识的方方面面,与旧考纲相比,增加了合情推理等知识点,这为创新性试题的命制提供了空间.

知识网络

14.1合情推理与演绎推理

典例精析
题型一运用归纳推理发现一般性结论
【例1】通过观察下列等式,猜想出一个一般性的结论,并证明结论的真假.
sin215°+sin275°+sin2135°=32;
sin230°+sin290°+sin2150°=32;
sin245°+sin2105°+sin2165°=32;
sin260°+sin2120°+sin2180°=32.
【解析】猜想:sin2(α-60°)+sin2α+sin2(α+60°)=32.
左边=(sinαcos60°-cosαsin60°)2+sin2α+(sinαcos60°+cosαsin60°)2=32(sin2α+cos2α)=32=右边.
【点拨】先猜后证是一种常见题型;归纳推理的一些常见形式:一是“具有共同特征型”,二是“递推型”,三是“循环型”(周期性).
【变式训练1】设直角三角形的两直角边的长分别为a,b,斜边长为c,斜边上的高为h,则有a+b<c+h成立,某同学通过类比得到如下四个结论:
①a2+b2>c2+h2;②a3+b3<c3+h3;③a4+b4<c4+h4;④a5+b5>c5+h5.
其中正确结论的序号是;
进一步类比得到的一般结论是.
【解析】②③;an+bn<cn+hn(n∈N*).
题型二运用类比推理拓展新知识
【例2】请用类比推理完成下表:
平面空间
三角形两边之和大于第三边三棱锥任意三个面的面积之和大于第四个面的面积
三角形的面积等于任意一边的长度与这边上的高的乘积的一半三棱锥的体积等于任意一个底面的面积与该底面上的高的乘积的三分之一
三角形的面积等于其内切圆半径与三角形周长的乘积的一半
【解析】本题由已知的前两组类比可得到如下信息:
①平面中的三角形与空间中的三棱锥是类比对象;②三角形各边的边长与三棱锥各面的面积是类比对象;③三角形边上的高与三棱锥面上的高是类比对象;④三角形的面积与三棱锥的体积是类比对象;⑤三角形的面积公式中的“二分之一”与三棱锥的体积公式中的“三分之一”是类比对象.
由以上分析可知:
故第三行空格应填:三棱锥的体积等于其内切球半径与三棱锥表面积的乘积的三分之一.
本题结论可以用等体积法,将三棱锥分割成四个小的三棱锥去证明,此处从略.
【点拨】类比推理的关键是找到合适的类比对象.平面几何中的一些定理、公式、结论等,可以类比到立体几何中,得到类似的结论.一般平面中的一些元素与空间中的一些元素的类比列表如下:
平面空间
点线
线面
圆球
三角形三棱锥
角二面角
面积体积
周长表面积
……
【变式训练2】面积为S的平面凸四边形的第i条边的边长记为ai(i=1,2,3,4),此四边形内任一点P到第i条边的距离为hi(i=1,2,3,4),(1)若a11=a22=a33=a44=k,则=;(2)类比以上性质,体积为V的三棱锥的第i个面的面积记为Si(i=1,2,3,4),此三棱锥内任一点Q到第i个面的距离记为Hi(i=1,2,3,4),若S11=S22=S33=S44=K,则=.
【解析】2Sk;3VK.
题型三运用“三段论”进行演绎推理
【例3】已知函数f(x)=lnax-x-ax(a≠0).
(1)求此函数的单调区间及最值;
(2)求证:对于任意正整数n,均有1+12+13+…+1n≥lnenn!.
【解析】(1)由题意f′(x)=x-ax2.
当a>0时,函数f(x)的定义域为(0,+∞),
此时函数在(0,a)上是减函数,在(a,+∞)上是增函数,
fmin(x)=f(a)=lna2,无最大值.
当a<0时,函数f(x)的定义域为(-∞,0),
此时函数在(-∞,a)上是减函数,在(a,0)上是增函数,
fmin(x)=f(a)=lna2,无最大值.
(2)取a=1,由(1)知,f(x)=lnx-x-1x≥f(1)=0,
故1x≥1-lnx=lnex,
取x=1,2,3,…,n,则1+12+13+…+1n≥lne+lne2+…+lnen=lnenn!.
【点拨】演绎推理是推理证明的主要途径,而“三段论”是演绎推理的一种重要的推理形式,在高考中以证明题出现的频率较大.
【变式训练3】已知函数f(x)=eg(x),g(x)=kx-1x+1(e是自然对数的底数),
(1)若对任意的x>0,都有f(x)<x+1,求满足条件的最大整数k的值;
(2)求证:ln(1+1×2)+ln(1+2×3)+…+ln[1+n(n+1)]>2n-3(n∈N*).
【解析】(1)由条件得到f(1)<2<2k<2ln2+1<3,猜测最大整数k=2,
现在证明<x+1对任意x>0恒成立:
<x+1等价于2-3x+1<ln(x+1)ln(x+1)+3x+1>2,
设h(x)=ln(x+1)+3x+1,则h′(x)=1x+1-3(x+1)2=x-2(x+1)2.
故x∈(0,2)时,h′(x)<0,当x∈(2,+∞)时,h′(x)>0.
所以对任意的x>0都有h(x)≥h(2)=ln3+1>2,即<x+1对任意x>0恒成立,
所以整数k的最大值为2.
(2)由(1)得到不等式2-3x+1<ln(x+1),
所以ln[1+k(k+1)]>2-3k(k+1)+1>2-3k(k+1),
ln(1+1×2)+ln(1+2×3)+…+ln[1+n(n+1)]>(2-31×2)+(2-32×3)+…+[2-3n(n+1)]=2n-3[11×2+12×3+…+1n(n+1)]=2n-3+3n+1>2n-3,
所以原不等式成立.
总结提高
合情推理与演绎推理是两种基本的思维推理方式.尽管合情推理(归纳、类比)得到的结论未必正确,但归纳推理与类比推理具有猜想和发现新结论、探索和提供证明的新思路的重要作用,特别在数学学习中,我们可以由熟悉的、已知的知识领域运用归纳、类比思维获取发现和创造的灵感去探索陌生的、未知的知识领域.演绎推理是数学逻辑思维的主要形式,担负着判断命题真假的重要使命.如果说合情推理是以感性思维为主,只需有感而发;那么演绎推理则是以理性思维为主,要求言必有据.在近几年高考中一道合情推理的试题往往会成为一套高考试题的特色与亮点,以彰显数学思维的魅力.其中数列的通项公式、求和公式的归纳、等差数列与等比数列、平面与空间、圆锥曲线与圆、杨辉三角等的类比的考查频率较大.而演绎推理的考查则可以渗透到每一道试题中.

14.2直接证明与间接证明

典例精析
题型一运用综合法证明
【例1】设a>0,b>0,a+b=1,求证:1a+1b+1ab≥8.
【证明】因为a+b=1,
所以1a+1b+1ab=a+ba+a+bb+a+bab=1+ba+1+ab+a+bab≥2++a+b(a+b2)2=2+2+4=8,当且仅当a=b=12时等号成立.
【点拨】在用综合法证明命题时,必须首先找到正确的出发点,也就是能想到从哪里起步,我们一般的处理方法是广泛地联想已知条件所具备的各种性质,逐层推进,从已知逐渐引出结论.
【变式训练1】设a,b,c>0,求证:a2b+b2c+c2a≥a+b+c.
【证明】因为a,b,c>0,根据基本不等式,
有a2b+b≥2a,b2c+c≥2b,c2a+a≥2c.
三式相加:a2b+b2c+c2a+a+b+c≥2(a+b+c).
即a2b+b2c+c2a≥a+b+c.
题型二运用分析法证明
【例2】设a、b、c为任意三角形三边长,I=a+b+c,S=ab+bc+ca.求证:I2<4S.
【证明】由I2=(a+b+c)2=a2+b2+c2+2(ab+bc+ac)=a2+b2+c2+2S,
故要证I2<4S,只需证a2+b2+c2+2S<4S,即a2+b2+c2<2S.
欲证上式,只需证a2+b2+c2-2ab-2bc-2ca<0,
即证(a2-ab-ac)+(b2-bc-ba)+(c2-ca-cb)<0,
只需证三括号中的式子均为负值即可,
即证a2<ab+ac,b2<bc+ba,c2<ca+cb,
即a<b+c,b<a+c,c<a+b,
显然成立,因为三角形任意一边小于其他两边之和.
故I2<4S.
【点拨】(1)应用分析法易于找到思路的起始点,可探求解题途径.
(2)应用分析法证明问题时要注意:严格按分析法的语言表达;下一步是上一步的充分条件.
【变式训练2】已知a>0,求证:a2+1a2-2≥a+1a-2.
【证明】要证a2+1a2-2≥a+1a-2,
只要证a2+1a2+2≥a+1a+2.
因为a>0,故只要证(a2+1a2+2)2≥(a+1a+2)2,
即a2+1a2+4a2+1a2+4≥a2+2+1a2+22(a+1a)+2,
从而只要证2a2+1a2≥2(a+1a),
只要证4(a2+1a2)≥2(a2+2+1a2),即a2+1a2≥2,
而该不等式显然成立,故原不等式成立.
题型三运用反证法证明
【例3】若x,y都是正实数,且x+y>2.求证:1+xy<2或1+yx<2中至少有一个成立.
【证明】假设1+xy<2和1+yx<2都不成立.则1+xy≥2,1+yx≥2同时成立.
因为x>0且y>0,所以1+x≥2y且1+y≥2x,
两式相加得2+x+y≥2x+2y,所以x+y≤2,这与已知条件x+y>2相矛盾.
因此1+xy<2与1+yx<2中至少有一个成立.
【点拨】一般以下题型用反证法:①当“结论”的反面比“结论”本身更简单、更具体、更明确;②否定命题,唯一性命题,存在性命题,“至多”“至少”型命题;③有的肯定形式命题,由于已知或结论涉及到无限个元素,用直接证明形式比较困难因而往往采用反证法.
【变式训练3】已知下列三个方程:x2+4ax-4a+3=0;x2+(a-1)x+a2=0;x2+2ax-2a=0,若至少有一个方程有实根,求实数a的取值范围.
【解析】假设三个方程均无实根,则有
由(4a)2-4(-4a+3)<0,得4a2+4a-3<0,即-32<a<12;
由(a-1)2-4a2<0,得(a+1)(3a-1)>0,即a<-1或a>13;
由(2a)2-4(-2a)<0,得a(a+2)<0,即-2<a<0.
以上三部分取交集得M={a|-32<a<-1},则三个方程至少有一个方程有实根的实数a的取值范围为RM,即{a|a≤-32或a≥-1}.
总结提高
分析法与综合法各有其优缺点:分析法是执果索因,比较容易寻求解题思路,但叙述繁琐;综合法叙述简洁,但常常思路阻塞.因此在实际解题时,需将两者结合起来运用,先用分析法寻求解题思路,再用综合法简洁地叙述解题过程.从逻辑思维的角度看,原命题“pq”与逆否命题“qp”是等价的,而反证法是相当于由“q”推出“p”成立,从而证明了原命题正确.因此在运用反证法的证明过程中要特别注意条件“q”的推理作用.综合法与分析法在新课标中第一次成为独立的显性的课题,预测可能有显性的相关考试命题.反证法证明的关键是在正确的推理下得出矛盾,这个矛盾可以是与已知矛盾,或与假设矛盾或与定义、公理、公式事实矛盾等.

14.3数学归纳法

典例精析
题型一用数学归纳法证明恒等式
【例1】是否存在常数a、b、c,使等式12+22+32+…+n2+(n-1)2+…+22+12=an(bn2+c)对于一切n∈N*都成立?若存在,求出a、b、c并证明;若不存在,试说明理由.
【解析】假设存在a、b、c使12+22+32+…+n2+(n-1)2+…+22+12=an(bn2+c)对于一切n∈N*都成立.
当n=1时,a(b+c)=1;
当n=2时,2a(4b+c)=6;
当n=3时,3a(9b+c)=19.
解方程组解得
证明如下:
当n=1时,显然成立;
假设n=k(k∈N*,k≥1)时等式成立,
即12+22+32+…+k2+(k-1)2+…+22+12=13k(2k2+1);
则当n=k+1时,
12+22+32+…+k2+(k+1)2+k2+(k-1)2+…+22+12=13k(2k2+1)+(k+1)2+k2
=13k(2k2+3k+1)+(k+1)2=13k(2k+1)(k+1)+(k+1)2
=13(k+1)(2k2+4k+3)=13(k+1)[2(k+1)2+1].
因此存在a=13,b=2,c=1,使等式对一切n∈N*都成立.
【点拨】用数学归纳法证明与正整数n有关的恒等式时要弄清等式两边的项的构成规律:由n=k到n=k+1时等式左右各如何增减,发生了怎样的变化.
【变式训练1】用数学归纳法证明:
当n∈N*时,11×3+13×5+…+1(2n-1)(2n+1)=n2n+1.
【证明】(1)当n=1时,左边=11×3=13,右边=12×1+1=13,
左边=右边,所以等式成立.
(2)假设当n=k(k∈N*)时等式成立,即有11×3+13×5+…+1(2k-1)(2k+1)=k2k+1,
则当n=k+1时,
11×3+13×5+…+1(2k-1)(2k+1)+1(2k+1)(2k+3)=k2k+1+1(2k+1)(2k+3)
=k(2k+3)+1(2k+1)(2k+3)=2k2+3k+1(2k+1)(2k+3)=k+12k+3=k+12(k+1)+1,
所以当n=k+1时,等式也成立.
由(1)(2)可知,对一切n∈N*等式都成立.
题型二用数学归纳法证明整除性问题
【例2】已知f(n)=(2n+7)3n+9,是否存在自然数m使得任意的n∈N*,都有m整除f(n)?若存在,求出最大的m值,并证明你的结论;若不存在,请说明理由.
【解析】由f(1)=36,f(2)=108,f(3)=360,猜想:f(n)能被36整除,下面用数学归纳法证明.
(1)当n=1时,结论显然成立;
(2)假设当n=k(k≥1,k∈N*)时结论成立,即f(k)=(2k+7)3k+9能被36整除.
则当n=k+1时,f(k+1)=(2k+9)3k+1+9=3[(2k+7)3k+9]+18(3k-1-1),
由假设知3[(2k+7)3k+9]能被36整除,又3k-1-1是偶数,
故18(3k-1-1)也能被36整除.即n=k+1时结论也成立.
故由(1)(2)可知,对任意正整数n都有f(n)能被36整除.
由f(1)=36知36是整除f(n)的最大值.
【点拨】与正整数n有关的整除性问题也可考虑用数学归纳法证明.在证明n=k+1结论也成立时,要注意“凑形”,即凑出归纳假设的形式,以便于充分利用归纳假设的条件.
【变式训练2】求证:当n为正整数时,f(n)=32n+2-8n-9能被64整除.
【证明】方法一:①当n=1时,f(1)=34-8-9=64,命题显然成立.
②假设当n=k(k≥1,k∈N*)时结论成立,即f(k)=32k+2-8k-9能被64整除.
由于32(k+1)+2-8(k+1)-9=9(32k+2-8k-9)+98k+99-8(k+1)-9=9(32k+2-8k-9)+64(k+1),即f(k+1)=9f(k)+64(k+1),
所以n=k+1时命题也成立.
根据①②可知,对任意的n∈N*,命题都成立.
方法二:①当n=1时,f(1)=34-8-9=64,命题显然成立.
②假设当n=k(k≥1,k∈N*)时,f(k)=32k+2-8k-9能被64整除.由归纳假设,设32k+2-8k-9=64m(m为大于1的自然数),将32k+2=64m+8k+9代入到f(k+1)中得
f(k+1)=9(64m+8k+9)-8(k+1)-9=64(9m+k+1),所以n=k+1时命题也成立.
根据①②可知,对任意的n∈N*,命题都成立.
题型三数学归纳法在函数、数列、不等式证明中的运用
【例3】(2009山东)等比数列{an}的前n项和为Sn,已知对任意的n∈N*,点(n,Sn)均在函数y=bx+r(b>0且b≠1,b,r均为常数)的图象上.
(1)求r的值;
(2)当b=2时,记bn=2(log2an+1)(n∈N*),求证:对任意的n∈N*,不等式b1+1b1
b2+1b2…bn+1bn>n+1成立.
【解析】(1)因为点(n,Sn)均在函数y=bx+r(b>0且b≠1,b,r均为常数)的图象上,
所以Sn=bn+r(b>0且b≠1,b,r均为常数).
当n=1时,a1=S1=b+r;当n≥2时,an=Sn-Sn-1=bn+r-bn-1-r=(b-1)bn-1.
又数列{an}为等比数列,故r=-1且公比为b.
(2)当b=2时,an=2n-1,
所以bn=2(log2an+1)=2(log22n-1+1)=2n(n∈N*),
所以bn+1bn=2n+12n,
于是要证明的不等式为3254…2n+12n>n+1对任意的n∈N*成立.
下面用数学归纳法证明.
当n=1时,32>2显然成立.
假设当n=k时不等式成立,即3254…2k+12k>k+1.
则当n=k+1时,3254…2k+12k2k+32k+2>k+12k+32k+2=k+1(2k+32k+2)2=(2k+3)24(k+1)
=[2(k+1)+1]24(k+1)=4(k+1)2+4(k+1)+14(k+1)=(k+1)+1+14(k+1)>(k+1)+1,
即当n=k+1时不等式成立,所以原不等式对任意n∈N*成立.
【点拨】运用归纳推理得到的结论不一定正确,需进行证明.用数学归纳法证明不等式时必须要利用归纳假设的条件,并且灵活运用放缩法、基本不等式等数学方法.
【变式训练3】设函数f(x)=ex-1+ax(a∈R).
(1)若函数f(x)在x=1处有极值,且函数g(x)=f(x)+b在(0,+∞)上有零点,求b的最大值;
(2)若f(x)在(1,2)上为单调函数,求实数a的取值范围;
(3)在(1)的条件下,数列{an}中a1=1,an+1=f(an)-f′(an),求|an+1-an|的最小值.
【解析】(1)f′(x)=ex-1-ax2,又函数f(x)在x=1处有极值,
所以f′(1)=0,即a=1,经检验符合题意.
g′(x)=ex-1-1x2,当x∈(0,1)时,g′(x)<0,g(x)为减函数,当x=1时,g′(x)=0,当x∈(1,+∞)时g′(x)>0,g(x)为增函数.
所以g(x)在x=1时取得极小值g(1)=2+b,依题意g(1)≤0,所以b≤-2,
所以b的最大值为-2.
(2)f′(x)=ex-1-ax2,
当f(x)在(1,2)上单调递增时,ex-1-ax2≥0在[1,2]上恒成立,所以a≤x2ex-1,
令h(x)=x2,则h′(x)=ex-1(x2+2x)>0在[1,2]上恒成立,即h(x)在[1,2]上单调递增,
所以h(x)在[1,2]上的最小值为h(1)=1,所以a≤1;
当f(x)在[1,2]上单调递减时,同理a≥x2ex-1,
h(x)=x2ex-1在[1,2]上的最大值为h(2)=4e,所以a≥4e.
综上实数a的取值范围为a≤1或a≥4e.
(3)由(1)得a=1,所以f(x)-f′(x)=1x+1x2,因此an+1=1an+1a2n,a1=1,所以a2=2,可得0<a2n+1<1,a2n+2>2.用数学归纳法证明如下:
①当n=1时,a3=34,a4=289,结论成立;
②设n=k,k∈N*时结论成立,即0<a2k+1<1,a2k+2>2,
则n=k+1时,a2k+3=1a2k+2+1a22k+2<12+12=1,
所以0<a2k+3<1,a2k+4=1a2k+3+1a22k+3>1+1=2.
所以n=k+1时结论也成立,
根据①②可得0<a2n+1<1,a2n+2>2恒成立,
所以|an+1-an|≥a2-a1=2-1=1,即|an+1-an|的最小值为1.
总结提高
数学归纳法是证明与自然数有关的命题的常用方法,它是在归纳的基础上进行的演绎推理,其大前提是皮亚诺公理(即归纳公理):
设M是正整数集合的子集,且具有如下性质:
①1∈M;
②若k∈M,则k+1∈M,那么必有M=N*成立.
数学归纳法证明的两个步骤体现了递推的数学思想,第一步是递推的基础,第二步是递推的依据,通过对两个命题的证明替代了无限多次的验证,实现了有限与无限的辩证统一.
从近几年的高考试题来看,比较注重于对数学归纳法的思想本质的考查,如“归纳、猜想、证明”是一种常见的命题形式.而涉及的知识内容也是很广泛的,可覆盖代数命题、三角恒等式、不等式、数列、几何命题、整除性命题等.其难点往往在第二步,关键是“凑形”以便运用归纳假设的条件.

高三理科数学导数及其应用总复习教学案


一名优秀的教师在教学时都会提前最好准备,教师要准备好教案,这是教师需要精心准备的。教案可以保证学生们在上课时能够更好的听课,帮助教师能够更轻松的上课教学。那么怎么才能写出优秀的教案呢?下面是小编帮大家编辑的《高三理科数学导数及其应用总复习教学案》,仅供参考,欢迎大家阅读。

第三章导数及其应用

高考导航

考试要求重难点击命题展望
1.导数概念及其几何意义
(1)了解导数概念的实际背景;
(2)理解导数的几何意义.
2.导数的运算
(1)能根据导数定义,求函数y=c(c为常数),y=x,y=x2,y=x3,y=,y=的导数;
(2)能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f(ax+b)的复合函数)的导数.
3.导数在研究函数中的应用
(1)了解函数单调性和导数的关系,能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次);
(2)了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次).
4.生活中的优化问题
会利用导数解决某些实际问题.
5.定积分与微积分基本定理
(1)了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念;
(2)了解微积分基本定理的含义.本章重点:
1.导数的概念;
2.利用导数求切线的斜率;
3.利用导数判断函数单调性或求单调区间;
4.利用导数求极值或最值;
5.利用导数求实际问题最优解.
本章难点:导数的综合应用.导数与定积分是微积分的核心概念之一,也是中学选学内容中较为重要的知识之一.由于其应用的广泛性,为我们解决有关函数、数列问题提供了更一般、更有效的方法.因此,本章知识在高考题中常在函数、数列等有关最值不等式问题中有所体现,既考查数形结合思想,分类讨论思想,也考查学生灵活运用所学知识和方法的能力.考题可能以选择题或填空题的形式来考查导数与定积分的基本运算与简单的几何意义,而以解答题的形式来综合考查学生的分析问题和解决问题的能力.

知识网络

3.1导数的概念与运算

典例精析
题型一导数的概念
【例1】已知函数f(x)=2ln3x+8x,
求f(1-2Δx)-f(1)Δx的值.
【解析】由导数的定义知:
f(1-2Δx)-f(1)Δx=-2f(1-2Δx)-f(1)-2Δx=-2f′(1)=-20.
【点拨】导数的实质是求函数值相对于自变量的变化率,即求当Δx→0时,平均变化率ΔyΔx的极限.
【变式训练1】某市在一次降雨过程中,降雨量y(mm)与时间t(min)的函数关系可以近似地表示为f(t)=t2100,则在时刻t=10min的降雨强度为()
A.15mm/minB.14mm/min
C.12mm/minD.1mm/min
【解析】选A.
题型二求导函数
【例2】求下列函数的导数.
(1)y=ln(x+1+x2);
(2)y=(x2-2x+3)e2x;
(3)y=3x1-x.
【解析】运用求导数公式及复合函数求导数法则.
(1)y′=1x+1+x2(x+1+x2)′
=1x+1+x2(1+x1+x2)=11+x2.
(2)y′=(2x-2)e2x+2(x2-2x+3)e2x
=2(x2-x+2)e2x.
(3)y′=13(x1-x1-x+x(1-x)2
=13(x1-x1(1-x)2
=13x(1-x)
【变式训练2】如下图,函数f(x)的图象是折线段ABC,其中A、B、C的坐标分别为(0,4),(2,0),(6,4),则f(f(0))=;f(1+Δx)-f(1)Δx=(用数字作答).
【解析】f(0)=4,f(f(0))=f(4)=2,
由导数定义f(1+Δx)-f(1)Δx=f′(1).
当0≤x≤2时,f(x)=4-2x,f′(x)=-2,f′(1)=-2.
题型三利用导数求切线的斜率
【例3】已知曲线C:y=x3-3x2+2x,直线l:y=kx,且l与C切于点P(x0,y0)(x0≠0),求直线l的方程及切点坐标.
【解析】由l过原点,知k=y0x0(x0≠0),又点P(x0,y0)在曲线C上,y0=x30-3x20+2x0,
所以y0x0=x20-3x0+2.
而y′=3x2-6x+2,k=3x20-6x0+2.
又k=y0x0,
所以3x20-6x0+2=x20-3x0+2,其中x0≠0,
解得x0=32.
所以y0=-38,所以k=y0x0=-14,
所以直线l的方程为y=-14x,切点坐标为(32,-38).
【点拨】利用切点在曲线上,又曲线在切点处的切线的斜率为曲线在该点处的导数来列方程,即可求得切点的坐标.
【变式训练3】若函数y=x3-3x+4的切线经过点(-2,2),求此切线方程.
【解析】设切点为P(x0,y0),则由
y′=3x2-3得切线的斜率为k=3x20-3.
所以函数y=x3-3x+4在P(x0,y0)处的切线方程为
y-y0=(3x20-3)(x-x0).
又切线经过点(-2,2),得
2-y0=(3x20-3)(-2-x0),①
而切点在曲线上,得y0=x30-3x0+4,②
由①②解得x0=1或x0=-2.
则切线方程为y=2或9x-y+20=0.
总结提高
1.函数y=f(x)在x=x0处的导数通常有以下两种求法:
(1)导数的定义,即求ΔyΔx=f(x0+Δx)-f(x0)Δx的值;
(2)先求导函数f′(x),再将x=x0的值代入,即得f′(x0)的值.
2.求y=f(x)的导函数的几种方法:
(1)利用常见函数的导数公式;
(2)利用四则运算的导数公式;
(3)利用复合函数的求导方法.
3.导数的几何意义:函数y=f(x)在x=x0处的导数f′(x0),就是函数y=f(x)的曲线在点P(x0,y0)处的切线的斜率.

3.2导数的应用(一)

典例精析
题型一求函数f(x)的单调区间
【例1】已知函数f(x)=x2-ax-aln(x-1)(a∈R),求函数f(x)的单调区间.
【解析】函数f(x)=x2-ax-aln(x-1)的定义域是(1,+∞).
f′(x)=2x-a-ax-1=2x(x-a+22)x-1,
①若a≤0,则a+22≤1,f′(x)=2x(x-a+22)x-1>0在(1,+∞)上恒成立,所以a≤0时,f(x)的增区间为(1,+∞).
②若a>0,则a+22>1,
故当x∈(1,a+22]时,f′(x)=2x(x-a+22)x-1≤0;
当x∈[a+22,+∞)时,f′(x)=2x(x-a+22)x-1≥0,
所以a>0时,f(x)的减区间为(1,a+22],f(x)的增区间为[a+22,+∞).
【点拨】在定义域x>1下,为了判定f′(x)符号,必须讨论实数a+22与0及1的大小,分类讨论是解本题的关键.
【变式训练1】已知函数f(x)=x2+lnx-ax在(0,1)上是增函数,求a的取值范围.
【解析】因为f′(x)=2x+1x-a,f(x)在(0,1)上是增函数,
所以2x+1x-a≥0在(0,1)上恒成立,
即a≤2x+1x恒成立.
又2x+1x≥22(当且仅当x=22时,取等号).
所以a≤22,
故a的取值范围为(-∞,22].
【点拨】当f(x)在区间(a,b)上是增函数时f′(x)≥0在(a,b)上恒成立;同样,当函数f(x)在区间(a,b)上为减函数时f′(x)≤0在(a,b)上恒成立.然后就要根据不等式恒成立的条件来求参数的取值范围了.
题型二求函数的极值
【例2】已知f(x)=ax3+bx2+cx(a≠0)在x=±1时取得极值,且f(1)=-1.
(1)试求常数a,b,c的值;
(2)试判断x=±1是函数的极小值点还是极大值点,并说明理由.
【解析】(1)f′(x)=3ax2+2bx+c.
因为x=±1是函数f(x)的极值点,
所以x=±1是方程f′(x)=0,即3ax2+2bx+c=0的两根.
由根与系数的关系,得
又f(1)=-1,所以a+b+c=-1.③
由①②③解得a=12,b=0,c=-32.
(2)由(1)得f(x)=12x3-32x,
所以当f′(x)=32x2-32>0时,有x<-1或x>1;
当f′(x)=32x2-32<0时,有-1<x<1.
所以函数f(x)=12x3-32x在(-∞,-1)和(1,+∞)上是增函数,在(-1,1)上是减函数.
所以当x=-1时,函数取得极大值f(-1)=1;当x=1时,函数取得极小值f(1)=-1.
【点拨】求函数的极值应先求导数.对于多项式函数f(x)来讲,f(x)在点x=x0处取极值的必要条件是f′(x)=0.但是,当x0满足f′(x0)=0时,f(x)在点x=x0处却未必取得极值,只有在x0的两侧f(x)的导数异号时,x0才是f(x)的极值点.并且如果f′(x)在x0两侧满足“左正右负”,则x0是f(x)的极大值点,f(x0)是极大值;如果f′(x)在x0两侧满足“左负右正”,则x0是f(x)的极小值点,f(x0)是极小值.
【变式训练2】定义在R上的函数y=f(x),满足f(3-x)=f(x),(x-32)f′(x)<0,若x1<x2,且x1+x2>3,则有()
A.f(x1)<f(x2)B.f(x1)>f(x2)
C.f(x1)=f(x2)D.不确定
【解析】由f(3-x)=f(x)可得f[3-(x+32)]=f(x+32),即f(32-x)=f(x+32),所以函数f(x)的图象关于x=32对称.又因为(x-32)f′(x)<0,所以当x>32时,函数f(x)单调递减,当x<32时,函数f(x)单调递增.当x1+x22=32时,f(x1)=f(x2),因为x1+x2>3,所以x1+x22>32,相当于x1,x2的中点向右偏离对称轴,所以f(x1)>f(x2).故选B.
题型三求函数的最值
【例3】求函数f(x)=ln(1+x)-14x2在区间[0,2]上的最大值和最小值.
【解析】f′(x)=11+x-12x,令11+x-12x=0,化简为x2+x-2=0,解得x1=-2或x2=1,其中x1=-2舍去.
又由f′(x)=11+x-12x>0,且x∈[0,2],得知函数f(x)的单调递增区间是(0,1),同理,得知函数f(x)的单调递减区间是(1,2),所以f(1)=ln2-14为函数f(x)的极大值.又因为f(0)=0,f(2)=ln3-1>0,f(1)>f(2),所以,f(0)=0为函数f(x)在[0,2]上的最小值,f(1)=ln2-14为函数f(x)在[0,2]上的最大值.
【点拨】求函数f(x)在某闭区间[a,b]上的最值,首先需求函数f(x)在开区间(a,b)内的极值,然后,将f(x)的各个极值与f(x)在闭区间上的端点的函数值f(a)、f(b)比较,才能得出函数f(x)在[a,b]上的最值.
【变式训练3】(2008江苏)f(x)=ax3-3x+1对x∈[-1,1]总有f(x)≥0成立,则a=.
【解析】若x=0,则无论a为何值,f(x)≥0恒成立.
当x∈(0,1]时,f(x)≥0可以化为a≥3x2-1x3,
设g(x)=3x2-1x3,则g′(x)=3(1-2x)x4,
x∈(0,12)时,g′(x)>0,x∈(12,1]时,g′(x)<0.
因此g(x)max=g(12)=4,所以a≥4.
当x∈[-1,0)时,f(x)≥0可以化为
a≤3x2-1x3,此时g′(x)=3(1-2x)x4>0,
g(x)min=g(-1)=4,所以a≤4.
综上可知,a=4.
总结提高
1.求函数单调区间的步骤是:
(1)确定函数f(x)的定义域D;
(2)求导数f′(x);
(3)根据f′(x)>0,且x∈D,求得函数f(x)的单调递增区间;根据f′(x)<0,且x∈D,求得函数f(x)的单调递减区间.
2.求函数极值的步骤是:
(1)求导数f′(x);
(2)求方程f′(x)=0的根;
(3)判断f′(x)在方程根左右的值的符号,确定f(x)在这个根处取极大值还是取极小值.
3.求函数最值的步骤是:
先求f(x)在(a,b)内的极值;再将f(x)的各极值与端点处的函数值f(a)、f(b)比较,其中最大的一个是最大值,最小的一个是最小值.

3.3导数的应用(二)

典例精析
题型一利用导数证明不等式
【例1】已知函数f(x)=12x2+lnx.
(1)求函数f(x)在区间[1,e]上的值域;
(2)求证:x>1时,f(x)<23x3.
【解析】(1)由已知f′(x)=x+1x,
当x∈[1,e]时,f′(x)>0,因此f(x)在[1,e]上为增函数.
故f(x)max=f(e)=e22+1,f(x)min=f(1)=12,
因而f(x)在区间[1,e]上的值域为[12,e22+1].
(2)证明:令F(x)=f(x)-23x3=-23x3+12x2+lnx,则F′(x)=x+1x-2x2=(1-x)(1+x+2x2)x,
因为x>1,所以F′(x)<0,
故F(x)在(1,+∞)上为减函数.
又F(1)=-16<0,
故x>1时,F(x)<0恒成立,
即f(x)<23x3.
【点拨】有关“超越性不等式”的证明,构造函数,应用导数确定所构造函数的单调性是常用的证明方法.
【变式训练1】已知对任意实数x,有f(-x)=-f(x),g(-x)=g(x),且x>0时,f′(x)>0,g′(x)>0,则x<0时()
A.f′(x)>0,g′(x)>0B.f′(x)>0,g′(x)<0
C.f′(x)<0,g′(x)>0D.f′(x)<0,g′(x)<0
【解析】选B.
题型二优化问题
【例2】(2009湖南)某地建一座桥,两端的桥墩已建好,这两个桥墩相距m米,余下工程只需建两端桥墩之间的桥面和桥墩.经测算,一个桥墩的工程费用为256万元;距离为x米的相邻两墩之间的桥面工程费用为(2+x)x万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素.记余下工程的费用为y万元.
(1)试写出y关于x的函数关系式;
(2)当m=640米时,需新建多少个桥墩才能使y最小?
【解析】(1)设需新建n个桥墩,则(n+1)x=m,
即n=mx-1.
所以y=f(x)=256n+(n+1)(2+x)x
=256(mx-1)+mx(2+x)x
=256mx+mx+2m-256.
(2)由(1)知f′(x)=-256mx2+12mx=m2x2(x-512).
令f′(x)=0,得x=512.所以x=64.
当0<x<64时,f′(x)<0,f(x)在区间(0,64)内为减函数;当64<x<640时,f′(x)>0,f(x)在区间(64,640)内为增函数.
所以f(x)在x=64处取得最小值.
此时n=mx-1=64064-1=9.
故需新建9个桥墩才能使y最小.
【变式训练2】(2010上海)如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝,骨架把圆柱底面8等份,再用S平方米塑料片制成圆柱的侧面和下底面(不安装上底面).当圆柱底面半径r取何值时,S取得最大值?并求出该最大值(结果精确到0.01平方米).
【解析】设圆柱底面半径为r,高为h,
则由已知可得4(4r+2h)=9.6,所以2r+h=1.2.
S=2.4πr-3πr2,h=1.2-2r>0,所以r<0.6.
所以S=2.4πr-3πr2(0<r<0.6).
令f(r)=2.4πr-3πr2,则f′(r)=2.4π-6πr.
令f′(r)=0得r=0.4.所以当0<r<0.4,f′(r)>0;
当0.4<r<0.6,f′(r)<0.
所以r=0.4时S最大,Smax=1.51.
题型三导数与函数零点问题
【例3】设函数f(x)=13x3-mx2+(m2-4)x,x∈R.
(1)当m=3时,求曲线y=f(x)在点(2,f(2))处的切线方程;
(2)已知函数f(x)有三个互不相同的零点0,α,β,且α<β.若对任意的x∈[α,β],都有f(x)≥f(1)恒成立,求实数m的取值范围.
【解析】(1)当m=3时,f(x)=13x3-3x2+5x,f′(x)=x2-6x+5.
因为f(2)=23,f′(2)=-3,所以切点坐标为(2,23),切线的斜率为-3,
则所求的切线方程为y-23=-3(x-2),即9x+3y-20=0.
(2)f′(x)=x2-2mx+(m2-4).
令f′(x)=0,得x=m-2或x=m+2.
当x∈(-∞,m-2)时,f′(x)>0,f(x)在(-∞,m-2)上是增函数;
当x∈(m-2,m+2)时,f′(x)<0,f(x)在(m-2,m+2)上是减函数;
当x∈(m+2,+∞)时,f′(x)>0,f(x)在(m+2,+∞)上是增函数.
因为函数f(x)有三个互不相同的零点0,α,β,且f(x)=13x[x2-3mx+3(m2-4)],
所以
解得m∈(-4,-2)∪(-2,2)∪(2,4).
当m∈(-4,-2)时,m-2<m+2<0,
所以α<m-2<β<m+2<0.
此时f(α)=0,f(1)>f(0)=0,与题意不合,故舍去.
当m∈(-2,2)时,m-2<0<m+2,
所以α<m-2<0<m+2<β.
因为对任意的x∈[α,β],都有f(x)≥f(1)恒成立,
所以α<1<β.
所以f(1)为函数f(x)在[α,β]上的最小值.
因为当x=m+2时,函数f(x)在[α,β]上取最小值,
所以m+2=1,即m=-1.
当m∈(2,4)时,0<m-2<m+2,
所以0<m-2<α<m+2<β.
因为对任意的x∈[α,β],都有f(x)≥f(1)恒成立,
所以α<1<β.
所以f(1)为函数f(x)在[α,β]上的最小值.
因为当x=m+2时,函数f(x)在[α,β]上取最小值,
所以m+2=1,即m=-1(舍去).
综上可知,m的取值范围是{-1}.

【变式训练3】已知f(x)=ax2(a∈R),g(x)=2lnx.
(1)讨论函数F(x)=f(x)-g(x)的单调性;
(2)若方程f(x)=g(x)在区间[2,e]上有两个不等解,求a的取值范围.
【解析】(1)当a>0时,F(x)的递增区间为(1a,+∞),递减区间为(0,1a);
当a≤0时,F(x)的递减区间为(0,+∞).
(2)[12ln2,1e).
总结提高
在应用导数处理方程、不等式有关问题时,首先应熟练地将方程、不等式问题直接转化为函数问题,再利用导数确定函数单调性、极值或最值.

3.4定积分与微积分基本定理

典例精析
题型一求常见函数的定积分
【例1】计算下列定积分的值.
(1)(x-1)5dx;
(2)(x+sinx)dx.
【解析】(1)因为[16(x-1)6]′=(x-1)5,
所以(x-1)5dx==16.
(2)因为(x22-cosx)′=x+sinx,
所以(x+sinx)dx==π28+1.
【点拨】(1)一般情况下,只要能找到被积函数的原函数,就能求出定积分的值;
(2)当被积函数是分段函数时,应对每个区间分段积分,再求和;
(3)对于含有绝对值符号的被积函数,应先去掉绝对值符号后积分;
(4)当被积函数具有奇偶性时,可用以下结论:
①若f(x)是偶函数时,则f(x)dx=2f(x)dx;
②若f(x)是奇函数时,则f(x)dx=0.
【变式训练1】求(3x3+4sinx)dx.
【解析】(3x3+4sinx)dx表示直线x=-5,x=5,y=0和曲线y=3x3+4sinx所围成的曲边梯形面积的代数和,且在x轴上方的面积取正号,在x轴下方的面积取负号.
又f(-x)=3(-x)3+4sin(-x)
=-(3x3+4sinx)=-f(x).
所以f(x)=3x3+4sinx在[-5,5]上是奇函数,
所以(3x3+4sinx)dx=-(3x3+4sinx)dx,
所以(3x3+4sinx)dx=(3x3+4sinx)dx+(3x3+4sinx)dx=0.
题型二利用定积分计算曲边梯形的面积
【例2】求抛物线y2=2x与直线y=4-x所围成的平面图形的面积.
【解析】方法一:如图,

得交点A(2,2),B(8,-4),
则S=[2x-(-2x)]dx+[4-x-(-2x)]dx
=+
=163+383=18.
方法二:S=[(4-y)-y22]dy
==18.
【点拨】根据图形的特征,选择不同的积分变量,可使计算简捷,在以y为积分变量时,应注意将曲线方程变为x=φ(y)的形式,同时,积分上、下限必须对应y的取值.
【变式训练2】设k是一个正整数,(1+xk)k的展开式中x3的系数为116,则函数y=x2与y=kx-3的图象所围成的阴影部分(如图)的面积为.
【解析】Tr+1=Crk(xk)r,令r=3,得x3的系数为C3k1k3=116,解得k=4.由得函数y=x2与y=4x-3的图象的交点的横坐标分别为1,3.
所以阴影部分的面积为S=(4x-3-x2)dx=(2x2-3x-=43.
题型三定积分在物理中的应用
【例3】(1)变速直线运动的物体的速度为v(t)=1-t2,初始位置为x0=1,求它在前2秒内所走过的路程及2秒末所在的位置;
(2)一物体按规律x=bt3作直线运动,式中x为时间t内通过的距离,媒质的阻力正比于速度的平方,试求物体由x=0运动到x=a时阻力所做的功.
【解析】(1)当0≤t≤1时,v(t)≥0,当1≤t≤2时,v(t)≤0,所以前2秒内所走过的路程为
s=v(t)dt+(-v(t))dt
=(1-t2)dt+(t2-1)dt
=+=2.
2秒末所在的位置为
x1=x0+v(t)dt=1+(1-t2)dt=13.
所以它在前2秒内所走过的路程为2,2秒末所在的位置为x1=13.
(2)物体的速度为v=(bt3)′=3bt2.
媒质阻力F阻=kv2=k(3bt2)2=9kb2t4,其中k为比例常数,且k>0.
当x=0时,t=0;
当x=a时,t=t1=(ab),
又ds=vdt,故阻力所做的功为
W阻=ds=kv2vdt=kv3dt
=k(3bt2)3dt=277kb3t71=277k3a7b2.
【点拨】定积分在物理学中的应用应注意:v(t)=a(t)dt,s(t)=v(t)dt和W=F(x)dx这三个公式.
【变式训练3】定义F(x,y)=(1+x)y,x,y∈(0,+∞).令函数f(x)=F[1,log2(x2-4x+9)]的图象为曲线C1,曲线C1与y轴交于点A(0,m),过坐标原点O向曲线C1作切线,切点为B(n,t)(n>0),设曲线C1在点A,B之间的曲线段与线段OA,OB所围成图形的面积为S,求S的值.
【解析】因为F(x,y)=(1+x)y,所以f(x)=F(1,log2(x2-4x+9))==x2-4x+9,故A(0,9),又过坐标原点O向曲线C1作切线,切点为B(n,t)(n>0),f′(x)=2x-4.
所以解得B(3,6),
所以S=(x2-4x+9-2x)dx=(x33-3x2+9x)=9.

总结提高
1.定积分的计算关键是通过逆向思维求得被积函数的原函数.?
2.定积分在物理学中的应用必须遵循相应的物理过程和物理原理.?
3.利用定积分求平面图形面积的步骤:?
(1)画出草图,在直角坐标系中画出曲线或直线的大致图象;?
(2)借助图形确定出被积函数,求出交点坐标,确定积分的上、下限;?
(3)把曲边梯形的面积表示成若干个定积分的和;?
(4)计算定积分,写出答案.

高三数学理科几何证明总复习教学案


第十六章几何证明选讲

高考导航

考试要求重难点击命题展望
1.了解平行线截割定理.
2.会证明并应用直角三角形射影定理.
3.会证明并应用圆周角定理,圆的切线的判定定理及性质定理,并会运用它们进行计算与证明.
4.会证明并应用相交弦定理、圆内接四边形的性质定理与判定定理、切割线定理,并会运用它们进行几何计算与证明.
5.了解平行投影的含义,通过圆柱与平面的位置关系了解平行投影;会证明平面与圆柱面的截线是椭圆(特殊情形是圆).
6.了解下面的定理.
定理:在空间中,取直线l为轴,直线l′与l相交于点O,其夹角为α,l′围绕l旋转得到以O为顶点,l′为母线的圆锥面,任取平面π,若它与轴l的交角为β(π与l平行,记β=0),则:
①β>α,平面π与圆锥的交线为椭圆;
②β=α,平面π与圆锥的交线为抛物线;
③β<α,平面π与圆锥的交线为双曲线.
7.会利用丹迪林(Dandelin)双球(如图所示,这两个球位于圆锥的内部,一个位于平面π的上方,一个位于平面π的下方,并且与平面π及圆锥面均相切,其切点分别为F,E)证明上述定理①的情形:
当β>α时,平面π与圆锥的交线为椭圆.
(图中,上、下两球与圆锥面相切的切点分别为点B和点C,线段BC与平面π相交于点A)
8.会证明以下结果:
①在7.中,一个丹迪林球与圆锥面的交线为一个圆,并与圆锥的底面平行.记这个圆所在的平面为π′.
②如果平面π与平面π′的交线为m,在6.①中椭圆上任取点A,该丹迪林球与平面π的切点为F,则点A到点F的距离与点A到直线m的距离比是小于1的常数e(称点F为这个椭圆的焦点,直线m为椭圆的准线,常数e为离心率).
9.了解定理6.③中的证明,了解当β无限接近α时,平面π的极限结果.本章重点:相似三角形的判定与性质,与圆有关的若干定理及其运用,并将其运用到立体几何中.
本章难点:对平面截圆柱、圆锥所得的曲线为圆、椭圆、双曲线、抛物线的证明途径与方法,它是解立体几何、平面几何知识的综合运用,应较好地把握.
本专题强调利用演绎推理证明结论,通过推理证明进一步发展学生的逻辑推理能力,进一步提高空间想象能力、几何直观能力和综合运用几何方法解决问题的能力.
第一讲与第二讲是传统内容,高考中主要考查平行线截割定理、直角三角形射影定理以及与圆有关的性质和判定,考查逻辑推理能力.第三讲内容是新增内容,在新课程高考下,要求很低,只作了解.

知识网络

16.1相似三角形的判定及有关性质

典例精析
题型一相似三角形的判定与性质
【例1】如图,已知在△ABC中,D是BC边的中点,且AD=AC,DE⊥BC,DE与AB相交于点E,EC与AD相交于点F.
(1)求证:△ABC∽△FCD;
(2)若S△FCD=5,BC=10,求DE的长.
【解析】(1)因为DE⊥BC,D是BC的中点,所以EB=EC,所以∠B=∠1.
又因为AD=AC,所以∠2=∠ACB.所以△ABC∽△FCD.
(2)过点A作AM⊥BC,垂足为点M.因为△ABC∽△FCD,BC=2CD,所以S△ABCS△FCD=(BCCD)2=4,又因为S△FCD=5,所以S△ABC=20.因为S△ABC=12BCAM,BC=10,所以20=12×10×AM,所以AM=4.又因为DE∥AM,所以DEAM=BDBM,因为DM=12DC=52,BM=BD+DM,BD=12BC=5,所以DE4=55+52,所以DE=83.
【变式训练1】如右图,在△ABC中,AB=14cm,ADBD=59,DE∥BC,CD⊥AB,CD=12cm.求△ADE的面积和周长.
【解析】由AB=14cm,CD=12cm,CD⊥AB,得S△ABC=84cm2.
再由DE∥BC可得△ABC∽△ADE.由S△ADES△ABC=(ADAB)2可求得S△ADE=757cm2.利用勾股定理求出BC,AC,再由相似三角形性质可得△ADE的周长为15cm.
题型二探求几何结论
【例2】如图,在梯形ABCD中,点E,F分别在AB,CD上,EF∥AD,假设EF做上下平行移动.
(1)若AEEB=12,求证:3EF=BC+2AD;
(2)若AEEB=23,试判断EF与BC,AD之间的关系,并说明理由;
(3)请你探究一般结论,即若AEEB=mn,那么你可以得到什么结论?
【解析】过点A作AH∥CD分别交EF,BC于点G、H.
(1)因为AEEB=12,所以AEAB=13,
又EG∥BH,所以EGBH=AEAB=13,即3EG=BH,
又EG+GF=EG+AD=EF,从而EF=13(BC-HC)+AD,
所以EF=13BC+23AD,即3EF=BC+2AD.
(2)EF与BC,AD的关系式为5EF=2BC+3AD,理由和(1)类似.
(3)因为AEEB=mn,所以AEAB=mm+n,
又EG∥BH,所以EGBH=AEAB,即EG=mm+nBH.
EF=EG+GF=EG+AD=mm+n(BC-AD)+AD,
所以EF=mm+nBC+nm+nAD,
即(m+n)EF=mBC+nAD.
【点拨】在相似三角形中,平行辅助线是常作的辅助线之一;探求几何结论可按特殊到一般的思路去获取,但结论证明应从特殊情况得到启迪.
【变式训练2】如右图,正方形ABCD的边长为1,P是CD边上中点,点Q在线段BC上,设BQ=k,是否存在这样的实数k,使得以Q,C,P为顶点的三角形与△ADP相似?若存在,求出k的值;若不存在,请说明理由.
【解析】设存在满足条件的实数k,
则在正方形ABCD中,∠D=∠C=90°,
由Rt△ADP∽Rt△QCP或Rt△ADP∽Rt△PCQ得ADQC=DPCP或ADPC=DPCQ,
由此解得CQ=1或CQ=14.
从而k=0或k=34.
题型三解决线的位置或数量关系
【例3】(2009江苏)如图,在四边形ABCD中,△ABC△BAD,求证:AB∥CD.
【证明】由△ABC≌△BAD得∠ACB=∠BDA,所以A、B、C、D四点共圆,
所以∠CAB=∠CDB.
再由△ABC≌△BAD得∠CAB=∠DBA,
所以∠DBA=∠CDB,即AB∥CD.
【变式训练3】如图,AA1与BB1相交于点O,AB∥A1B1且AB=12A1B1,△AOB的外接圆的直径为1,则△A1OB1的外接圆的直径为.
【解析】因为AB∥A1B1且AB=12A1B1,所以△AOB∽△A1OB1
因为两三角形外接圆的直径之比等于相似比.
所以△A1OB1的外接圆直径为2.
总结提高
1.相似三角形的判定与性质这一内容是平面几何知识的重要组成部分,是解题的工具,同时它的内容渗透了等价转化、从一般到特殊、分类讨论等重要的数学思想与方法,在学习时应以它们为指导.相似三角形的证法有:定义法、平行法、判定定理法以及直角三角形的HL法.
相似三角形的性质主要有对应线的比值相等(边长、高线、中线、周长、内切圆半径等),对应角相等,面积的比等于相似比的平方.
2.“平行出相似”“平行成比例”,故此章中平行辅助线是常作的辅助线之一,遇到困难时应常考虑此类辅助线.

16.2直线与圆的位置关系和圆锥曲线的性质

典例精析
题型一切线的判定和性质的运用
【例1】如图,AB是⊙O的直径,AC是弦,∠BAC的平分线AD交⊙O于点D,DE⊥AC,交AC的延长线于点E,OE交AD于点F.
(1)求证:DE是⊙O的切线;
(2)若ACAB=25,求AFDF的值.
【解析】(1)证明:连接OD,可得∠ODA=∠OAD=∠DAC,
所以OD∥AE,又AE⊥DE,所以DE⊥OD,
又OD为半径,所以DE是⊙O的切线.
(2)过D作DH⊥AB于H,则有∠DOH=∠CAB,
OHOD=cos∠DOH=cos∠CAB=ACAB=25,
设OD=5x,则AB=10x,OH=2x,所以AH=7x.
由△AED≌△AHD可得AE=AH=7x,
又由△AEF∽△DOF可得AF∶DF=AE∶OD=75,
所以AFDF=75.
【变式训练1】已知在直角三角形ABC中,∠ACB=90°,以BC为直径的⊙O交AB于点D,连接DO并延长交AC的延长线于点E,⊙O的切线DF交AC于点F.
(1)求证:AF=CF;
(2)若ED=4,sin∠E=35,求CE的长.
【解析】(1)方法一:设线段FD延长线上一点G,则∠GDB=∠ADF,且∠GDB+∠BDO=π2,所以∠ADF+∠BDO=π2,又因为在⊙O中OD=OB,∠BDO=∠OBD,所以∠ADF+∠OBD=π2.
在Rt△ABC中,∠A+∠CBA=π2,所以∠A=∠ADF,所以AF=FD.
又在Rt△ABC中,直角边BC为⊙O的直径,所以AC为⊙O的切线,
又FD为⊙O的切线,所以FD=CF.
所以AF=CF.
方法二:在直角三角形ABC中,直角边BC为⊙O的直径,所以AC为⊙O的切线,
又FD为⊙O的切线,所以FD=CF,且∠FDC=∠FCD.
又由BC为⊙O的直径可知,∠ADF+∠FDC=π2,∠A+∠FCD=π2,
所以∠ADF=∠A,所以FD=AF.
所以AF=CF.
(2)因为在直角三角形FED中,ED=4,sin∠E=35,所以cos∠E=45,所以FE=5.
又FD=3=FC,所以CE=2.
题型二圆中有关定理的综合应用
【例2】如图所示,已知⊙O1与⊙O2相交于A、B两点,过点A作⊙O1的切线交⊙O2于点C,过点B作两圆的割线,分别交⊙O1、⊙O2于点D、E,DE与AC相交于点P.

(1)求证:AD∥EC;
(2)若AD是⊙O2的切线,且PA=6,PC=2,BD=9,求AD的长.
【解析】(1)连接AB,因为AC是⊙O1的切线,所以∠BAC=∠D,
又因为∠BAC=∠E,所以∠D=∠E,所以AD∥EC.
(2)方法一:因为PA是⊙O1的切线,PD是⊙O1的割线,
所以PA2=PBPD,所以62=PB(PB+9),所以PB=3.
在⊙O2中,由相交弦定理得PAPC=BPPE,所以PE=4.
因为AD是⊙O2的切线,DE是⊙O2的割线,
所以AD2=DBDE=9×16,所以AD=12.
方法二:设BP=x,PE=y.
因为PA=6,PC=2,所以由相交弦定理得PAPC=BPPE,即xy=12.①
因为AD∥EC,所以DPPE=APPC,所以9+xy=62.②
由①②可得或(舍去),所以DE=9+x+y=16.
因为AD是⊙O2的切线,DE是⊙O2的割线,所以AD2=DBDE=9×16,所以AD=12.
【变式训练2】如图,⊙O的直径AB的延长线与弦CD的延长线相交于点P,E为⊙O上一点,,DE交AB于点F,且AB=2BP=4.
(1)求PF的长度;
(2)若圆F与圆O内切,直线PT与圆F切于点T,求线段PT的长度.
【解析】(1)连接OC,OD,OE,由同弧对应的圆周角与圆心角之间的关系,结合题中已知条件可得∠CDE=∠AOC.
又∠CDE=∠P+∠PFD,∠AOC=∠P+∠OCP,
从而∠PFD=∠OCP,故△PFD∽△PCO,所以PFPC=PDPO.
由割线定理知PCPD=PAPB=12,故PF==124=3.
(2)若圆F与圆O内切,设圆F的半径为r,
因为OF=2-r=1,即r=1,
所以OB是圆F的直径,且过点P的圆F的切线为PT,
则PT2=PBPO=2×4=8,即PT=22.
题型三四点共圆问题
【例3】如图,圆O与圆P相交于A、B两点,圆心P在圆O上,圆O的弦BC切圆P于点B,CP及其延长线交圆P于D,E两点,过点E作EF⊥CE,交CB的延长线于点F.
(1)求证:B、P、E、F四点共圆;
(2)若CD=2,CB=22,求出由B、P、E、F四点所确定的圆的直径.
【解析】(1)证明:连接PB.因为BC切圆P于点B,所以PB⊥BC.
又因为EF⊥CE,所以∠PBF+∠PEF=180°,所以∠EPB+∠EFB=180°,
所以B,P,E,F四点共圆.
(2)因为B,P,E,F四点共圆,且EF⊥CE,PB⊥BC,所以此圆的直径就是PF.
因为BC切圆P于点B,且CD=2,CB=22,
所以由切割线定理CB2=CDCE,得CE=4,DE=2,BP=1.
又因为Rt△CBP∽Rt△CEF,所以EF∶PB=CE∶CB,得EF=2.
在Rt△FEP中,PF=PE2+EF2=3,
即由B,P,E,F四点确定的圆的直径为3.
【变式训练3】如图,△ABC是直角三角形,∠ABC=90°.以AB为直径的圆O交AC于点E,点D是BC边的中点.连接OD交圆O于点M.求证:
(1)O,B,D,E四点共圆;
(2)2DE2=DMAC+DMAB.
【证明】(1)连接BE,则BE⊥EC.
又D是BC的中点,所以DE=BD.
又OE=OB,OD=OD,所以△ODE≌△ODB,
所以∠OBD=∠OED=90°,所以D,E,O,B四点共圆.
(2)延长DO交圆O于点H.
因为DE2=DMDH=DM(DO+OH)=DMDO+DMOH=DM(12AC)+DM(12AB),
所以2DE2=DMAC+DMAB.
总结提高
1.直线与圆的位置关系是一种重要的几何关系.
本章在初中平面几何的基础上加以深化,使平面几何知识趋于完善,同时为解析几何、立体几何提供了多个理论依据.
2.圆中的角如圆周角、圆心角、弦切角及其性质为证明相关的比例线段提供了理论基础,为解决综合问题提供了方便,使学生对几何概念和几何方法有较透彻的理解.