88教案网

你的位置: 教案 > 高中教案 > 导航 > 高考数学(理科)一轮复习平面向量的数量积及其应用学案附答案

高中生物一轮复习教案

发表时间:2020-12-01

高考数学(理科)一轮复习平面向量的数量积及其应用学案附答案。

古人云,工欲善其事,必先利其器。教师要准备好教案,这是教师工作中的一部分。教案可以让学生们能够在上课时充分理解所教内容,帮助教师缓解教学的压力,提高教学质量。那么,你知道教案要怎么写呢?下面的内容是小编为大家整理的高考数学(理科)一轮复习平面向量的数量积及其应用学案附答案,仅供参考,欢迎大家阅读。

学案27平面向量的数量积及其应用
导学目标:1.理解平面向量数量积的含义及其物理意义.2.了解平面向量的数量积与向量投影的关系.3.掌握数量积的坐标表达式,会进行平面向量数量积的运算.4.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.5.会用向量方法解决某些简单的平面几何问题.6.会用向量方法解决简单的力学问题与其他一些实际问题.
自主梳理
1.向量数量积的定义
(1)向量数量积的定义:____________________________________________,其中|a|cos〈a,b〉叫做向量a在b方向上的投影.
(2)向量数量积的性质:
①如果e是单位向量,则ae=ea=__________________;
②非零向量a,b,a⊥b________________;
③aa=________________或|a|=________________;
④cos〈a,b〉=________;
⑤|ab|____|a||b|.
2.向量数量积的运算律
(1)交换律:ab=________;
(2)分配律:(a+b)c=________________;
(3)数乘向量结合律:(λa)b=________________.
3.向量数量积的坐标运算与度量公式
(1)两个向量的数量积等于它们对应坐标乘积的和,即若a=(a1,a2),b=(b1,b2),则ab=________________________;
(2)设a=(a1,a2),b=(b1,b2),则a⊥b________________________;
(3)设向量a=(a1,a2),b=(b1,b2),
则|a|=________________,cos〈a,b〉=____________________________.
(4)若A(x1,y1),B(x2,y2),则|AB→=________________________,所以|AB→|=_____________________.
自我检测
1.(2010湖南)在Rt△ABC中,∠C=90°,AC=4,则AB→AC→等于()
A.-16B.-8C.8D.16
2.(2010重庆)已知向量a,b满足ab=0,|a|=1,|b|=2,则|2a-b|=()
A.0B.22C.4D.8
3.(2011福州月考)已知a=(1,0),b=(1,1),(a+λb)⊥b,则λ等于()
A.-2B.2C.12D.-12
4.平面上有三个点A(-2,y),B(0,),C(x,y),若AB→⊥BC→,则动点C的轨迹方程为________________.
5.(2009天津)若等边△ABC的边长为2,平面内一点M满足CM→=16CB→+23CA→,则MA→MB→=________.
探究点一向量的模及夹角问题
例1(2011马鞍山月考)已知|a|=4,|b|=3,(2a-3b)(2a+b)=61.
(1)求a与b的夹角θ;(2)求|a+b|;
(3)若AB→=a,BC→=b,求△ABC的面积.

变式迁移1(1)已知a,b是平面内两个互相垂直的单位向量,若向量c满足(a-c)(b-c)=0,则|c|的最大值是()
A.1B.2
C.2D.22
(2)已知i,j为互相垂直的单位向量,a=i-2j,b=i+λj,且a与b的夹角为锐角,实数λ的取值范围为________.
探究点二两向量的平行与垂直问题
例2已知a=(cosα,sinα),b=(cosβ,sinβ),且ka+b的长度是a-kb的长度的3倍(k0).
(1)求证:a+b与a-b垂直;
(2)用k表示ab;
(3)求ab的最小值以及此时a与b的夹角θ.

变式迁移2(2009江苏)设向量a=(4cosα,sinα),b=(sinβ,4cosβ),c=(cosβ,-4sinβ).
(1)若a与b-2c垂直,求tan(α+β)的值;
(2)求|b+c|的最大值;
(3)若tanαtanβ=16,求证:a∥b.

探究点三向量的数量积在三角函数中的应用
例3已知向量a=cos32x,sin32x,
b=cosx2,-sinx2,且x∈-π3,π4.
(1)求ab及|a+b|;
(2)若f(x)=ab-|a+b|,求f(x)的最大值和最小值.

变式迁移3(2010四川)已知△ABC的面积S=AB→AC→=3,且cosB=35,求cosC.

1.一些常见的错误结论:
(1)若|a|=|b|,则a=b;(2)若a2=b2,则a=b;(3)若a∥b,b∥c,则a∥c;(4)若ab=0,则a=0或b=0;(5)|ab|=|a||b|;(6)(ab)c=a(bc);(7)若ab=ac,则b=c.以上结论都是错误的,应用时要注意.
2.平面向量的坐标表示与向量表示的比较:
已知a=(x1,y1),b=(x2,y2),θ是向量a与b的夹角.
向量表示坐标表示
向量a的模|a|=aa=a2
|a|=x21+y21JAb88.coM

a与b的数量积ab=|a||b|cosθab=x1x2+y1y2
a与b共线的充要条件A∥b(b≠0)a=λba∥bx1y2-x2y1=0
非零向量a,b垂直的充要条件a⊥bab=0a⊥bx1x2+y1y2=0
向量a与b的夹角cosθ=ab|a||b|
cosθ=x1x2+y1y2x21+y21x22+y22

3.证明直线平行、垂直、线段相等等问题的基本方法有:
(1)要证AB=CD,可转化证明AB→2=CD→2或|AB→|=|CD→|.
(2)要证两线段AB∥CD,只要证存在唯一实数≠0,使等式AB→=λCD→成立即可.
(3)要证两线段AB⊥CD,只需证AB→CD→=0.
(满分:75分)
一、选择题(每小题5分,共25分)
1.(2010重庆)若向量a=(3,m),b=(2,-1),ab=0,则实数m的值为()
A.-32B.32
C.2D.6
2.已知非零向量a,b,若|a|=|b|=1,且a⊥b,又知(2a+3b)⊥(ka-4b),则实数k的值为()
A.-6B.-3
C.3D.6
3.已知△ABC中,AB→=a,AC→=b,ab0,S△ABC=154,|a|=3,|b|=5,则∠BAC等于()
A.30°B.-150°
C.150°D.30°或150°
4.(2010湖南)若非零向量a,b满足|a|=|b|,(2a+b)b=0,则a与b的夹角为()
A.30°B.60°
C.120°D.150°
5.已知a=(2,3),b=(-4,7),则a在b上的投影为()
A.135B.655
C.6513D.1313
题号12345
答案
二、填空题(每小题4分,共12分)
6.(2010湖南长沙一中月考)设a=(cos2α,sinα),b=(1,2sinα-1),α∈π2,π,若ab=25,则sinα=________.
7.(2010广东金山中学高三第二次月考)若|a|=1,|b|=2,c=a+b,且c⊥a,则向量a与b的夹角为________.
8.已知向量m=(1,1),向量n与向量m夹角为3π4,且mn=-1,则向量n=__________________.
三、解答题(共38分)
9.(12分)已知OA→=(2,5),OB→=(3,1),OC→=(6,3),在线段OC上是否存在点M,使MA→⊥MB→,若存在,求出点M的坐标;若不存在,请说明理由.

10.(12分)(2011杭州调研)已知向量a=(cos(-θ),sin(-θ)),b=(cosπ2-θ,sinπ2-θ).
(1)求证:a⊥b;
(2)若存在不等于0的实数k和t,使x=a+(t2+3)b,y=-ka+tb,满足x⊥y,试求此时k+t2t的最小值.

11.(14分)(2011济南模拟)已知a=(1,2sinx),b=2cosx+π6,1,函数f(x)=ab(x∈R).
(1)求函数f(x)的单调递减区间;
(2)若f(x)=85,求cos2x-π3的值.

答案自主梳理
1.(1)ab=|a||b|cos〈a,b〉(2)①|a|cos〈a,e〉②ab=0③|a|2aa④ab|a||b|
⑤≤2.(1)ba
(2)ac+bc(3)λ(ab)3.(1)a1b1+a2b2(2)a1b1+a2b2=0(3)a21+a22a1b1+a2b2a21+a22b21+b22
(4)(x2-x1,y2-y1)x2-x12+y2-y12
自我检测
2.B[|2a-b|=2a-b2
=4a2-4ab+b2=8=22.]
3.D[由(a+λb)b=0得ab+λ|b|2=0,
∴1+2λ=0,∴λ=-12.]
4.y2=8x(x≠0)
解析由题意得AB→=2,-y2,
BC→=x,y2,又AB→⊥BC→,∴AB→BC→=0,
即2,-y2x,y2=0,化简得y2=8x(x≠0).
5.-2
解析合理建立直角坐标系,因为三角形是正三角形,故设C(0,0),A(23,0),B(3,3),这样利用向量关系式,求得MA→=32,-12,MB→=32,-12,MB→=-32,52,所以MA→MB→=-2.
课堂活动区
例1解(1)∵(2a-3b)(2a+b)=61,
∴4|a|2-4ab-3|b|2=61.
又|a|=4,|b|=3,∴64-4ab-27=61,
∴ab=-6.
∴cosθ=ab|a||b|=-64×3=-12.
又0≤θ≤π,∴θ=2π3.
(2)|a+b|=a+b2
=|a|2+2ab+|b|2
=16+2×-6+9=13.
(3)∵AB→与BC→的夹角θ=2π3,
∴∠ABC=π-2π3=π3.
又|AB→|=|a|=4,|BC→|=|b|=3,
∴S△ABC=12|AB→||BC→|sin∠ABC
=12×4×3×32=33.
变式迁移1(1)C[∵|a|=|b|=1,ab=0,
展开(a-c)(b-c)=0|c|2=c(a+b)
=|c||a+b|cosθ,∴|c|=|a+b|cosθ=2cosθ,
∴|c|的最大值是2.]
(2)λ12且λ≠-2
解析∵〈a,b〉∈(0,π2),∴ab0且ab不同向.
即|i|2-2λ|j|20,∴λ12.
当ab同向时,由a=kb(k0)得λ=-2.
∴λ12且λ≠-2.
例2解题导引1.非零向量a⊥bab=0x1x2+y1y2=0.
2.当向量a与b是非坐标形式时,要把a、b用已知的不共线的向量表示.但要注意运算技巧,有时把向量都用坐标表示,并不一定都能够简化运算,要因题而异.
解(1)由题意得,|a|=|b|=1,
∴(a+b)(a-b)=a2-b2=0,
∴a+b与a-b垂直.
(2)|ka+b|2=k2a2+2kab+b2=k2+2kab+1,
(3|a-kb|)2=3(1+k2)-6kab.
由条件知,k2+2kab+1=3(1+k2)-6kab,
从而有,ab=1+k24k(k0).
(3)由(2)知ab=1+k24k=14(k+1k)≥12,
当k=1k时,等号成立,即k=±1.
∵k0,∴k=1.
此时cosθ=ab|a||b|=12,而θ∈[0,π],∴θ=π3.
故ab的最小值为12,此时θ=π3.
变式迁移2(1)解因为a与b-2c垂直,
所以a(b-2c)
=4cosαsinβ-8cosαcosβ+4sinαcosβ+8sinαsinβ
=4sin(α+β)-8cos(α+β)=0.
因此tan(α+β)=2.
(2)解由b+c=(sinβ+cosβ,4cosβ-4sinβ),
得|b+c|=sinβ+cosβ2+4cosβ-4sinβ2
=17-15sin2β≤42.
又当β=-π4时,等号成立,所以|b+c|的最大值为42.
(3)证明由tanαtanβ=16得4cosαsinβ=sinα4cosβ,
所以a∥b.
例3解题导引与三角函数相结合考查向量的数量积的坐标运算及其应用是高考热点题型.解答此类问题,除了要熟练掌握向量数量积的坐标运算公式,向量模、夹角的坐标运算公式外,还应掌握三角恒等变换的相关知识.
解(1)ab=cos32xcosx2-sin32xsinx2=cos2x,
|a+b|=cos32x+cosx22+sin32x-sinx22
=2+2cos2x=2|cosx|,
∵x∈-π3,π4,∴cosx0,
∴|a+b|=2cosx.
(2)f(x)=cos2x-2cosx=2cos2x-2cosx-1
=2cosx-122-32.
∵x∈-π3,π4,∴12≤cosx≤1,
∴当cosx=12时,f(x)取得最小值-32;
当cosx=1时,f(x)取得最大值-1.
变式迁移3解由题意,设△ABC的角B、C的对边分别为b、c,则S=12bcsinA=12.
AB→AC→=bccosA=30,
∴A∈0,π2,cosA=3sinA.
又sin2A+cos2A=1,
∴sinA=1010,cosA=31010.
由题意cosB=35,得sinB=45.
∴cos(A+B)=cosAcosB-sinAsinB=1010.
∴cosC=cos[π-(A+B)]=-1010.
课后练习区
1.D[因为ab=6-m=0,所以m=6.]
2.D[由(2a+3b)(ka-4b)=0得2k-12=0,∴k=6.]
3.C[∵S△ABC=12|a||b|sin∠BAC=154,
∴sin∠BAC=12.又ab0,
∴∠BAC为钝角.∴∠BAC=150°.]
4.C[由(2a+b)b=0,得2ab=-|b|2.
cos〈a,b〉=ab|a||b|=-12|b|2|b|2=-12.
∵〈a,b〉∈[0°,180°],∴〈a,b〉=120°.]
5.B[因为ab=|a||b|cos〈a,b〉,
所以,a在b上的投影为|a|cos〈a,b〉
=ab|b|=21-842+72=1365=655.]
6.35
解析∵ab=cos2α+2sin2α-sinα=25,
∴1-2sin2α+2sin2α-sinα=25,∴sinα=35.
7.120°
解析设a与b的夹角为θ,∵c=a+b,c⊥a,
∴ca=0,即(a+b)a=0.∴a2+ab=0.
又|a|=1,|b|=2,∴1+2cosθ=0.
∴cosθ=-12,θ∈[0°,180°]即θ=120°.
8.(-1,0)或(0,-1)
解析设n=(x,y),由mn=-1,
有x+y=-1.①
由m与n夹角为3π4,
有mn=|m||n|cos3π4,
∴|n|=1,则x2+y2=1.②
由①②解得x=-1y=0或x=0y=-1,
∴n=(-1,0)或n=(0,-1).
9.解设存在点M,且OM→=λOC→=(6λ,3λ)(0≤λ≤1),
MA→=(2-6λ,5-3λ),MB→=(3-6λ,1-3λ).…………………………………………(4分)
∵MA→⊥MB→,
∴(2-6λ)(3-6λ)+(5-3λ)(1-3λ)=0,………………………………………………(8分)
即45λ2-48λ+11=0,解得λ=13或λ=1115.
∴M点坐标为(2,1)或225,115.
故在线段OC上存在点M,使MA→⊥MB→,且点M的坐标为(2,1)或(225,115).………(12分)
10.(1)证明∵ab=cos(-θ)cosπ2-θ+sin-θsinπ2-θ
=sinθcosθ-sinθcosθ=0.∴a⊥b.……………………………………………………(4分)
(2)解由x⊥y得,xy=0,
即[a+(t2+3)b](-ka+tb)=0,
∴-ka2+(t3+3t)b2+[t-k(t2+3)]ab=0,
∴-k|a|2+(t3+3t)|b|2=0.………………………………………………………………(6分)
又|a|2=1,|b|2=1,
∴-k+t3+3t=0,∴k=t3+3t.…………………………………………………………(8分)
∴k+t2t=t3+t2+3tt=t2+t+3
=t+122+114.……………………………………………………………………………(10分)
故当t=-12时,k+t2t有最小值114.………………………………………………………(12分)
11.解(1)f(x)=ab=2cosx+π6+2sinx
=2cosxcosπ6-2sinxsinπ6+2sinx
=3cosx+sinx=2sinx+π3.…………………………………………………………(5分)
由π2+2kπ≤x+π3≤3π2+2kπ,k∈Z,
得π6+2kπ≤x≤7π6+2kπ,k∈Z.
所以f(x)的单调递减区间是
π6+2kπ,7π6+2kπ(k∈Z).……………………………………………………………(8分)
(2)由(1)知f(x)=2sinx+π3.
又因为2sinx+π3=85,
所以sinx+π3=45,……………………………………………………………………(11分)
即sinx+π3=cosπ6-x=cosx-π6=45.
所以cos2x-π3=2cos2x-π6-1=725.………………………………………………(14分)

延伸阅读

高考数学(理科)一轮复习空间向量及其运算学案附答案


作为优秀的教学工作者,在教学时能够胸有成竹,教师要准备好教案,这是教师的任务之一。教案可以让学生能够在课堂积极的参与互动,帮助授课经验少的教师教学。那么一篇好的教案要怎么才能写好呢?以下是小编为大家精心整理的“高考数学(理科)一轮复习空间向量及其运算学案附答案”,欢迎大家阅读,希望对大家有所帮助。

学案45空间向量及其运算

导学目标:1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.2.掌握空间向量的线性运算及其坐标表示.3.掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直.
自主梳理
1.空间向量的有关概念
(1)空间向量:在空间中,具有______和______的量叫做空间向量.
(2)相等向量:方向______且模______的向量.
(3)共线向量定理
对空间任意两个向量a,b(b≠0),a∥b的充要条件是______________________________.

推论如图所示,点P在l上的充要条件是:OP→=OA→+ta①
其中a叫直线l的方向向量,t∈R,在l上取AB→=a,则①可化为OP→=___________________或OP→=(1-t)OA→+tOB→.
(4)共面向量定理
如果两个向量a,b不共线,那么向量p与向量a,b共面的充要条件是存在惟一的有序实数对(x,y),使p=xa+yb,推论的表达式为MP→=xMA→+yMB→或对空间任意一点O有,OP→=__________________或OP→=xOA→+yOB→+zOM→,其中x+y+z=____.
2.空间向量基本定理
如果三个向量a,b,c不共面,那么对空间任一向量p,存在有序实数组{x,y,z},使得p=____________________________,把{a,b,c}叫做空间的一个基底.
3.空间向量的数量积及运算律
(1)数量积及相关概念
①两向量的夹角
已知两个非零向量a,b,在空间任取一点O,作OA→=a,OB→=b,则________叫做向量a与b的夹角,记作________,其范围是________________,若〈a,b〉=π2,则称a与b______________,记作a⊥b.
②两向量的数量积
已知两个非零向量a,b,则______________________叫做向量a,b的数量积,记作________,即______________________________.
(2)空间向量数量积的运算律
①结合律:(λa)b=____________________;
②交换律:ab=________;
③分配律:a(b+c)=________________.
4.空间向量的坐标表示及应用
(1)数量积的坐标运算
若a=(a1,a2,a3),b=(b1,b2,b3),
则ab=____________________.
(2)共线与垂直的坐标表示
设a=(a1,a2,a3),b=(b1,b2,b3),
则a∥b(b≠0)____________________,__________,________________,
a⊥b_________________________________________(a,b均为非零向量).
(3)模、夹角和距离公式
设a=(a1,a2,a3),b=(b1,b2,b3),
则|a|=aa=_____________________________________________________________,
cos〈a,b〉=ab|a||b|=_________________________________________________________.
若A(a1,b1,c1),B(a2,b2,c2),
则|AB→|=__________________________________________________________________.
自我检测
1.若a=(2x,1,3),b=(1,-2y,9),且a∥b,则()
A.x=1,y=1B.x=12,y=-12
C.x=16,y=-32D.x=-16,y=32
2.(2011青岛月考)
如图所示,在平行六面体ABCD—A1B1C1D1中,M为AC与BD的交点,若A1B1→=a,A1D1→=b,A1A→=c,则下列向量中与B1M→相等的向量是()
A.-12a+12b+cB.12a+12b+c
C.12a-12b+cD.-12a-12b+c
3.(2011广州调研)在平行六面体ABCD—A′B′C′D′中,已知∠BAD=∠A′AB=∠A′AD=60°,AB=3,AD=4,AA′=5,则|AC′→|=________.
4.有下列4个命题:
①若p=xa+yb,则p与a、b共面;
②若p与a、b共面,则p=xa+yb;
③若MP→=xMA→+yMB→,则P、M、A、B共面;
④若P、M、A、B共面,则MP→=xMA→+yMB→.
其中真命题的个数是()
A.1B.2C.3D.4
5.A(1,0,1),B(4,4,6),C(2,2,3),D(10,14,17)这四个点________(填共面或不共面).
探究点一空间基向量的应用
例1已知空间四边形OABC中,M为BC的中点,N为AC的中点,P为OA的中点,Q为OB的中点,若AB=OC,求证:PM⊥QN.

变式迁移1
如图,在正四面体ABCD中,E、F分别为棱AD、BC的中点,则异面直线AF和CE所成角的余弦值为________.

探究点二利用向量法判断平行或垂直
例2(2011合肥调研)两个边长为1的正方形ABCD与正方形ABEF相交于AB,∠EBC=90°,点M、N分别在BD、AE上,且AN=DM.
(1)求证:MN∥平面EBC;(2)求MN长度的最小值.

变式迁移2
如图所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=2,AF=1,M是线段EF的中点.
求证:(1)AM∥平面BDE;(2)AM⊥面BDF.

探究点三利用向量法解探索性问题
例3(2011泉州月考)如图,平面PAC⊥平面ABC,△ABC是以AC为斜边的等腰直角三角形,E,F,O分别
为PA,PB,AC的中点,AC=16,PA=PC=10.
(1)设G是OC的中点,证明FG∥平面BOE;
(2)在△AOB内是否存在一点M,使FM⊥平面BOE?若存在,求出点M到OA,OB的距离;若不存在,说明理由.

变式迁移3已知在直三棱柱ABC—A1B1C1中,底面是以∠ABC为直角的等腰直角三角形,AC=2a,BB1=3a,D为A1C1的中点,E为B1C的中点.
(1)求直线BE与A1C所成的角的余弦值;
(2)在线段AA1上是否存在点F,使CF⊥平面B1DF?若存在,求出AF;若不存在,请说明理由.
1.向量法解立体几何问题有两种基本思路:一种是利用基向量表示几何量,简称基向量法;另一种是建立空间直角坐标系,利用坐标法表示几何量,简称坐标法.
2.利用坐标法解几何问题的基本步骤是:(1)建立适当的空间直角坐标系,用坐标准确表示涉及到的几何量.(2)通过向量的坐标运算,研究点、线、面之间的位置关系.(3)根据运算结果解释相关几何问题.
(满分:75分)

一、选择题(每小题5分,共25分)
1.下列命题:
①若A、B、C、D是空间任意四点,则有AB→+BC→+CD→+DA→=0;
②|a|-|b|=|a+b|是a、b共线的充要条件;
③若a、b共线,则a与b所在直线平行;
④对空间任意一点O与不共线的三点A、B、C,若OP→=xOA→+yOB→+zOC→(其中x、y、z∈R)则P、A、B、C四点共面.其中假命题的个数是()
A.1B.2C.3D.4
2.
如图所示,在正方体ABCD—A1B1C1D1中,O是底面ABCD的中心,M、N分别是棱DD1、D1C1的中点,则直线OM()
A.既垂直于AC,又垂直于MN
B.垂直于AC,但不垂直于MN
C.垂直于MN,但不垂直于AC
D.与AC、MN都不垂直
3.(2011绍兴月考)
如图所示,在三棱柱ABC—A1B1C1中,AA1⊥底面ABC,AB=BC=AA1,∠ABC=90°,点E、F分别是棱AB、BB1的中点,则直线EF和BC1所成的角是()
A.45°B.60°
C.90°D.120°
4.设点C(2a+1,a+1,2)在点P(2,0,0)、A(1,-3,2)、B(8,-1,4)确定的平面上,则a等于()
A.16B.4C.2D.8
5.在直角坐标系中,A(-2,3),B(3,-2),沿x轴把直角坐标系折成120°的二面角,则AB的长度为()
A.2B.211C.32D.42
二、填空题(每小题4分,共12分)
6.
(2011信阳模拟)如图所示,已知空间四边形ABCD,F为BC的中点,E为AD的中点,若EF→=λ(AB→+DC→),则λ=________.
7.(2011铜川模拟)在正方体ABCD—A1B1C1D1中,给出以下向量表达式:
①(A1D1→-A1A→)-AB→;②(BC→+BB1→)-D1C1→;
③(AD→-AB→)-2DD1→;④(B1D1→+A1A→)+DD1→.
其中能够化简为向量BD1→的是________.(填所有正确的序号)
8.(2011丽水模拟)
如图所示,PD垂直于正方形ABCD所在平面,AB=2,E为PB的中点,cos〈DP→,AE→〉=33,若以DA,DC,DP所在直线分别为x,y,z轴建立空间直角坐标系,则点E的坐标为________.
三、解答题(共38分)
9.(12分)
如图所示,已知ABCD—A1B1C1D1是棱长为3的正方体,点E在AA1上,点F在CC1上,且AE=FC1=1.
(1)求证:E、B、F、D1四点共面;
(2)若点G在BC上,BG=23,点M在BB1上,GM⊥BF,垂足为H,求证:EM⊥平面BCC1B1.

10.(12分)(2009福建)如图,
四边形ABCD是边长为1的正方形,MD⊥平面ABCD,NB⊥平面ABCD,且MD=NB=1,E为BC的中点.
(1)求异面直线NE与AM所成角的余弦值;
(2)在线段AN上是否存在点S,使得ES⊥平面AMN?若存在,求线段AS的长;若不存在,请说明理由.

11.(14分)(2011汕头月考)
如图所示,已知空间四边形ABCD的各边和对角线的长都等于a,点M、N分别是AB、CD的中点.
(1)求证:MN⊥AB,MN⊥CD;
(2)求MN的长;
(3)求异面直线AN与CM所成角的余弦值.

学案45空间向量及其运算
自主梳理
1.(1)大小方向(2)相同相等(3)存在实数λ,使得a=λbOA→+tAB→(4)OM→+xMA→+yMB→12.xa+yb+zc3.(1)①∠AOB〈a,b〉0≤〈a,b〉≤π互相垂直②|a||b|cos〈a,b〉abab=|a||b|cos〈a,b〉
(2)①λ(ab)②ba③ab+ac4.(1)a1b1+a2b2+a3b3(2)a=λba1=λb1a2=λb2a3=λb3(λ∈R)ab=0a1b1+a2b2+a3b3=0(3)a21+a22+a23
a1b1+a2b2+a3b3a21+a22+a23b21+b22+b23a2-a12+b2-b12+c2-c12
自我检测
1.C[∵a∥b,∴2x1=1-2y=39,
∴x=16,y=-32.]
2.A[B1M→=B1A1→+A1A→+AM→
=-A1B1→+A1A→+12AB→+12AD→
=-a+c+12(a+b)=-12a+12b+c.]
3.97
解析∵AC′→=AB→+BC→+CC′→=AB→+AD→+AA′→,
∴|AC′→|2=AB→2+AD→2+AA′→2+2AB→AD→+2AD→AA′→+2AA′→AB→=32+42+52+2×3×4×cos60°+2×4×5×cos60°+2×3×5×cos60°=97,
∴|AC′→|=97.
4.B[①正确.②中若a、b共线,p与a不共线,则p=xa+yb就不成立.③正确.④中若M、A、B共线,点P不在此直线上,则MP→=xMA→+yMB→不正确.]
5.共面
解析AB→=(3,4,5),AC→=(1,2,2),AD→=(9,14,16),设AD→=xAB→+yAC→,
即(9,14,16)=(3x+y,4x+2y,5x+2y).
∴x=2y=3,从而A、B、C、D四点共面.
课堂活动区
例1解题导引欲证a⊥b,只要把a、b用相同的几个向量表示,然后利用向量的数量积证明ab=0即可,这是基向量证明线线垂直的基本方法.
证明如图所示
.
设OA→=a,OB→=b,OC→=c.
∵OM→=12(OB→+OC→)=12(b+c),
ON→=12(OA→+OC→)=12(a+c),
∴PM→=PO→+OM→=-12a+12(b+c)
=12(b+c-a),
QN→=QO→+ON→=-12b+12(a+c)=12(a+c-b).
∴PM→QN→=14[c-(a-b)][c+(a-b)]
=14[c2-(a-b)2]=14(|OC→|2-|BA→|2)
∵|AB→|=|OC→|,∴PM→QN→=0.
即PM→⊥QN→,故PM⊥QN.
变式迁移123
解析设{AB→,AC→,AD→}为空间一组基底,
则AF→=12AB→+12AC→,
CE→=12CA→+12CD→=12CA→+12(AD→-AC→)
=-AC→+12AD→.
∴AF→CE→=12AB→+12AC→-AC→+12AD→
=-12AB→AC→-12AC→2+14AB→AD→+14AC→AD→
=-14AB→2-12AC→2+18AB→2+18AC→2
=-12AC→2.
又|AF→|=|CE→|=32|AC→|,∴|AF→||CE→|=34|AC→|2.
∴cos〈AF→,CE→〉=AF→CE→|AF→||CE→|=-12AC→234|AC→|2=-23.
∴异面直线AF与CE所成角的余弦值为23.
例2解题导引
如图所示,建立坐标系后,要证MN平行于平面EBC,只要证MN→的横坐标为0即可.
(1)证明如图所示,以BA→、BC→、BE→为单位正交基底建立空间直角坐标系,
则A(1,0,0),D(1,1,0),E(0,0,1),B(0,0,0),
设ANAE=DMDB=λ,则MN→=MD→+DA→+AN→=λBD→+DA→+λAE→
=λ(1,1,0)+(0,-1,0)+λ(-1,0,1)=(0,λ-1,λ).
∵0λ1,∴λ-1≠0,λ≠0,且MN→的横坐标为0.
∴MN→平行于平面yBz,即MN∥平面EBC.
(2)解由(1)知|MN→|=λ-12+λ2=2λ2-2λ+1
=2λ-122+12,
∴当λ=12时,MN取得长度的最小值为22.
变式迁移2证明(1)建立如图所示的空间直角坐标系,
设AC∩BD=N,连接NE.
则点N、E的坐标分别为
22,22,0、(0,0,1).
∴NE→=-22,-22,1.
又点A、M的坐标分别为(2,2,0)、22,22,1,
∴AM→=-22,-22,1.
∴NE→=AM→且NE与AM不共线.
∴NE∥AM.
又∵NE平面BDE,AM平面BDE,
∴AM∥平面BDE.
(2)由(1)得,AM→=-22,-22,1,
∵D(2,0,0),F(2,2,1),B(0,2,0),
∴DF→=(0,2,1),BF→=(2,0,1).
∴AM→DF→=0,AM→BF→=0.∴AM→⊥DF→,AM→⊥BF→,
即AM⊥DF,AM⊥BF.
又DF∩BF=F,
∴AM⊥平面BDF.
例3解题导引建立适当的空间直角坐标系后,写出各点坐标.第(1)题证明FG→与平面BOE的法向量n垂直,即FG→n=0即可.第(2)题设出点M的坐标,利用MF→∥n即可解出,然后检验解的合理性.
(1)证明
如图,连接OP,以点O为坐标原点,分别以OB,OC,OP所在直线为x轴,y轴,z轴,建立空间直角坐标系O—xyz.
则O(0,0,0),A(0,-8,0),
B(8,0,0),C(0,8,0),P(0,0,6),E(0,-4,3),F(4,0,3).
由题意,得G(0,4,0).
因为OB→=(8,0,0),OE→=(0,-4,3),
所以平面BOE的法向量n=(0,3,4).
由FG→=(-4,4,-3),得nFG→=0.
又直线FG不在平面BOE内,所以FG∥平面BOE.
(2)解设点M的坐标为(x0,y0,0),
则FM→=(x0-4,y0,-3).
因为FM⊥平面BOE,所以FM→∥n,
因此x0=4,y0=-94,
即点M的坐标是4,-94,0.
在平面直角坐标系xOy中,△AOB的内部区域可表示为不等式组x0,y0,x-y8.
经检验,点M的坐标满足上述不等式组.
所以,在△AOB内存在一点M,使PM⊥平面BOE.
由点M的坐标,得点M到OA,OB的距离分别为4,94.
变式迁移3解
(1)以点B为原点,以BA、BC、BB1所在直线分别为x轴,y轴,z轴建立如图所示的空间直角坐标系,则B(0,0,0),B1(0,0,3a),
∵△ABC为等腰直角三角形,
∴AB=BC=22AC=2a,
∴A(2a,0,0),C(0,2a,0),C1(0,2a,3a),
E0,22a,32a,A1(2a,0,3a),
∴BE→=0,22a,32a,A1C→=(-2a,2a,-3a),
cos〈BE→,A1C→〉=BE→A1C→|BE→||A1C→|=-72a2112a×13a=-7143143.
∴直线BE与A1C所成的角的余弦值为7143143.
(2)假设存在点F,使CF⊥平面B1DF,
并设AF→=λAA1→=λ(0,0,3a)=(0,0,3λa)(0λ1),
∵D为A1C1的中点,∴D22a,22a,3a,
B1D→=22a,22a,3a-(0,0,3a)=22a,22a,0,
B1F→=B1B→+BA→+AF→=(0,0,-3a)+(2a,0,0)+(0,0,3λa)=(2a,0,3a(λ-1)),
CF→=CA→+AF→=(2a,-2a,0)+(0,0,3λa)
=(2a,-2a,3λa).
∵CF⊥平面B1DF,∴CF→⊥B1D→,CF→⊥B1F→,
CF→B1D→=0CF→B1F→=0,即3λa×0=09λ2-9λ+2=0,
解得λ=23或λ=13
∴存在点F使CF⊥面B1DF,且
当λ=13时,|AF→|=13|AA1→|=a,
当λ=23时,|AF→|=23|AA1→|=2a.
课后练习区
1.C[②③④均不正确.]
2.A[以D为坐标原点,以DA为x轴,DC为y轴,DD1为z轴建系,设棱长为2,则M(0,0,1),N(0,1,2),O(1,1,0),A(2,0,0),C(0,2,0),
∴AC→=(-2,2,0),MN→=(0,1,1),OM→=(-1,-1,1),
∴OM→AC→=0,OM→MN→=0,
∴OM⊥AC,OM⊥MN.]
3.B[
如图建立坐标系,设AB=BC=AA1=2,则E(0,1,0),F(0,0,1),C1(2,0,2),
∴EF→=(0,-1,1),BC1→=(2,0,2),
∴cos〈EF→,BC1→〉=228=12.
∵〈EF→,BC1→〉∈[0°,180°]
∴EF与BC1所成的角是60°.]
4.A[由PC→=λ1PA→+λ2PB→得:
(2a-1,a+1,2)=λ1(-1,-3,2)+λ2(6,-1,4),
∴-λ1+6λ2=2a-1-3λ1-λ2=a+1,2λ1+4λ2=2解得a=16.]
5.B[
过A、B分别作AA1⊥x轴,BB1⊥x轴,垂足分别为A1和B1,则AA1=3,A1B1=5,BB1=2,
∵AB→=AA1→+A1B1→+B1B→,
∴AB→2=AA1→2+A1B1→2+B1B→2+2AA1→B1B→=32+52+22+2×3×2×cos60°=44.∴|AB→|=211.]
6.12
解析∵EF→=EA→+AB→+BF→,
又EF→=ED→+DC→+CF→,
∴2EF→=AB→+DC→,∴EF→=12(AB→+DC→),∴λ=12.
7.①②
解析①(A1D1→-A1A→)-AB→=AD1→-AB→=BD1→;
②(BC→+BB1→)-D1C1→=BC1→-D1C1→=BD1→;
③(AD→-AB→)-2DD1→=BD→-2DD1→≠BD1→;
④(B1D1→+A1A→)+DD1→=B1D1→+(A1A→+DD1→)=B1D1→≠BD1→.
8.(1,1,1)
解析设DP=y0,则A(2,0,0),B(2,2,0),P(0,0,y),E1,1,y2,DP→=(0,0,y),AE→=-1,1,y2.
∴cos〈DP→,AE→〉=DP→AE→|DP→||AE→|=12y2y2+y24=y8+y2=33.
解得y=2,∴E(1,1,1).
9.证明(1)
建立如图所示的空间直角坐标系,
则BE→=(3,0,1),BF→=(0,3,2),
BD1→=(3,3,3).(2分)
所以BD1→=BE→+BF→.
故BD1→、BE→、BF→共面.
又它们有公共点B,∴E、B、F、D1四点共面.(6分)
(2)设M(0,0,z),则GM→=0,-23,z.
而BF→=(0,3,2),
由题设,得GM→BF→=-23×3+z2=0,得z=1.(8分)
∴M(0,0,1),E(3,0,1),∴ME→=(3,0,0).
又BB1→=(0,0,3),BC→=(0,3,0),∴ME→BB1→=0,
∴ME→BC→=0,从而ME⊥BB1,ME⊥BC.
又∵BB1∩BC=B,∴ME⊥平面BCC1B1.(12分)
10.
解(1)如图所示,以点D为坐标原点,建立空间直角坐标系D—xyz.
依题意,得D(0,0,0),
A(1,0,0),M(0,0,1),C(0,1,0),B(1,1,0),N(1,1,1),
E12,1,0.(2分)
∴NE→=-12,0,-1,
AM→=(-1,0,1).
∵cos〈NE→,AM→〉=NE→AM→|NE→||AM→|=-1252×2=-1010,
∴异面直线NE与AM所成角的余弦值为1010.
(6分)
(2)假设在线段AN上存在点S,使得ES⊥平面AMN.
∵AN→=(0,1,1),可设AS→=λAN→=(0,λ,λ),
又EA→=12,-1,0,
∴ES→=EA→+AS→=12,λ-1,λ.(8分)
由ES⊥平面AMN,
得ES→AM→=0,ES→AN→=0,即-12+λ=0,λ-1+λ=0.(10分)
故λ=12,此时AS→=0,12,12,|AS→|=22.
经检验,当AS=22时,ES⊥平面AMN.
故线段AN上存在点S,
使得ES⊥平面AMN,此时AS=22.(12分)
11.(1)证明设AB→=p,AC→=q,AD→=r.
由题意可知:|p|=|q|=|r|=a,且p、q、r三向量两两夹角均为60°.
MN→=AN→-AM→=12(AC→+AD→)-12AB→
=12(q+r-p),(2分)
∴MN→AB→=12(q+r-p)p
=12(qp+rp-p2)
=12(a2cos60°+a2cos60°-a2)=0.
∴MN⊥AB
又∵CD→=AD→-AC→=r-q,
∴MN→CD→=12(q+r-p)(r-q)
=12(qr-q2+r2-qr-pr+pq)
=12(a2cos60°-a2+a2-a2cos60°-a2cos60°+a2cos60°)
=0,∴MN⊥CD.(4分)
(2)解由(1)可知MN→=12(q+r-p),
∴|MN→|2=MN→2=14(q+r-p)2
=14[q2+r2+p2+2(qr-pq-rp)]
=14a2+a2+a2+2a22-a22-a22
=14×2a2=a22.
∴|MN→|=22a,∴MN的长为22a.(9分)
(3)解设向量AN→与MC→的夹角为θ.
∵AN→=12(AC→+AD→)=12(q+r),
MC→=AC→-AM→=q-12p,
∴AN→MC→=12(q+r)q-12p
=12q2-12qp+rq-12rp
=12a2-12a2cos60°+a2cos60°-12a2cos60°
=12a2-a24+a22-a24=a22.(12分)
又∵|AN→|=|MC→|=32a,
∴AN→MC→=|AN→||MC→|cosθ
即32a32acosθ=a22.
∴cosθ=23,(13分)
∴向量AN→与MC→的夹角的余弦值为23,从而异面直线AN与CM所成角的余弦值为23.(14分)

《平面向量的数量积》学案


一名优秀的教师在教学时都会提前最好准备,作为高中教师就要根据教学内容制定合适的教案。教案可以让学生能够在课堂积极的参与互动,帮助高中教师能够井然有序的进行教学。那么,你知道高中教案要怎么写呢?小编收集并整理了“《平面向量的数量积》学案”,欢迎您参考,希望对您有所助益!

《平面向量的数量积》学案

教学目标:掌握平面向量数量积的概念、性质及简单应用
教学重点:平面向量数量积的概念、性质及应用
教学难点:对平面向量数量积应用的准确把握
教学过程:
题型一:平面向量数量积的性质与运算
【例题1】.关于平面向量,有下列5个命题:
①若,则
②‖


⑤非零向量和满足,则与的夹角为
其中真命题的序号为(写出所有真命题的序号)
【例题2】.(1)在Rt△ABC中,∠C=90°,AC=4,则AB→AC→=________.
(2)若向量=(1,1),=(2,5),=(3,x),满足条件(8-)=30,则x=__________.

题型二:向量的夹角与模
【例题3】.已知||=4,||=3,(2-3)(2+)=61.
(1)求与的夹角θ;
(2)求|+|;
(3)若AB→=,BC→=,求△ABC的面积.

变式训练1:已知是平面内两个互相垂直的单位向量,若向量满足,则的最大值是

变式训练2:已知平面向量且。
题型三:向量数量积的应用
【例题4】.给定两个长度为1的平面向量和,它们的夹角为.如图所示,点C在以O为圆心的圆弧上变动.若其中,则的最大值为。

变式训练:已知

课堂练习:
1、已知=(2,3),=(-4,7),则在方向上的投影为______.
2、设x,y∈R,向量=(x,1),=(1,y),=(2,-4),且⊥,∥,则|+|=________.
3、已知正方形ABCD的边长为1,点E是AB边上的动点,则DE→CB→的值为__________
DE→DC→的最大值为________.
4、在直角三角形ABC中,点D是斜边AB的中点,点P为线段CD的中点,则|PA|2+|PB|2|PC|2=______.
5、在矩形ABCD中,AB=2,BC=2,点E为BC的中点,点F在边CD上,若AB→AF→=2,则AE→BF→的值是________.
课堂小结:

平面向量的数量积


俗话说,凡事预则立,不预则废。高中教师要准备好教案,这是教师工作中的一部分。教案可以让学生们充分体会到学习的快乐,减轻高中教师们在教学时的教学压力。您知道高中教案应该要怎么下笔吗?下面是小编精心为您整理的“平面向量的数量积”,仅供您在工作和学习中参考。

课题:2.4平面向量的数量积(2)
班级:姓名:学号:第学习小组
【学习目标】
1、掌握平面向量数量积的坐标表示;
2、掌握向量垂直的坐标表示的等价条件。
【课前预习】
1、(1)已知向量和的夹角是,||=2,||=1,则(+)2=,|+|=。
(2)已知:||=2,||=5,=-3,则|+|=,|-|=。
(3)已知||=1,||=2,且(-)与垂直,则与的夹角为
2、设轴上的单位向量,轴上的单位向量,则=,=,=,=,若=,=,则=+.=+。
3、推导坐标公式:=。
4、(1)=,则||=___________;,则||=。
(2)=;(3)⊥;(4)//。
5、已知=,=,则||=,||=,=,
=;=。

【课堂研讨】
例1、已知=,=,求(3-)(-2),与的夹角。

例2、已知||=1,||=,+=,试求:
(1)|-|(2)+与-的夹角

例3、在中,设=,=,且是直角三角形,求的值。

【学后反思】
1、平面向量数量积的概念及其几何意义;2、数量积的性质及其性质的简单应用。

课题:2.4平面向量的数量积检测案(2)
班级:姓名:学号:第学习小组
【课堂检测】
1、求下列各组中两个向量与的夹角:
(1)=,=(2)=,=
2、设,,,求证:是直角三角形。
3、若=,=,当为何值时:
(1)(2)(3)与的夹角为锐角

【课后巩固】
1、设,,是任意的非零向量,且相互不共线,则下列命题正确的有:
①()-()=②||-|||-
|③()-()不与垂直④(3+4)(3-4)=9||2-16||2
⑤若为非零向量,=,且≠,则⊥(-)
2、若=,=且与的夹角为钝角,则的取值范围是。
3、已知=,则与垂直的单位向量的坐标为。
4、已知若=,=,则+与-垂直的条件是
5、的三个顶点的坐标分别为,,,判断三角形的形状。

6、已知向量=,||=2,求满足下列条件的的坐标。
(1)⊥(2)

7、已知向量=,=。
(1)求|+|和|-|;(2)为何值时,向量+与-3垂直?
(3)为何值时,向量+与-3平行?

8、已知向量,,,其中分别为直角坐标系内轴与轴正方向上的单位向量。
(1)若能构成三角形,求实数应满足的条件;
(2)是直角三角形,求实数的值。

课题:2.4平面向量的数量积(2)
班级:姓名:学号:第学习小组
【学习目标】
3、掌握平面向量数量积的坐标表示;
4、掌握向量垂直的坐标表示的等价条件。
【课前预习】
1、(1)已知向量和的夹角是,||=2,||=1,则(+)2=,|+|=。
(2)已知:||=2,||=5,=-3,则|+|=,|-|=。
(3)已知||=1,||=2,且(-)与垂直,则与的夹角为
2、设轴上的单位向量,轴上的单位向量,则=,=,=,=,若=,=,则=+.=+。
3、推导坐标公式:=。
4、(1)=,则||=___________;,则||=。
(2)=;(3)⊥;(4)//。
5、已知=,=,则||=,||=,=,
=;=。

【课堂研讨】
例1、已知=,=,求(3-)(-2),与的夹角。

例2、已知||=1,||=,+=,试求:
(1)|-|(2)+与-的夹角

例3、在中,设=,=,且是直角三角形,求的值。

【学后反思】
1、平面向量数量积的概念及其几何意义;2、数量积的性质及其性质的简单应用。

课题:2.4平面向量的数量积检测案(2)
班级:姓名:学号:第学习小组
【课堂检测】
1、求下列各组中两个向量与的夹角:
(1)=,=(2)=,=

2、设,,,求证:是直角三角形。
3、若=,=,当为何值时:
(1)(2)(3)与的夹角为锐角

【课后巩固】
1、设,,是任意的非零向量,且相互不共线,则下列命题正确的有:
①()-()=②||-|||-
|③()-()不与垂直④(3+4)(3-4)=9||2-16||2
⑤若为非零向量,=,且≠,则⊥(-)
2、若=,=且与的夹角为钝角,则的取值范围是。
3、已知=,则与垂直的单位向量的坐标为。
4、已知若=,=,则+与-垂直的条件是
5、的三个顶点的坐标分别为,,,判断三角形的形状。

6、已知向量=,||=2,求满足下列条件的的坐标。
(1)⊥(2)

7、已知向量=,=。
(1)求|+|和|-|;(2)为何值时,向量+与-3垂直?
(3)为何值时,向量+与-3平行?

8、已知向量,,,其中分别为直角坐标系内轴与轴正方向上的单位向量。
(1)若能构成三角形,求实数应满足的条件;
(2)是直角三角形,求实数的值。

平面向量数量积的坐标表示


平面向量数量积的坐标表示
教学目标
1.正确理解掌握两个向量数量积的坐标表示方法,能通过两个向量的坐标求出这两个向量的数量积.
2.掌握两个向量垂直的坐标条件,能运用这一条件去判断两个向量垂直.
3.能运用两个向量的数量积的坐标表示去解决处理有关长度、角度、垂直等问题.
重点:两个向量数量积的坐标表示,向量的长度公式,两个向量垂直的充要条件.
难点:对向量的长度公式,两个向量垂直的充要条件的灵活运用.
教学过程设计
(一)学生复习思考,教师指导.
1.A点坐标(x1,y1),B点坐标(x2,y2).
=________=________
2.A点坐标(x1,y1),B点坐标(x2,y2)
=________
3.向量的数量积满足那些运算律?
(二)教师讲述新课.
前面我们已经学过了两个向量的数量积,如果已知两个向量的坐标,如何用这些坐标来表示两个向量的数量积,这是一个很有价值的问题.
设两个非零向量为=(x1,y1),=(x2,y2).为x轴上的单位向量,为y轴上的单位向量,则=x1+y1,=x2+y2
这就是说:两个向量的数量积等于它们对应坐标的乘积的和.
引入向量的数量积的坐标表示,我们得到下面一些重要结论:
(1)向量模的坐标表示:
(2)平面上两点间的距离公式:
向量的起点和终点坐标分别为A(x1,y1),B(x2,y2),=
(3)两向量的夹角公式
设=(x1,y1),=(x2,y2),=θ.
4.两向量垂直的充要条件的坐标表示
=(x1,y1),=(x2,y2).
即两向量垂直的充要条件是它们对应坐标乘积的和为零.
(三)学生练习,教师指导.
练习1:课本练习1.
已知a(-3,4),(5,2)
练习2:课本练习2.
已知=(2,3),=(-2,4),=(-1,-2).
=2×(-2)+3×4=8,(+)(-)=-7.
(+)=0,(a+b)2=(0,7)(0,7)=49.
练习3:已知A(1,2),B(2,3),C(-2,5).
求证:△ABC是直角三角形.
证:∵=(1,1),=(-3,3),=(-4,2).
经检验,=1×(-3)+1×3=0.
∴⊥,△ABC是直角三角形.
(四)师生共同研究例题.
例1:已知向量=(3,4),=(2,-1).
(1)求与的夹角θ,
(2)若+x与-垂直,求实数x的值.
解:(1)=(3,4),=(2,-1).
(2)+x与-垂直,
(+x)(-)=0,+x=(3,4)+x(2,-1)=(2x+3,4-x)
-=(3,4)-(2,-1)=(1,5).
例2:求证:三角形的三条高线交于一点.
证:设△ABC的BC、AC边上的高交于P点,现分别以BC、PA所在直线为x轴、y轴,建立直角坐标系,设有关各点的坐标为B(x1,0),C(x2,0),A(0,y1),P(0,y).
∵⊥,=(-x1,y),=(-x2,y1).
(-x1)×(-x2)+y×y1=0.
即x1x2+yy1=0.
又=(-x2,y),=(-x1,y1).
=(-x1)×(-x2)+y×y1=x1x2+yy1=0.
∴⊥,CP是AB边上的高.
故三角形的三条高线交于一点.
(五)作业.习题5.71,2,3,4,5.