88教案网

你的位置: 教案 > 初中教案 > 导航 > 相似三角形的性质

小学三角形教案

发表时间:2020-12-17

相似三角形的性质。

为了促进学生掌握上课知识点,老师需要提前准备教案,又到了写教案课件的时候了。只有规划好教案课件计划,就可以在接下来的工作有一个明确目标!你们了解多少教案课件范文呢?以下是小编为大家精心整理的“相似三角形的性质”,欢迎您阅读和收藏,并分享给身边的朋友!

第二十一讲相似三角形的性质
两个相似三角形的对应角相等,对应边成比例,对应边之比称为它们的相似比,可以想到这两个相似三角形中其他一些对应元素也与相似比有一定的关系.
1.相似三角形对应高的比、对应中线的比,对应角平分线的比都等于相似比;
2.相似三角形周长之比等于相似比;
3.相似三角形面积之比等于相似比的平方.
以上诸多相似三角形的性质,丰富了与角、面积等相关的知识方法,开阔了研究角、面积等问题的视野.

例题求解
【例1】如图,梯形ABCD中,AD∥BC(ADBC),AC、BD交于点O,若S△OAB=S梯形ABCD,则△AOD与△BOC的周长之比是.
(浙江省绍兴市中考题)
思路点拨只需求的值,而题设条件与面积相关,应求出的值,注意图形中隐含的丰富的面积关系.
注相似三角形的性质及比例线段的性质,在生产、生活中有广泛的应用.
人类第一次运用相似原理进行测量,是2000多年前泰勒斯测金字塔的高度,泰勒斯是古希腊著名学者,有“科学之父”的美称.他把逻辑论证引进了数学,确保了数学命题的正确
性.使教学具有不可动摇的说明力.
【例2】如图,在平行四边形ABCD中.E为CD上一点,DE:CE=2:3,连结AE、BE、BD,且AE、BD交于点F,则S△DEF:S△EBF:S△ABF=()
A.4:10:25B.4:9:25C.2:3:5D.2:5:25
(黑龙江省中考题)

思路点拨运用与面积相关知识,把面积比转化为线段比.
【例3】如图,有一批形状大小相同的不锈钢片,呈直角三角形,已知∠C=90°,AB=5cm,BC=3㎝,试设计一种方案,用这批不锈钢片裁出面积达最大的正方形不锈钢片,并求出这种正方形不锈钢片的边长.

思路点拨要在三角形内裁出面积最大的正方形,那么这正方形所有顶点应落在△ABC的边上,先画出不同方案,把每种方案中的正方形边长求出.
注本例是一道有实际应用背景的开放性题型,通过分析、推理、构思可能的方案,再通过比较、鉴别、筛选出最佳的设计方案,问题虽简单,但基本呈现了现实的生产中产生最佳设计方案的基本思路.
【例4】如图.在△ABC的内部选取一点P,过P点作3条分别与△ABC的三边平行的直线,这样所得的3个三角形、、的面积分别为4、9和49,求△ABC的面积.
(美国数学邀请赛试题)

思路点拔图中有相似三角形、平行四边形,通过相似三角形性质建立面积关系式,关键是恰当选择相似比,注意等线段的代换.追求形式上的统一.
【例5】如图,△ABC中.D、E分别是边BC、AB上的点,且∠l=∠2=∠3,如果△ABC、△EBD、△ADC的周长依次是、m1、m2,证明:.
(全国初中数学联赛试题)

思路点拨把周长的比用相应线段比表示,力求统一,得到同—线段比的代数式,通过代数变形证明.
注例4还隐舍着下列重要结论:
(1)△FDP∽△IPE∽△PHG∽△ABC;
(2);
(3).
学力训练
1.如图,已知DE∥BC,CD和BE相交于O,若S△DOE:S△COB=9:16,则AD:DB=.
2.如图,把正方形ABCD沿着对角线AC的方向移动到正方形ABCD的位置,它们的重叠部分(图中的阴影部分)的面积是正方形ABCD面积的一半,若AC=,则正方形移动的距离AA是.(江西省中考题)jAB88.CoM

3.若正方形的4个顶点分别在直角三角形的3条边上,直角三角形的两直角边的长分别为3cm和4cm,则此正方形的边长为.(武汉市中考题)
4.阅读下面的短文,并解答下列问题:
我们把相似形的概念推广到空间:如果两个几何体大小不一定相等,但形状完全相同.就把它们叫做相似体.
如图,甲、乙是两个不同的正方体,正方体都是相似体,它们的一切对应线段之比都等于相似比:a:b,设S甲:S乙分别表示这两个正方体的表面积,则,又设V甲、V乙分别表示这两个正方体的体积,则.
(1)下列几何体中,一定属于相似体的是()
A.两个球体B.两个圆锥体C.两个圆柱体D.两个长方体
(2)请归纳出相似体的3条主要性质:
①相似体的一切对应线段(或弧)长的比等于;
②相似体表面积的比等于;
③相似体体积的比等于.(江苏省泰州市中考题)
5.如图,一张矩形报纸ABCD的长AB=acm,宽BC=b㎝,E、F分别是AB、CD的中点,将这张报纸沿着直线EF对折后,矩形AEFD的长与宽之比等于矩形ABCD的长与宽之比,则a:b于()
A.:1B.1:C.:1D.1:(2004年南京市中考题)

6.如图,D为△ABC的边AC上的一点,∠DBC=∠A,已知BC=,△BCD与△ABC的面积的比是2:3,则CD的长是()
A.B.C.D.
7.如图,在正三角形ABC中,D、E分别在AC、AB上,且,AE=BE,则有()
A.△AED∽△BEDB.△AED∽△CBD
C.△AED∽△ABDD.△BAD∽△BCD
(2001年杭州市中考题)
8.如图,已知△ABC中,DE∥FG∥BC,且AD:FD:FB=1:2:3,则S△ADE:S四边形DFGE:S四边形FBCG等于()
A.1:9:36B.l:4:9C.1:8:27D.1:8:36
9.如图,已知梯形ABCD中,AD∥BC,∠ACD=∠B,求证:.

10.如图,在平行四边形ABCD中,过点B作BE⊥CD于E,连结AE,F为AE上一点,且∠BFE=∠C.
(1)求证:△ABF∽△EAD;
(2)若AB=4,∠BAE=30°,求AE的长;
(3)在(1)、(2)的条件下,若AD=3,求BF的长.(2003年长沙市中考题)
11.如图,在△ABC中,AB=5,BC=3,AC=4,PQ∥AB,P点在AC上(与点A、C不重合),Q点在BC上.
(1)当△PQC的面积与四边形PABQ的面积相等时,求CP的长;
(2)当△PQC的周长与四边形PABQ的周长相等时,求CP的长;
(3)试问:在AB上是否存在点M,使得△PQM为等腰直角三角形?若不存在,请简要说明理由,若存在,请求出PQ的长.(厦门市中考题)
12.如图,在△ABC中,AB=AC=,BC=2,在BC上有100个不同的点Pl、P2、…P100,过这100个点分别作△ABC的内接矩形P1E1F1G1,P2E2F2G2…P100E100F100G100,设每个内接矩形的周长分别为L1、L2,…L100,则L1+L2+…+L100=.(安徽省竞赛题)
13.如图,在△ABC中,DE∥FG∥BC,GI∥EF∥AB,若△ADE、△EFG、△GIC的面积分别为20cm2、45cm2、80cm2,则△ABC的面积为.

14.如图,一个边长为3、4、5厘米的直角三角形的一个顶点与正方形的顶点B重合,另两个顶点分别在正方形的两条边AD、DC上,那么这个正方形的面积是厘米2.
(“希望杯”邀请赛试题)
15.如图,正方形ABCD中,AE=EF=FB,BG=2CG,DE,DF分别交AG于P、Q,以下说法中,不正确的是()
A.AG⊥FDB.AQ:QG=6,7
C.EP:PD=2:11D.S四边形GCDQ:S四边形BGQF=17:9(2002年重庆市竞赛题)
16.如图,梯形ABCD中,AB∥CD,且CD=3AB,EF∥CD,EF将梯形ABCD分成面积相等的两部分,则AE:ED等于()
A.2B.C.D.

17.如图,正方形OPQR内接于△ABC,已知△AOR、△BOP和△CRQ的面积分别是S1=1,S2=3和S3=1,那么正方形OPQR的边长是()
A.B.C.2D.3
18.在一块锐角三角形的余料上,加工成正方形零件,使正方形的4个顶点都在三角形边上,若三角形的三边长分别为a、b、c,且a>b>cd,问正方形的2个顶点放在哪条边上可使加工出来的正方形零件面积最大?

19.如图,△PQR和△P′Q′R′,是两个全等的等边三角形,它们的重叠部分是一个六边形ABCDEF,设这个六边形的边长为AB=a1,BC=b1,CD=a2,DE=b2,EF=a3,FA=b3.求证:a1+a2+a3=b1+b2+b3.
20.如图,在△ABC中,AB=4,D在AB边上移动(不与A、B重合),DE∥BC交AC于E,连结CD,设S△ABC=S,S△DEC=S1.
(1)当D为AB中点时,求的值;
(2)若AD=x,,求与x之间的关系式,并指出x的取值范围;
(3)是否存在点D,使得成立?若存在,求出D点位置;若不存在,请说明理由.
(福州市中考题)
21.已知∠AOB=90°,OM是∠AOB的平分线,按以下要求解答问题:
(1)将三角板的直角顶点P在射线OM上移动,两直角边分别与边OA,OB交于点C,D.
①在图甲中,证明:PC=PD;
②在图乙中,点G是CD与OP的交点,且PG=PD,求△POD与△PDG的面积之比.
(2)将三角板的直角顶点P在射线OM上移动,一直角边与边OB交于点D,OD=1,另一直角边与直线OA,直线OB分别交于点C、E,使以P、D、E为顶点的三角形与△OCD相似,在图丙中作出图形,试求OP的长.(绍兴市中考题)

延伸阅读

相似三角形的性质(1)导学案


教案课件是老师需要精心准备的,到写教案课件的时候了。在写好了教案课件计划后,才能够使以后的工作更有目标性!有没有好的范文是适合教案课件?以下是小编收集整理的“相似三角形的性质(1)导学案”,希望能为您提供更多的参考。

第十课时相似三角形的性质(1)
教学目标:
1、探索相似三角形的性质,会运用相似三角形的性质解决有关的问题;
2、发展学生合情推理,和有条理的表达能力
教学重点:相似三角形的性质
教学难点:有条理的表达与推理
教学设计:
一、情境创设
(1)前面学习了相似三角形、相似多边形的概念,知道如果两个三角形或两个多边形相似,那么它们的对应角、对应边成比例。相似三角形、相似多边形是否还有其他的一些性质呢?
(2)所有的正方形都是相似形(它们的对应角相等,对应边成比例)。
若正方形的边长为1,则周长为4,面积是1;若正方形的边长为2,则周长为8,面积是4;
若正方形的边长为3,则周长为12,面积是9;若正方形的边长为a,则周长为4a,面积是a2。
这些正方形间周长的比,面积的比与其边长的比之间有怎样的关系呢?
二、探索活动
1、若△ABC∽△A′B′C′,那么△ABC与△A′B′C′的周长比等于相似比吗?
问题1.为了解决这个问题,不妨设这个相似比为k,只要考虑什么就可以了?
问题2.相似比为k,那么哪些线段的比也等于k?
问题3.这两个三角形的周长又分别与哪些线段有关?
问题4.如何得出这两个三角形的周长比与相似比k的关系?
得出:相似三角形的周长的比等于相似比
问题5.你能运用类似的方法说明“相似多边形的周长等于相似比吗?”
得出:相似多边形的周长等于相似比
2、问题1.若△ABC∽△A′B′C′,那么△ABC与△A′B′C′的面积比与相似比又有什么关系呢?
已知△ABC∽△A′B′C′,相似比是k,AD和A′D′分别是△ABC和△A′B′C′的高。
因为∠B=∠B′,∠ADB=∠A′D′B′=90°所以△ABD∽△A′B′D′
所以,即AD=kA′D′,
所以
得出:相似三角形的面积比等于相似比的平方
问题2.你能类似地得出相似多边形的面积比与相似比的关系吗?
得出:相似多边形的面积比等于相似比的平方。
三、例题讲解
例1、(P106例1)在比例尺为1:500的地图上,测得一个三角形地块ABC的周长为12cm,面积为6cm2,求这个地块的实际周长和实际面积。
2、若△ABC∽△DEF,△ABC的面积为81cm2,△DEF的面积为36cm2,且AB=12cm,则DE=cm
3、在△ABC中,F、G分别是AB、AC的中点,那么△AFG与四边形FBCG的面积之比是
4、如图,ΔABC中,DE∥FG∥BC,AD:DF:FB=1:2:3,则S四边形DFGE:S四边形FBCG=_________.

5、如图,在△ABC中,DE//BC,若,试求△DOE与△BOC的周长比与面积比。
6、如图,梯形DBCE中,DE∥BC,若S△EOD:S△BOC=1:9,求DE:BC的值.
添加:S1=2,求梯形DBCE的面积。

练习:如图,把△ABC沿AB边平移到△DEF的位置,它们重叠部分(即图中阴影部分)的面积是△ABC的面积的一半,若AB=2,求此三角形移动的距离BE的长。

7、如图,在△ABC中,D是BC边的中点,且AD=AC,DE⊥BC交AB于E,EC交AD于F
(1)说明:△ABC∽△FCD
(2)若S△FCD=5,BC=10,求DE的长。
四、作业:

相似三角形的条件


第四章相似图形
6.探索三角形相似的条件(二)
一、学生知识状况分析
学生知识技能基础:
学生的知识技能基础:学生在七年级下册第五章《三角形》里,已学习过三角形的基础知识掌握了基本的概念;在本章前面几节课中,又学习了线段的比,黄金分割,形状相同的图形,相似多边形,相似三角形,并理解了它们的概念;现已具有了初步的平面图形知识,本节课是要在以前学习的基础上加深相似三角形部分的知识。本节知识的难点在于对两个相似三角形相似上的判定,本节课需要在上一节课的基础上增加“三边对应成比例的两个三角形相似”及“两边对应成比例且夹角相等的两个三角形相似”这两条判定定理,在教学方法上建议采用学生自主探索、分组讨论、总结,教师参与讨论并最后点评总结的方法。
学生活动经验基础:
学生在上节课学习的基础上,进一步探索相似三角形的条件,已经有一定的探索经验;因此,本课时对学生来说,难度不是很大,关键是老师要用正确的方法,启发学生进行探索,做到师生互动,教师参加学生讨论并充分调动学生的学习积极性。使学生能充分的理解和掌握三角形的相似的判定方法,并能结合本节知识点,进行一些问题的解决,以巩固所学知识的运用。

二、教学任务分析
在复习上一节课所学的判定方法的基础上进一步学习三角形相似的条件,增加“三边对应成比例的两个三角形相似”及“两边对应成比例且夹角相等的两个三角形相似”这两条判定定理,并对所学的各种三角形相似的判定方法进行梳理;使学生能掌握和综合利用相似三角形的判定条件和性质来判定两个三角形的相似,让学生结合实际再次体会数学中的几何图形在生活中广泛存在并起到重要的作用;在教学中再辅以适量的练习使学生对所学的知识加深印象和增加解决问题的能力。
教学内容:三角形相似的条件(2)

教学目标:
1、知识与技能:理解并掌握三角形相似的判定定理:“三边对应成比例的两个三角形相似”及“两边对应成比例且夹角相等的两个三角形相似”。
2、过程与方法:以问题的形式引入,创设一个有利于学生动手和探究的情景,师生互动,从而达到掌握相似三角形判定的方法的目的。
3、情感与价值观要求
(1)、培养学生积极的思考、动手、观察的能力,使学生感悟几何知识在生活中的价值。
(2)、在进行探索的活动过程中发展学生的探索发现归纳意识并养成合作交流的习惯。
教学重点
掌握相似三角形的两个判定定理:“三边对应成比例的两个三角形相似”及“两边对应成比例且夹角相等的两个三角形相似”。
教学难点
理解和应用相似三角形判定,“三边对应成比例的两个三角形相似”这条判定定理的教学难点在于使学生明白对应边的比必须相等;而“两边对应成比例且夹角相等的两个三角形相似”这条判定定理的教学难点在于向学生强调相等的角必须是在两条成比例的线段之间。
教学关键
正确地把握几何图形的结构和特点
教学方法:探索发现归纳法
教具准备:教师:多媒体课件。
学生:自制相似三角形

三、教学过程分析
本节课设计了五个教学环节:第一环节:课前准备——自制相似三角形;第二环节:情景引入、合作探讨;第三环节:教师点睛;第四环节:练习提高;第五环节:课堂小结。

第一环节:课前准备
活动内容:自制相似三角形(提前一天布置);
以四人为一个活动小组,制作相似三角形;
活动目的:通过学生自制相似三角形,希望学生从活动中了解怎样的情况下能制作出一组相似的三角形;从而让学生复习上一节课学习过的相似三角形的判定定理:“:如果一个三角形的两个角与另一个三形的两个角对应相等,那么这两个三角形相似。可以简单说成:两角对应相等,两个三角形相似。”;并让学生自主探索三角形相似的其他定理,培养学生善于观察生活、乐于探索研究的学习品质及与他人合作交流的意识。
活动效果:
学生通过自主制作相似三角形,发现通过“:如果一个三角形的两个角与另一个三形的两个角对应相等,那么这两个三角形相似。”来制作相似三角形时,有一个角相同的两个三角形不一定相似;有两个角相同和三个角相同是一样的;在探索“两边对应成比例且夹角相等的两个三角形相似”时学生发现:如果相等的不是夹角,那么这两个三角形不一定相似。

第二环节:情景引入、合作探讨
活动内容:各个小组派代表展示制作的相似三角形,并说明在制作相似三角形时所探索出的相似三角形的有关信息
活动目的:给学生一个表现自己的舞台,增强学生的自信心;将学习空间还给学生,让学生在相互合作的过程中发现知识,掌握知识。
活动效果:在一个开放的环境下展示、讲解亲自搜集到的相似三角形全等的判定,学生们以这样的方式,以自己的思维引入;而且引入的过程是学生们自己探索的过程,使用的结论是学生自己探索的结果;就让学生对学习有很高的兴趣,而且讲解中小组之间互相补充、互相竞争,气氛热烈,同时培养了学生们的合作交流精神和语言表达能力。

第三环节:教师点睛
活动内容:
学生根据小组制作的相似三角形的图形及在制作相似三角形中的“发现”进行相互交
流,教师给予适当的帮助,在学生探索的基础上进行教学提高:
[师]我们上一节课学过什么定理?
师生共同回忆并得出答案,我们上节课学习了三角形的判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。可以简单说成:两角对应相等,两个三角形相似。
[师](演示课件)
[师]提出问题;是否有△ABC∽△ABC?
(1)让学生通过探索比较两个三角形对应三个角的大小然后得出结论:
1
2
∴△ABC∽△ABC
所以通过发现归纳总结有下面的结论
判定定理2:三条边对应成比例的两个三角形相似。
[师](演示课件)让学生观察幻灯片然后提出问题:两个三角形两边对应成比例且夹角相等,它们是否相似?
判定定理3:两边对应成比例且夹角相等的两个三角形相似。

判断:已知△ABC和△A’B’C’,根据下列条件判断它们是否相似?

1、[师](演示课件)如图:△ABC与△ABC相似吗?你有哪些判断方法?

其中,第四种不成立。

活动目的:理解并掌握三角形相似的判定定理:“三边对应成比例的两个三角形相似”及“两边对应成比例且夹角相等的两个三角形相似”。特别是在“两边对应成比例且夹角相等的两个三角形相似”这条判定定理的教学中要向学生强调相等的角必须是在两条成比例的线段之间
活动效果:通过学生活动后教师的点睛之笔般的教学,学生对三角形相似的判定有了系统的了解,通过学生自己的探索和教师对知识的系统教学,在学生思维中自己探索而获得的知识重叠,进而加深了记忆。

第四环节:练习提高
活动内容:
1、课本123页随堂练习第1题
2、一个三角形三边长分别为BC=4㎝,AB=6㎝,AC=7㎝,另一个三角形三边长分别为BC=2㎝,AB=3㎝,AC=3.5㎝,这两个三角形相似吗?
活动目的:通过练习,巩固对本节知识的理解;并让学生将上一节课:相似三角形的判定1,与本课知识:相似三角形的判定2、3的内容系统的掌握。
活动效果:学生基本都能对两个三角形是否还是相似作出正确的判断并在“两边对应成比例且夹角相等的两个三角形相似”这条判定定理中学生理解了相等的角必须是在两条成比例的线段之间这个重点和难点。

第五环节:课堂小结
活动内容:师生互相交流本节课学习的两个三角形相似的判别方法:
1、三条边对应成比例的两个三角形相似。
2、两边对应成比例且夹角相等的两个三角形相似。
综合上一节课学习过三角形相似的判定方法,得到如下的关系图:

布置作业:课本125页习题4.8第1题、第2题

活动目的:鼓励学生结合本节课的学习及课前的相似三角形的制作过程,谈自己的收获与感想(学生畅所欲言,教师给予鼓励)
活动效果:学生畅所欲言自己的切身感受与实际收获:相似三角形进行判断的三种方法;特别是在运用相似三角形判定3“两边对应成比例且夹角相等的两个三角形相似”来判断三角形相似中,需注意:相等的角必须是在两条成比例的线段之间的角!

四、教学反思
1、教师要给予学生自主探索三角形相似条件的时间,同时要为学生提供表现自我的舞台;让学生在探索中自己总结、提高;当然,教师需要进行点睛般的教学。
(1)本课时我们共同学习探索了三角形相似的第二个条件,即:两边对应成比例且夹角对应相等的两个三角形相似;由于学生有了上一节课的基础,因此,大部分学生能够正确理解和掌握。
(2)三角形相似的第二个条件,由于要用到三角形的边、角,部分学生容易忽略条件的要求,即:“两边且夹角”,老师务必在学生学习时加以强调,避免出现“两边且对角”的错误。
2、注意改进的内容:
在教师总结性的教学之前,应该留给学生充分的独立思考的时间,不要让思维活跃的部分学生的回答代替其他学生的思考;教师应该对小组讨论给予指导,并参与学生小组的讨论,对部分思维不活跃的学生要启发性的提出一些问题,帮助学生思考。

相似三角形


第四章相似图形
5.相似三角形
一、学生知识状况分析
学生的知识技能基础:
在七年级的学习中,学生通过观察、测量、画图、拼摆等数学活动,体会了全等三角形中“对应关系”的重要作用。上一节课“相似多边形”的学习,使学生在探索相似形本质特征的过程中,发展了有条理地思考与表达,归纳,反思,交流等能力。
学生活动经验基础:
上述学习经历为学生继续探究“相似三角形”积累了丰富的活动经验和知识基础。

二、教学任务分析
(一)教材的地位和作用分析:
.《相似三角形》在本章中承上启下,
.体现了从一般到特殊的数学思想;
.是学生今后学习的基础;
.是解决生活中许多实际问题的常用数学模型.
即相似三角形的知识是在全等三角形知识的基础上的拓广和发展,相似三角形承接全等三角形,从特殊的相等到一般的成比例予以深化,学好相似三角形的知识,为今后进一步学习探索三角形相似的条件、三角函数及与此有关的比例线段等知识打下良好的基础。
(二)教学重点:
相似三角形定义的理解和认识。
(三)教学难点:
1..相似三角形的定义所揭示的本质属性的理解和应用;
2..例2后想一想中“渗透三角形相似与平行的内在联系”是本节课的第二个难点。
(四)教法与学法分析:
本节课将借助生活实际和图形变换创设宽松的学习环境;并利用多媒体手段辅助教学,直观、形象,体现数学的趣味性。
学生则通过观察类比、动手实践、自主探索、合作交流的学习方式完成本节课的学习。
(五)教法建议
1.从知识的逻辑体系出发,在知识的引入时可考虑先复习相似形的概念,在探索归纳给出相似三角形的概念
2.在知识的引入上,可以从生活实例的角度出发,在生活中找几个相似三角形的例子,在此基础上给出相似三角形的概念
3.在知识的引入上,还可以从知识的建构模式入手,给出几组图形,告诉学生这几组图形都是相似三角形,由学生研究这些图形的边角关系,从而得到对相似三角形的本质认识
4.在相似三角形概念的巩固中,应注意反例的作用,要适当给出或由学生举出不是相似三角形的例子来加深对概念的理解
5.在概念的理解过程中,要注意给出不同层次的图形,要求学生从中找出相似三角形,既增加学生的参与又加深学生对概念的理解
6.在本节内容中对应边及对应角的寻找学生常常出现混淆,教师在教学过程中可设计由浅入深的一系列题组由学生寻找其中的对应边或对应角,并说明根据,有利于知识的掌握
(六)教学目标分析:
通过一些具体问题的情境设置、观察类比、动手操作;让学生积极思考、充分参与、合作探究;深化对相似三角形定义的理解和认识.发展学生的想象能力,应用能力,建模意识,空间观念等,培养学生积极的情感和态度。
教学目标:
1知识与技能
(1).掌握相似三角形的定义、表示法,并能根据定义判断两个三角形是否相似。
(2).能根据相似比进行计算,训练学生判断能力及对数学定义的运用能力。
2过程与方法
(1).领会教学活动中的类比思想,提高学生学习数学的积极性。
(2).经过本节的学习,培养学生通过类比得到新知识的能力,掌握相似三角形
的定义及表示法,会运用相似比解决相似三角形的边长问题。
3情感态度与价值观
(1).经历相似多边形有关概念的类比,渗透类比的数学思想,并领会特殊与
一般的关系。
(2).深化对相似三角形定义的理解和认识.发展学生的想象能力,应用能力,建模意识,空间观念等,培养学生积极的情感和态度。

三、教学过程分析
本节课共设计了五个环节:1情景引入归纳定义
2运用定义解决问题
3加深理解探索规律
4回顾反思课堂小结
5.布置作业

第一环节情景引入归纳定义
活动内容:回顾与思考(教师展示课件并设问,学生观察类比、自主探索归纳相似三角形的定义)
1.上节课我们学习了相似多边形的定义及记法,请同学们观察下列图形,并指出哪些图形相似?相似图形的对应边、对应角有什么关系?

2.请问相似三角形是相似多边形吗?请同学们回忆一下什么叫相似多边形?
3.那么由“相似多边形的定义”你能得出“相似三角形的定义”吗?
4.相似三角形的定义:三角对应相等、三边对应成比例的两个三角形叫做相似三角形(similartrangles)
如△ABC与△DEF相似,记作△ABC∽△DEF
注意:表示两个三角形相似时,要向表示全等
三角形那样把对应顶点写在对应的位置上。
活动目的:通过对旧知识的回顾、经历与相似多边形有关概念的类比,培养学生通过类比探索得到新知识的能力,进而掌握相似三角形的定义及表示法。
活动实际效果:学生的学习热情非常高,轻而易举就归纳出相似三角形的定义,且较好地掌握了相似三角形的表示法。

第二环节:运用定义解决问题
活动内容:想一想议一议例1例2
1.想一想(展示课件,教师引导、学生自主探索并归纳出相似三角形的性质)
如果△ABC∽△DEF,那么哪些角是对应角?哪些边是对应边?对应角有什么关系?
对应边呢?
解:∠A与∠D、∠B与∠E、∠C与∠F.
是对应角
AB与DEAC与DFBC与EF
是对应边
∠A=∠D、∠B=∠E、∠C=∠F.
=.=
相似三角形性质:相似三角形的对应角相等,对应边成比例。
2.议一议(展示课件,让学生动手画一画、量一量、算一算,并小组讨论,选代表说明理由)
(1)两个全等三角形一定相似吗?为什么?
(2)两个直角三角形一定相似吗?两个等腰直角三角形呢?为什么?
(3)两个等腰三角形一定相似吗?两个等边三角形呢?为什么?
解:(1)两个全等三角形一定相似.
因为两个全等三角形的对应边相等,对应角相等,由对应边相等可知对应边一定成比例,且相似比为1,因此满足相似三角形的两个条件,所以两个全等三角形一定相似.
(2)两个直角三角形不一定相似.
如图,虽然都是直角三角形,
但也只能确定有一对角即直角相等,
其他的两对角可能相等,也可能不相等,
对应边也不一定成比例,所以它们不一定相似.
两个等腰直角三角形一定相似
.如图,在Rt△ABC和Rt△DEF中,
∠C=∠F=90°,则∠A=∠B=∠D=∠E=45°,所以有
∠A=∠D,∠B=∠E,∠C=∠F.
再设△ABC中AC=b,△DEF中DF=a,则
AC=BC=b,AB=b
DF=EF=a,DE=a
===1
所以两个等腰直角三角形一定相似.
(3)如图,两个等腰三角形不一定相似.
如图:因为等腰只能说明一个三角形中有两边相等,
但另一边不固定,因此这两个等腰三角形中有两边对应成比例,两底边的比不一定等于对应腰的比,因此不用再去讨论对应角满足什么条件,就可以确定这两个等腰三角形不一定相似
如图:两个等边三角形一定相似.
因为等边三角形的各边都相等,各角都等于60度,
因此这两个等边三角形一定有对应角相等、
对应边成比例,所以它们一定相似
.例1例2(展示课件,教师引导分析、学生自主探索,培养学生应用知识解决问题的能力)
3.如图,有一块呈三角形形状的草坪,其中一边的长是20m,在这个草坪的图纸上,这条边长5cm,其他两边的长都是3.5cm,求该草坪其他两边的实际长度.
解:草坪的形状与其图纸上相应的形状相似,
它们的相似比是2000∶5=400∶1
如果设其他两边的实际长度都是xcm,
那么=
则x=3.5×400=1400(cm)=14(m)
所以,草坪其他两边的实际长度都是14m.
4.如图,已知△ABC∽△ADE,AE=50cm,EC=30cm,BC=70cm,∠BAC=45°,
∠ACB=400,求
(1)∠AED和∠ADE的度数。
(2)DE的长.
解:(1)因为△ABC∽△ADE.
所以由相似三角形对应角相等,得
∠AED=∠ACB=40°
在△ADE中,
∠AED+∠ADE+∠A=180°
即40°+∠ADE+45°=180°,
所以∠ADE=180°-40°-45°=95°.
(2)因为△ABC∽△ADE,所以由相似三角形对应边成比例,得
=即=

所以DE==43.75(cm)
活动目的:让学生动手画一画、量一量、算一算得出两个三角形之间的是否相似?有什么关系?进而考察学生的自主学习情况(包括独立思考能力)和小组间的互助情况。
活动实际效果:学生普遍对教材的内容能够较好地掌握,但对知识的延伸和拓展,由于教材缺乏相关内容,学生的思维无法独立产生飞跃,所以需要教师备课时先做好延伸的准备,即备好相关的内容。这样,教学时学生就犹如享受知识的大餐,使之心理上产生愉悦,进而较好地掌握知识。

第三环节加深理解探索规律
活动内容:想一想合作探究巩固练习(展示课件,教师引导、学生合作探究,寻找解决问题的规律)
1.想一想
在例2的条件下,图4-16中有哪些线段成比例?
解:成比例线段有=
△ABC∽△ADE
===
=即=
图中有互相平行的线段,即DE∥BC.因为△ABC∽△ADE,所以∠ADE=∠B.由平行线的判定方法知DE∥BC.
2.合作探究
1.在下面的两组图形中,各有两个相似三角形,试确定x,y,m,n的值.

(第1题)
解:在(1)中
ABO∽CDO
=
x=32
在(2)中,由两三角形相似可知:对应角相等,对应边成比例.所以,
n=55,m=80,y=
2.等腰直角三角形ABC与等腰直角三角形A′B′C′相似,相似比为3∶1,已知斜边AB=5cm,(1)求△A′B′C′斜边A′B′的长,(2)求△A′B′C′斜边A′B′上的高。
解:(1)如图所示,因为△ABC∽△A′B′C′,
A′且相似比为3∶1.
所以=.即=
A′B′=(cm)D
(2)C′D′=A′B′=(cm)
3.巩固练习:略
活动目的:加深对相似三角形概念和性质的理解,发展学生的应用能力,建模意识,空间观念等,培养学生积极的情感和态度。
活动实际效果:大部分学生普遍掌握较好,只是个别学生思维能力和计算能力较慢,没有时间等待他们探索出给论,这样他们对这节课所学的内容理解不透彻,应用新知解决问题能力也较差,今后要注意给每一个学生留有足够的时间和空间,使不同的学生有不同的发展。

第四环节回顾反思课堂小结
活动内容:1.这一节课你学到了什么?有什么收获?
2.

3.相似三角形的判定方法——定义法
活动目的:培养学生的归纳总结能力,加深对知识的理解和应用能力。
活动实际效果:通过小结发现每个学生都在积极思索这节课的内容,并能正确回答出相似三角形的定义、性质、以及它的表示法。

第五环节布置作业
活动内容:习题4.61、2

四、教学反思
《相似三角形》是在学生已经学习了《相似多边形》后学习的内容。其主要教学目标是让学生在通过类比、探究的过程中,获得三角形相似的概念;培养学生提出问题、解决问题的能力;从整堂课学生的表现看到,这节课基本上实现了教学目标。
在这节课中,我认为有以下几点感受较好:
1、这一节课通过情景创设,引入新知较恰当,切合实际。这样引入能很好的使学生体验温故而知新的道理,从而调动学生探索新知的兴趣和学习的积极性。
2、这节课较多的给学生提供自主学习,自主操作、自主活动的机会。不论是回顾旧知,还是探究新知,都是教师引导,学生自主探索。体现了学生是数学学习的主人的新理念。
3、在这节课中,通过设计问题和启发、引导,让学生悟出学习方法和途径,培养学生独立学习的能力。比如对特殊三角形,提出这两个三角形有什么关系?理由是什么?对任意两个三角形,老师请学生量一量、算一算,结果都是由学生自己操作、判断得出。体现了教师是数学学习的组织者、引导者和合作者的新理念。
这节课感到遗憾的是有些学生操作计算速度慢,没有时间等待他们探索出给论。这样他们对这节课所学的内容理解不透彻,不能更好应用新知解决问题,今后要加强注意给每个学生留有足够的时间和空间去思维,并且对不同的学生教师应提出不同的问题,使不同的学生得到不同的发展,进而使每个同学都得到应有的发展。

文章来源:http://www.jab88.com/j/62678.html

上一篇:祖孙之间教案 下一篇:证明