88教案网

你的位置: 教案 > 高中教案 > 导航 > 第三章函数(高中数学竞赛标准教材)

高中三角函数教案

发表时间:2020-12-01

第三章函数(高中数学竞赛标准教材)。

一位优秀的教师不打无准备之仗,会提前做好准备,作为高中教师就要根据教学内容制定合适的教案。教案可以更好的帮助学生们打好基础,帮助高中教师提高自己的教学质量。怎么才能让高中教案写的更加全面呢?下面是小编为大家整理的“第三章函数(高中数学竞赛标准教材)”,希望能对您有所帮助,请收藏。

第三章函数

一、基础知识
定义1映射,对于任意两个集合A,B,依对应法则f,若对A中的任意一个元素x,在B中都有唯一一个元素与之对应,则称f:A→B为一个映射。
定义2单射,若f:A→B是一个映射且对任意x,y∈A,xy,都有f(x)f(y)则称之为单射。
定义3满射,若f:A→B是映射且对任意y∈B,都有一个x∈A使得f(x)=y,则称f:A→B是A到B上的满射。
定义4一一映射,若f:A→B既是单射又是满射,则叫做一一映射,只有一一映射存在逆映射,即从B到A由相反的对应法则f-1构成的映射,记作f-1:A→B。
定义5函数,映射f:A→B中,若A,B都是非空数集,则这个映射为函数。A称为它的定义域,若x∈A,y∈B,且f(x)=y(即x对应B中的y),则y叫做x的象,x叫y的原象。集合{f(x)|x∈A}叫函数的值域。通常函数由解析式给出,此时函数定义域就是使解析式有意义的未知数的取值范围,如函数y=3-1的定义域为{x|x≥0,x∈R}.
定义6反函数,若函数f:A→B(通常记作y=f(x))是一一映射,则它的逆映射f-1:A→B叫原函数的反函数,通常写作y=f-1(x).这里求反函数的过程是:在解析式y=f(x)中反解x得x=f-1(y),然后将x,y互换得y=f-1(x),最后指出反函数的定义域即原函数的值域。例如:函数y=的反函数是y=1-(x0).
定理1互为反函数的两个函数的图象关于直线y=x对称。
定理2在定义域上为增(减)函数的函数,其反函数必为增(减)函数。
定义7函数的性质。
(1)单调性:设函数f(x)在区间I上满足对任意的x1,x2∈I并且x1x2,总有f(x1)f(x2)(f(x)f(x2)),则称f(x)在区间I上是增(减)函数,区间I称为单调增(减)区间。
(2)奇偶性:设函数y=f(x)的定义域为D,且D是关于原点对称的数集,若对于任意的x∈D,都有f(-x)=-f(x),则称f(x)是奇函数;若对任意的x∈D,都有f(-x)=f(x),则称f(x)是偶函数。奇函数的图象关于原点对称,偶函数的图象关于y轴对称。
(3)周期性:对于函数f(x),如果存在一个不为零的常数T,使得当x取定义域内每一个数时,f(x+T)=f(x)总成立,则称f(x)为周期函数,T称为这个函数的周期,如果周期中存在最小的正数T0,则这个正数叫做函数f(x)的最小正周期。
定义8如果实数ab,则数集{x|axb,x∈R}叫做开区间,记作(a,b),集合{x|a≤x≤b,x∈R}记作闭区间[a,b],集合{x|ax≤b}记作半开半闭区间(a,b],集合{x|a≤xb}记作半闭半开区间[a,b),集合{x|xa}记作开区间(a,+∞),集合{x|x≤a}记作半开半闭区间(-∞,a].
定义9函数的图象,点集{(x,y)|y=f(x),x∈D}称为函数y=f(x)的图象,其中D为f(x)的定义域。通过画图不难得出函数y=f(x)的图象与其他函数图象之间的关系(a,b0);(1)向右平移a个单位得到y=f(x-a)的图象;(2)向左平移a个单位得到y=f(x+a)的图象;(3)向下平移b个单位得到y=f(x)-b的图象;(4)与函数y=f(-x)的图象关于y轴对称;(5)与函数y=-f(-x)的图象关于原点成中心对称;(6)与函数y=f-1(x)的图象关于直线y=x对称;(7)与函数y=-f(x)的图象关于x轴对称。
定理3复合函数y=f[g(x)]的单调性,记住四个字:“同增异减”。例如y=,u=2-x在(-∞,2)上是减函数,y=在(0,+∞)上是减函数,所以y=在(-∞,2)上是增函数。
注:复合函数单调性的判断方法为同增异减。这里不做严格论证,求导之后是显然的。
二、方法与例题
1.数形结合法。
例1求方程|x-1|=的正根的个数.
【解】分别画出y=|x-1|和y=的图象,由图象可知两者有唯一交点,所以方程有一个正根。

例2求函数f(x)=的最大值。
【解】f(x)=,记点P(x,x2),A(3,2),B(0,1),则f(x)表示动点P到点A和B距离的差。
因为|PA|-|PA|≤|AB|=,当且仅当P为AB延长线与抛物线y=x2的交点时等号成立。
所以f(x)max=
2.函数性质的应用。
例3设x,y∈R,且满足,求x+y.
【解】设f(t)=t3+1997t,先证f(t)在(-∞,+∞)上递增。事实上,若ab,则f(b)-f(a)=b3-a3+1997(b-a)=(b-a)(b2+ba+a2+1997)0,所以f(t)递增。
由题设f(x-1)=-1=f(1-y),所以x-1=1-y,所以x+y=2.
例4奇函数f(x)在定义域(-1,1)内是减函数,又f(1-a)+f(1-a2)0,求a的取值范围。
【解】因为f(x)是奇函数,所以f(1-a2)=-f(a2-1),由题设f(1-a)f(a2-1)。
又f(x)在定义域(-1,1)上递减,所以-11-aa2-11,解得0a1。
例5设f(x)是定义在(-∞,+∞)上以2为周期的函数,对k∈Z,用Ik表示区间(2k-1,2k+1],已知当x∈I0时,f(x)=x2,求f(x)在Ik上的解析式。
【解】设x∈Ik,则2k-1x≤2k+1,
所以f(x-2k)=(x-2k)2.
又因为f(x)是以2为周期的函数,
所以当x∈Ik时,f(x)=f(x-2k)=(x-2k)2.
例6解方程:(3x-1)()+(2x-3)(+1)=0.
【解】令m=3x-1,n=2x-3,方程化为
m(+1)+n(+1)=0.①
若m=0,则由①得n=0,但m,n不同时为0,所以m0,n0.
ⅰ)若m0,则由①得n0,设f(t)=t(+1),则f(t)在(0,+∞)上是增函数。又f(m)=f(-n),所以m=-n,所以3x-1+2x-3=0,所以x=
ⅱ)若m0,且n0。同理有m+n=0,x=,但与m0矛盾。
综上,方程有唯一实数解x=
3.配方法。
例7求函数y=x+的值域。
【解】y=x+=[2x+1+2+1]-1
=(+1)-1≥-1=-.
当x=-时,y取最小值-,所以函数值域是[-,+∞)。
4.换元法。
例8求函数y=(++2)(+1),x∈[0,1]的值域。
【解】令+=u,因为x∈[0,1],所以2≤u2=2+2≤4,所以≤u≤2,所以≤≤2,1≤≤2,所以y=,u2∈[+2,8]。
所以该函数值域为[2+,8]。
5.判别式法。
例9求函数y=的值域。
【解】由函数解析式得(y-1)x2+3(y+1)x+4y-4=0.①
当y1时,①式是关于x的方程有实根。
所以△=9(y+1)2-16(y-1)2≥0,解得≤y≤1.
又当y=1时,存在x=0使解析式成立,
所以函数值域为[,7]。
6.关于反函数。
例10若函数y=f(x)定义域、值域均为R,且存在反函数。若f(x)在(-∞,+∞)上递增,求证:y=f-1(x)在(-∞,+∞)上也是增函数。
【证明】设x1x2,且y1=f-1(x1),y2=f-1(x2),则x1=f(y1),x2=f(y2),若y1≥y2,则因为f(x)在(-∞,+∞)上递增,所以x1≥x2与假设矛盾,所以y1y2。
即y=f-1(x)在(-∞,+∞)递增。
例11设函数f(x)=,解方程:f(x)=f-1(x).
【解】首先f(x)定义域为(-∞,-)∪[-,+∞);其次,设x1,x2是定义域内变量,且x1x2-;=0,
所以f(x)在(-∞,-)上递增,同理f(x)在[-,+∞)上递增。
在方程f(x)=f-1(x)中,记f(x)=f-1(x)=y,则y≥0,又由f-1(x)=y得f(y)=x,所以x≥0,所以x,y∈[-,+∞).
若xy,设xy,则f(x)=yf(y)=x,矛盾。
同理若xy也可得出矛盾。所以x=y.
即f(x)=x,化简得3x5+2x4-4x-1=0,
即(x-1)(3x4+5x3+5x2+5x+1)=0,
因为x≥0,所以3x4+5x3+5x2+5x+10,所以x=1.
三、基础训练题
1.已知X={-1,0,1},Y={-2,-1,0,1,2},映射f:X→Y满足:对任意的x∈X,它在Y中的象f(x)使得x+f(x)为偶数,这样的映射有_______个。
2.给定A={1,2,3},B={-1,0,1}和映射f:X→Y,若f为单射,则f有_______个;若f为满射,则f有_______个;满足f[f(x)]=f(x)的映射有_______个。
3.若直线y=k(x-2)与函数y=x2+2x图象相交于点(-1,-1),则图象与直线一共有_______个交点。
4.函数y=f(x)的值域为[],则函数g(x)=f(x)+的值域为_______。
5.已知f(x)=,则函数g(x)=f[f(x)]的值域为_______。
6.已知f(x)=|x+a|,当x≥3时f(x)为增函数,则a的取值范围是_______。
7.设y=f(x)在定义域(,2)内是增函数,则y=f(x2-1)的单调递减区间为_______。
8.若函数y=(x)存在反函数y=-1(x),则y=-1(x)的图象与y=-(-x)的图象关于直线_______对称。
9.函数f(x)满足=1-,则f()=_______。
10.函数y=,x∈(1,+∞)的反函数是_______。
11.求下列函数的值域:(1)y=;(2)y=;(3)y=x+2;(4)y=
12.已知定义在R上,对任意x∈R,f(x)=f(x+2),且f(x)是偶函数,又当x∈[2,3]时,f(x)=x,则当x∈[-2,0]时,求f(x)的解析式。
四、高考水平训练题
1.已知a∈,f(x)定义域是(0,1],则g(x)=f(x+a)+f(x-a)+f(x)的定义域为_______。
2.设0≤a1时,f(x)=(a-1)x2-6ax+a+1恒为正值。则f(x)定义域为_______。
3.映射f:{a,b,c,d}→{1,2,3}满足10f(a)f(b)f(c)f(d)20,这样的映射f有_______个。
4.设函数y=f(x)(x∈R)的值域为R,且为增函数,若方程f(x)=x解集为P,f[f(x)]=x解集为Q,则P,Q的关系为:P_______Q(填=、、)。
5.下列函数是否为奇函数:(1)f(x)=(x-1);(2)g(x)=|2x+1|-|2x-1|;(3)(x)=;(4)y=
6.设函数y=f(x)(x∈R且x0),对任意非零实数x1,x2满足f(x1x2)=f(x1)+f(x2),又f(x)在(0,+∞)是增函数,则不等式f(x)+f(x-)≤0的解集为_______。
7.函数f(x)=,其中P,M为R的两个非空子集,又规定f(P)={y|y=f(x),x∈P},f(M)={y|y=f(x),x∈M},给出如下判断:①若P∩M=,则f(P)∩f(M)=;②若P∩M,则f(P)∩f(M);③若P∪M=R,则f(P)∪f(M)=R;④若P∪MR,则f(P)∪f(M)R.其中正确的判断是_______。
8.函数y=f(x+1)的反函数是y=f-1(x+1),并且f(1)=3997,则f(1998)=_______。
9.已知y=f(x)是定义域为[-6,6]的奇函数,且当x∈[0,3]时是一次函数,当x∈[3,6]时是二次函数,又f(6)=2,当x∈[3,6]时,f(x)≤f(5)=3。求f(x)的解析式。
10.设a0,函数f(x)定义域为R,且f(x+a)=,求证:f(x)为周期函数。
11.设关于x的方程2x2-tx-2=0的两根为α,β(αβ),已知函数f(x)=,(1)求f(α)、f(β);(2)求证:f(x)在[α,β]上是增函数;(3)对任意正数x1,x2,求证:2|α-β|.WwW.jAB88.cOm

五、联赛一试水平训练题
1.奇函数f(x)存在函数f-1(x),若把y=f(x)的图象向上平移3个单位,然后向右平移2个单位后,再关于直线y=-x对称,得到的曲线所对应的函数是________.
2.若a0,a1,F(x)是奇函数,则G(x)=F(x)是________(奇偶性).
3.若=x,则下列等式中正确的有________.①F(-2-x)=-2-F(x);②F(-x)=;③F(x-1)=F(x);④F(F(x))=-x.
4.设函数f:R→R满足f(0)=1,且对任意x,y∈R,都有f(xy+1)=f(x)f(y)-f(y)-x+2,则f(x)=________.
5.已知f(x)是定义在R上的函数,f(1)=1,且对任意x∈R都有f(x+5)≥f(x)+5,f(x+1)≤f(x)+1。若g(x)=f(x)+1-x,则g(2002)=________.
6.函数f(x)=的单调递增区间是________.
7.函数f(x)=的奇偶性是:________奇函数,________偶函数(填是,非)。
8.函数y=x+的值域为________.
9.设f(x)=,
对任意的a∈R,记V(a)=max{f(x)-ax|x∈[1,3]}-min{f(x)-ax|x∈[1,3]},试求V(a)的最小值。
10.解方程组:(在实数范围内)
11.设k∈N+,f:N+→N+满足:(1)f(x)严格递增;(2)对任意n∈N+,有f[f(n)]=kn,求证:对任意n∈N+,都有n≤f(n)≤
六、联赛二试水平训练题
1.求证:恰有一个定义在所有非零实数上的函数f,满足:(1)对任意x≠0,f(x)=xf;(2)对所有的x≠-y且xy≠0,有f(x)+f(y)=1+f(x+y).
2.设f(x)对一切x0有定义,且满足:(ⅰ)f(x)在(0,+∞)是增函数;(ⅱ)任意x0,f(x)f=1,试求f(1).
3.f:[0,1]→R满足:(1)任意x∈[0,1],f(x)≥0;(2)f(1)=1;(3)当x,y,x+y∈[0,1]时,f(x)+f(y)≤f(x+y),试求最小常数c,对满足(1),(2),(3)的函数f(x)都有f(x)≤cx.
4.试求f(x,y)=6(x2+y2)(x+y)-4(x2+xy+y2)-3(x+y)+5(x0,y0)的最小值。
5.对给定的正数p,q∈(0,1),有p+q1≥p2+q2,试求f(x)=(1-x)+在[1-q,p]上的最大值。
6.已知f:(0,1)→R且f(x)=.
当x∈时,试求f(x)的最大值。
7.函数f(x)定义在整数集上,且满足f(n)=,求f(100)的值。
8.函数y=f(x)定义在整个实轴上,它的图象在围绕坐标原点旋转角后不变。(1)求证:方程f(x)=x恰有一个解;(2)试给出一个具有上述性质的函数。
9.设Q+是正有理数的集合,试构造一个函数f:Q+→Q+,满足这样的条件:f(xf(y))=x,y∈Q+.

相关知识

第六章三角函数(高中数学竞赛标准教材)


第六章三角函数

一、基础知识
定义1角,一条射线绕着它的端点旋转得到的图形叫做角。若旋转方向为逆时针方向,则角为正角,若旋转方向为顺时针方向,则角为负角,若不旋转则为零角。角的大小是任意的。
定义2角度制,把一周角360等分,每一等价为一度,弧度制:把等于半径长的圆弧所对的圆心角叫做一弧度。360度=2π弧度。若圆心角的弧长为L,则其弧度数的绝对值|α|=,其中r是圆的半径。
定义3三角函数,在直角坐标平面内,把角α的顶点放在原点,始边与x轴的正半轴重合,在角的终边上任意取一个不同于原点的点P,设它的坐标为(x,y),到原点的距离为r,则正弦函数sinα=,余弦函数cosα=,正切函数tanα=,余切函数cotα=,正割函数secα=,余割函数cscα=
定理1同角三角函数的基本关系式,倒数关系:tanα=,sinα=,cosα=;商数关系:tanα=;乘积关系:tanα×cosα=sinα,cotα×sinα=cosα;平方关系:sin2α+cos2α=1,tan2α+1=sec2α,cot2α+1=csc2α.
定理2诱导公式(Ⅰ)sin(α+π)=-sinα,cos(π+α)=-cosα,tan(π+α)=tanα,cot(π+α)=cotα;(Ⅱ)sin(-α)=-sinα,cos(-α)=cosα,tan(-α)=-tanα,cot(-α)=cotα;(Ⅲ)sin(π-α)=sinα,cos(π-α)=-cosα,tan=(π-α)=-tanα,cot(π-α)=-cotα;(Ⅳ)sin=cosα,cos=sinα,tan=cotα(奇变偶不变,符号看象限)。
定理3正弦函数的性质,根据图象可得y=sinx(x∈R)的性质如下。单调区间:在区间上为增函数,在区间上为减函数,最小正周期为2.奇偶数.有界性:当且仅当x=2kx+时,y取最大值1,当且仅当x=3k-时,y取最小值-1。对称性:直线x=k+均为其对称轴,点(k,0)均为其对称中心,值域为[-1,1]。这里k∈Z.
定理4余弦函数的性质,根据图象可得y=cosx(x∈R)的性质。单调区间:在区间[2kπ,2kπ+π]上单调递减,在区间[2kπ-π,2kπ]上单调递增。最小正周期为2π。奇偶性:偶函数。对称性:直线x=kπ均为其对称轴,点均为其对称中心。有界性:当且仅当x=2kπ时,y取最大值1;当且仅当x=2kπ-π时,y取最小值-1。值域为[-1,1]。这里k∈Z.
定理5正切函数的性质:由图象知奇函数y=tanx(xkπ+)在开区间(kπ-,kπ+)上为增函数,最小正周期为π,值域为(-∞,+∞),点(kπ,0),(kπ+,0)均为其对称中心。
定理6两角和与差的基本关系式:cos(αβ)=cosαcosβsinαsinβ,sin(αβ)=sinαcosβcosαsinβ;tan(αβ)=
定理7和差化积与积化和差公式:
sinα+sinβ=2sincos,sinα-sinβ=2sincos,
cosα+cosβ=2coscos,cosα-cosβ=-2sinsin,
sinαcosβ=[sin(α+β)+sin(α-β)],cosαsinβ=[sin(α+β)-sin(α-β)],
cosαcosβ=[cos(α+β)+cos(α-β)],sinαsinβ=-[cos(α+β)-cos(α-β)].
定理8倍角公式:sin2α=2sinαcosα,cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α,

tan2α=
定理9半角公式:sin=,cos=,
tan==
定理10万能公式:,,
定理11辅助角公式:如果a,b是实数且a2+b20,则取始边在x轴正半轴,终边经过点(a,b)的一个角为β,则sinβ=,cosβ=,对任意的角α.
asinα+bcosα=sin(α+β).
定理12正弦定理:在任意△ABC中有,其中a,b,c分别是角A,B,C的对边,R为△ABC外接圆半径。
定理13余弦定理:在任意△ABC中有a2=b2+c2-2bcosA,其中a,b,c分别是角A,B,C的对边。
定理14图象之间的关系:y=sinx的图象经上下平移得y=sinx+k的图象;经左右平移得y=sin(x+)的图象(相位变换);纵坐标不变,横坐标变为原来的,得到y=sin()的图象(周期变换);横坐标不变,纵坐标变为原来的A倍,得到y=Asinx的图象(振幅变换);y=Asin(x+)(0)的图象(周期变换);横坐标不变,纵坐标变为原来的A倍,得到y=Asinx的图象(振幅变换);y=Asin(x+)(,0)(|A|叫作振幅)的图象向右平移个单位得到y=Asinx的图象。
定义4函数y=sinx的反函数叫反正弦函数,记作y=arcsinx(x∈[-1,1]),函数y=cosx(x∈[0,π])的反函数叫反余弦函数,记作y=arccosx(x∈[-1,1]).函数y=tanx的反函数叫反正切函数。记作y=arctanx(x∈[-∞,+∞]).y=cosx(x∈[0,π])的反函数称为反余切函数,记作y=arccotx(x∈[-∞,+∞]).
定理15三角方程的解集,如果a∈(-1,1),方程sinx=a的解集是{x|x=nπ+(-1)narcsina,n∈Z}。方程cosx=a的解集是{x|x=2kxarccosa,k∈Z}.如果a∈R,方程tanx=a的解集是{x|x=kπ+arctana,k∈Z}。恒等式:arcsina+arccosa=;arctana+arccota=.
定理16若,则sinxxtanx.
二、方法与例题
1.结合图象解题。
例1求方程sinx=lg|x|的解的个数。
【解】在同一坐标系内画出函数y=sinx与y=lg|x|的图象(见图),由图象可知两者有6个交点,故方程有6个解。
2.三角函数性质的应用。
例2设x∈(0,π),试比较cos(sinx)与sin(cosx)的大小。
【解】若,则cosx≤1且cosx-1,所以cos,
所以sin(cosx)≤0,又0sinx≤1,所以cos(sinx)0,
所以cos(sinx)sin(cosx).
若,则因为sinx+cosx=(sinxcos+sincosx)=sin(x+)≤,
所以0sinx-cosx,
所以cos(sinx)cos(-cosx)=sin(cosx).
综上,当x∈(0,π)时,总有cos(sinx)sin(cosx).
例3已知α,β为锐角,且x(α+β-)0,求证:
【证明】若α+β,则x0,由α-β0得cosαcos(-β)=sinβ,
所以01,又sinαsin(-β)=cosβ,所以01,
所以
若α+β,则x0,由0α-β得cosαcos(-β)=sinβ0,
所以1。又0sinαsin(-β)=cosβ,所以1,
所以,得证。
注:以上两例用到了三角函数的单调性和有界性及辅助角公式,值得注意的是角的讨论。
3.最小正周期的确定。
例4求函数y=sin(2cos|x|)的最小正周期。
【解】首先,T=2π是函数的周期(事实上,因为cos(-x)=cosx,所以co|x|=cosx);其次,当且仅当x=kπ+时,y=0(因为|2cosx|≤2π),
所以若最小正周期为T0,则T0=mπ,m∈N+,又sin(2cos0)=sin2sin(2cosπ),所以T0=2π。
4.三角最值问题。
例5已知函数y=sinx+,求函数的最大值与最小值。
【解法一】令sinx=,
则有y=
因为,所以,
所以≤1,
所以当,即x=2kπ-(k∈Z)时,ymin=0,

当,即x=2kπ+(k∈Z)时,ymax=2.
【解法二】因为y=sinx+,
=2(因为(a+b)2≤2(a2+b2)),
且|sinx|≤1≤,所以0≤sinx+≤2,
所以当=sinx,即x=2kπ+(k∈Z)时,ymax=2,
当=-sinx,即x=2kπ-(k∈Z)时,ymin=0。
例6设0π,求sin的最大值。
【解】因为0π,所以,所以sin0,cos0.
所以sin(1+cos)=2sincos2=≤=

当且仅当2sin2=cos2,即tan=,=2arctan时,sin(1+cos)取得最大值。
例7若A,B,C为△ABC三个内角,试求sinA+sinB+sinC的最大值。
【解】因为sinA+sinB=2sincos,①
sinC+sin,②
又因为,③
由①,②,③得sinA+sinB+sinC+sin≤4sin,
所以sinA+sinB+sinC≤3sin=,
当A=B=C=时,(sinA+sinB+sinC)max=.
注:三角函数的有界性、|sinx|≤1、|cosx|≤1、和差化积与积化和差公式、均值不等式、柯西不等式、函数的单调性等是解三角最值的常用手段。
5.换元法的使用。
例8求的值域。
【解】设t=sinx+cosx=
因为
所以
又因为t2=1+2sinxcosx,
所以sinxcosx=,所以,
所以
因为t-1,所以,所以y-1.
所以函数值域为

例9已知a0=1,an=(n∈N+),求证:an.
【证明】由题设an0,令an=tanan,an∈,则
an=
因为,an∈,所以an=,所以an=
又因为a0=tana1=1,所以a0=,所以。
又因为当0x时,tanxx,所以
注:换元法的关键是保持换元前后变量取值范围的一致性。
另外当x∈时,有tanxxsinx,这是个熟知的结论,暂时不证明,学完导数后,证明是很容易的。
6.图象变换:y=sinx(x∈R)与y=Asin(x+)(A,,0).
由y=sinx的图象向左平移个单位,然后保持横坐标不变,纵坐标变为原来的A倍,然后再保持纵坐标不变,横坐标变为原来的,得到y=Asin(x+)的图象;也可以由y=sinx的图象先保持横坐标不变,纵坐标变为原来的A倍,再保持纵坐标不变,横坐标变为原来的,最后向左平移个单位,得到y=Asin(x+)的图象。
例10例10已知f(x)=sin(x+)(0,0≤≤π)是R上的偶函数,其图象关于点对称,且在区间上是单调函数,求和的值。
【解】由f(x)是偶函数,所以f(-x)=f(x),所以sin(+)=sin(-x+),所以cossinx=0,对任意x∈R成立。
又0≤≤π,解得=,
因为f(x)图象关于对称,所以=0。
取x=0,得=0,所以sin
所以(k∈Z),即=(2k+1)(k∈Z).
又0,取k=0时,此时f(x)=sin(2x+)在[0,]上是减函数;
取k=1时,=2,此时f(x)=sin(2x+)在[0,]上是减函数;
取k=2时,≥,此时f(x)=sin(x+)在[0,]上不是单调函数,
综上,=或2。
7.三角公式的应用。
例11已知sin(α-β)=,sin(α+β)=-,且α-β∈,α+β∈,求sin2α,cos2β的值。
【解】因为α-β∈,所以cos(α-β)=-
又因为α+β∈,所以cos(α+β)=
所以sin2α=sin[(α+β)+(α-β)]=sin(α+β)cos(α-β)+cos(α+β)sin(α-β)=,
cos2β=cos[(α+β)-(α-β)]=cos(α+β)cos(α-β)+sin(α+β)sin(α-β)=-1.
例12已知△ABC的三个内角A,B,C成等差数列,且,试求的值。
【解】因为A=1200-C,所以cos=cos(600-C),
又由于
=,
所以=0。
解得或。
又0,所以。
例13求证:tan20+4cos70.
【解】tan20+4cos70=+4sin20

三、基础训练题
1.已知锐角x的终边上一点A的坐标为(2sin3,-2cos3),则x的弧度数为___________。
2.适合-2cscx的角的集合为___________。
3.给出下列命题:(1)若αβ,则sinαsinβ;(2)若sinαsinβ,则αβ;(3)若sinα0,则α为第一或第二象限角;(4)若α为第一或第二象限角,则sinα0.上述四个命题中,正确的命题有__________个。
4.已知sinx+cosx=(x∈(0,π)),则cotx=___________。
5.简谐振动x1=Asin和x2=Bsin叠加后得到的合振动是x=___________。
6.已知3sinx-4cosx=5sin(x+1)=5sin(x-2)=5cos(x+3)=5cos(x-4),则1,2,3,4分别是第________象限角。
7.满足sin(sinx+x)=cos(cosx-x)的锐角x共有________个。
8.已知,则=___________。
9.=___________。
10.cot15cos25cot35cot85=___________。
11.已知α,β∈(0,π),tan,sin(α+β)=,求cosβ的值。
12.已知函数f(x)=在区间上单调递减,试求实数m的取值范围。
四、高考水平训练题
1.已知一扇形中心角是a,所在圆半径为R,若其周长为定值c(c0),当扇形面积最大时,a=__________.
2.函数f(x)=2sinx(sinx+cosx)的单调递减区间是__________.
3.函数的值域为__________.
4.方程=0的实根个数为__________.
5.若sina+cosa=tana,a,则__________a(填大小关系).
6.(1+tan1)(1+tan2)…(1+tan44)(1+tan45)=__________.
7.若0y≤x且tanx=3tany,则x-y的最大值为__________.
8.=__________.
9.coscoscoscos=__________.
10.cos271+cos71cos49+cos249=__________.
11.解方程:sinx+2sin2x=3+sin3x.
12.求满足sin(x+sinx)=cos(x-cosx)的所有锐角x.
13.已知f(x)=(kA0,k∈Z,且A∈R),(1)试求f(x)的最大值和最小值;(2)若A0,k=-1,求f(x)的单调区间;(3)试求最小正整数k,使得当x在任意两个整数(包括整数本身)间变化时,函数f(x)至少取得一次最大值和一次最小值。

五、联赛一试水平训练题(一)
1.若x,y∈R,则z=cosx2+cosy2-cosxy的取值范围是____________.
2.已知圆x2+y2=k2至少盖住函数f(x)=的一个最大值点与一个最小值点,则实数k的取值范围是____________.
3.f()=5+8cos+4cos2+cos3的最小值为____________.
4.方程sinx+cosx+a=0在(0,2π)内有相异两实根α,β,则α+β=____________.
5.函数f(x)=|tanx|+|cotx|的单调递增区间是____________.
6.设sina0cosa,且sincos,则的取值范围是____________.
7.方程tan5x+tan3x=0在[0,π]中有__________个解.
8.若x,y∈R,则M=cosx+cosy+2cos(x+y)的最小值为____________.
9.若0,m∈N+,比较大小:(2m+1)sinm(1-sin)__________1-sin2m+1.
10.cot70+4cos70=____________.
11.在方程组中消去x,y,求出关于a,b,c的关系式。
12.已知α,β,γ,且cos2α+cos2β+cos2γ=1,求tanαtanβtanγ的最小值。
13.关于x,y的方程组有唯一一组解,且sinα,sinβ,sinγ互不相等,求sinα+sinβ+sinγ的值。
14.求满足等式sinxy=sinx+siny的所有实数对(x,y),x,y.
联赛一试水平训练题(二)
1.在平面直角坐标系中,函数f(x)=asinax+cosax(a0)在一个最小正周期长的区间上的图象与函数g(x)=的图象所围成的封闭图形的面积是__________.
2.若,则y=tan-tan+cos的最大值是__________.
3.在△ABC中,记BC=a,CA=b,AB=c,若9a2+9b2-19c2=0,则=__________.
4.设f(x)=x2-πx,α=arcsin,β=arctan,γ=arccos,δ=arccot,将f(α),f(β),f(γ),f(δ)从小到大排列为__________.
5.logsin1cos1=a,logsin1tan1=b,logcos1sin1=c,logcos1tan1=d。将a,b,c,d从小到大排列为__________.
6.在锐角△ABC中,cosA=cosαsinβ,cosB=cosβsinγ,cosC=cosγsinα,则tanαtanβtanγ=__________.
7.已知矩形的两边长分别为tan和1+cos(0π),且对任何x∈R,f(x)=sinx2+x+cos≥0,则此矩形面积的取值范围是__________.
8.在锐角△ABC中,sinA+sinB+sinC的取值范围是__________.
9.已知当x∈[0,1],不等式x2cos-x(1-x)+(1-x)2sin0恒成立,则的取值范围是__________.
10.已知sinx+siny+sinz=cosx+cosy+cosz=0,则cos2x+cos2y+cos2z=__________.
11.已知a1,a2,…,an是n个实常数,考虑关于x的函数:f(x)=cos(a1+x)+cos(a2+x)+…+cos(an+x)。求证:若实数x1,x2满足f(x1)=f(x2)=0,则存在整数m,使得x2-x1=mπ.
12.在△ABC中,已知,求证:此三角形中有一个内角为。
13.求证:对任意自然数n,均有|sin1|+|sin2|+…+|sin(3n-1)|+|sin3n|.

六、联赛二试水平训练题
1.已知x0,y0,且x+yπ,求证:w(w-1)sin(x+y)+w(sinx-siny)+siny0①(w∈R).
2.已知a为锐角,n≥2,n∈N+,求证:≥2n-2+1.
3.设x1,x2,…,xn,…,y1,y2,…,yn,…满足x1=y1=,xn+1=xn+,yn+1=,求证:2xnyn3(n≥2).
4.已知α,β,γ为锐角,且cos2α+cos2β+cos2γ=1,求证;πα+β+γπ.
5.求实数a的取值范围,使得对任意实数x和任意,恒有(x+3+2sincos)2+(x+asin+asin)2≥
6.设n,m都是正整数,并且nm,求证:对一切x都有2|sinnx-cosnx|≤3|sinnx-cosnx|.
7.在△ABC中,求sinA+sinB+sinC-cosA-cosB-cosC的最大值。
8.求的有的实数a,使cosa,cos2a,cos4a,…,cos2na,…中的每一项均为负数。
9.已知i,tan1tan2…tann=2,n∈N+,若对任意一组满足上述条件的
1,2,…,n都有cos1+cos2+…+cosn≤λ,求λ的最小值。

第十五章复数(高中数学竞赛标准教材)


第十五章复数
一、基础知识
1.复数的定义:设i为方程x2=-1的根,i称为虚数单位,由i与实数进行加、减、乘、除等运算。便产生形如a+bi(a,b∈R)的数,称为复数。所有复数构成的集合称复数集。通常用C来表示。
2.复数的几种形式。对任意复数z=a+bi(a,b∈R),a称实部记作Re(z),b称虚部记作Im(z).z=ai称为代数形式,它由实部、虚部两部分构成;若将(a,b)作为坐标平面内点的坐标,那么z与坐标平面唯一一个点相对应,从而可以建立复数集与坐标平面内所有的点构成的集合之间的一一映射。因此复数可以用点来表示,表示复数的平面称为复平面,x轴称为实轴,y轴去掉原点称为虚轴,点称为复数的几何形式;如果将(a,b)作为向量的坐标,复数z又对应唯一一个向量。因此坐标平面内的向量也是复数的一种表示形式,称为向量形式;另外设z对应复平面内的点Z,见图15-1,连接OZ,设∠xOZ=θ,|OZ|=r,则a=rcosθ,b=rsinθ,所以z=r(cosθ+isinθ),这种形式叫做三角形式。若z=r(cosθ+isinθ),则θ称为z的辐角。若0≤θ2π,则θ称为z的辐角主值,记作θ=Arg(z).r称为z的模,也记作|z|,由勾股定理知|z|=.如果用eiθ表示cosθ+isinθ,则z=reiθ,称为复数的指数形式。
3.共轭与模,若z=a+bi,(a,b∈R),则a-bi称为z的共轭复数。模与共轭的性质有:(1);(2);(3);(4);(5);(6);(7)||z1|-|z2||≤|z1±z2|≤|z1|+|z2|;(8)|z1+z2|2+|z1-z2|2=2|z1|2+2|z2|2;(9)若|z|=1,则。
4.复数的运算法则:(1)按代数形式运算加、减、乘、除运算法则与实数范围内一致,运算结果可以通过乘以共轭复数将分母分为实数;(2)按向量形式,加、减法满足平行四边形和三角形法则;(3)按三角形式,若z1=r1(cosθ1+isinθ1),z2=r2(cosθ2+isinθ2),则z1z2=r1r2[cos(θ1+θ2)+isin(θ1+θ2)];若[cos(θ1-θ2)+isin(θ1-θ2)],用指数形式记为z1z2=r1r2ei(θ1+θ2),
5.棣莫弗定理:[r(cosθ+isinθ)]n=rn(cosnθ+isinnθ).
6.开方:若r(cosθ+isinθ),则,k=0,1,2,…,n-1。
7.单位根:若wn=1,则称w为1的一个n次单位根,简称单位根,记Z1=,则全部单位根可表示为1,,.单位根的基本性质有(这里记,k=1,2,…,n-1):(1)对任意整数k,若k=nq+r,q∈Z,0≤r≤n-1,有Znq+r=Zr;(2)对任意整数m,当n≥2时,有=特别1+Z1+Z2+…+Zn-1=0;(3)xn-1+xn-2+…+x+1=(x-Z1)(x-Z2)…(x-Zn-1)=(x-Z1)(x-)…(x-).
8.复数相等的充要条件:(1)两个复数实部和虚部分别对应相等;(2)两个复数的模和辐角主值分别相等。
9.复数z是实数的充要条件是z=;z是纯虚数的充要条件是:z+=0(且z≠0).
10.代数基本定理:在复数范围内,一元n次方程至少有一个根。
11.实系数方程虚根成对定理:实系数一元n次方程的虚根成对出现,即若z=a+bi(b≠0)是方程的一个根,则=a-bi也是一个根。
12.若a,b,c∈R,a≠0,则关于x的方程ax2+bx+c=0,当Δ=b2-4ac0时方程的根为
二、方法与例题
1.模的应用。
例1求证:当n∈N+时,方程(z+1)2n+(z-1)2n=0只有纯虚根。
[证明]若z是方程的根,则(z+1)2n=-(z-1)2n,所以|(z+1)2n|=|-(z-1)2n|,即|z+1|2=|z-1|2,即(z+1)(+1)=(z-1)(-1),化简得z+=0,又z=0不是方程的根,所以z是纯虚数。
例2设f(z)=z2+az+b,a,b为复数,对一切|z|=1,有|f(z)|=1,求a,b的值。
[解]因为4=(1+a+b)+(1-a+b)-(-1+ai+b)-(-1-ai+b)
=|f(1)+f(-1)-f(i)-f(-i)|

≥|f(1)|+|f(-1)|+|f(i)|+|f(-i)|=4,其中等号成立。
所以f(1),f(-1),-f(i),-f(-i)四个向量方向相同,且模相等。
所以f(1)=f(-1)=-f(i)=-f(-i),解得a=b=0.
2.复数相等。
例3设λ∈R,若二次方程(1-i)x2+(λ+i)x+1+λi=0有两个虚根,求λ满足的充要条件。
[解]若方程有实根,则方程组有实根,由方程组得(λ+1)x+λ+1=0.若λ=-1,则方程x2-x+1=0中Δ0无实根,所以λ≠-1。所以x=-1,λ=2.所以当λ≠2时,方程无实根。所以方程有两个虚根的充要条件为λ≠2。
3.三角形式的应用。
例4设n≤2000,n∈N,且存在θ满足(sinθ+icosθ)n=sinnθ+icosnθ,那么这样的n有多少个?
[解]由题设得
,所以n=4k+1.又因为0≤n≤2000,所以1≤k≤500,所以这样的n有500个。
4.二项式定理的应用。
例5计算:(1);(2)
[解](1+i)100=[(1+i)2]50=(2i)50=-250,由二项式定理(1+i)100==)+()i,比较实部和虚部,得=-250,=0。
5.复数乘法的几何意义。
例6以定长线段BC为一边任作ΔABC,分别以AB,AC为腰,B,C为直角顶点向外作等腰直角ΔABM、等腰直角ΔACN。求证:MN的中点为定点。
[证明]设|BC|=2a,以BC中点O为原点,BC为x轴,建立直角坐标系,确定复平面,则B,C对应的复数为-a,a,点A,M,N对应的复数为z1,z2,z3,,由复数乘法的几何意义得:,①,②由①+②得z2+z3=i(z1+a)-i(z1-a)=2ai.设MN的中点为P,对应的复数z=,为定值,所以MN的中点P为定点。
例7设A,B,C,D为平面上任意四点,求证:ABAD+BCAD≥ACBD。
[证明]用A,B,C,D表示它们对应的复数,则(A-B)(C-D)+(B-C)(A-D)=(A-C)(B-D),因为|A-B||C-D|+|B-C||A-D|≥(A-B)(C-D)+(B-C)(A-D).
所以|A-B||C-D|+|B-C||A-D|≥|A-C||B-D|,“=”成立当且仅当,即=π,即A,B,C,D共圆时成立。不等式得证。
6.复数与轨迹。
例8ΔABC的顶点A表示的复数为3i,底边BC在实轴上滑动,且|BC|=2,求ΔABC的外心轨迹。
[解]设外心M对应的复数为z=x+yi(x,y∈R),B,C点对应的复数分别是b,b+2.因为外心M是三边垂直平分线的交点,而AB的垂直平分线方程为|z-b|=|z-3i|,BC的垂直平分线的方程为|z-b|=|z-b-2|,所以点M对应的复数z满足|z-b|=|z-3i|=|z-b-2|,消去b解得
所以ΔABC的外心轨迹是轨物线。
7.复数与三角。
例9已知cosα+cosβ+cosγ=sinα+sinβ+sinγ=0,求证:cos2α+cos2β+cos2γ=0。
[证明]令z1=cosα+isinα,z2=cosβ+isinβ,z3=cosγ+isinγ,则
z1+z2+z3=0。所以又因为|zi|=1,i=1,2,3.
所以zi=1,即
由z1+z2+z3=0得①

所以
所以cos2α+cos2β+cos2γ+i(sin2α+sin2β+sin2γ)=0.
所以cos2α+cos2β+cos2γ=0。
例10求和:S=cos200+2cos400+…+18cos18×200.
[解]令w=cos200+isin200,则w18=1,令P=sin200+2sin400+…+18sin18×200,则S+iP=w+2w2+…+18w18.①由①×w得w(S+iP)=w2+2w3+…+17w18+18w19,②由①-②得(1-w)(S+iP)=w+w2+…+w18-18w19=,所以S+iP=,所以
8.复数与多项式。
例11已知f(z)=c0zn+c1zn-1+…+cn-1z+cn是n次复系数多项式(c0≠0).
求证:一定存在一个复数z0,|z0|≤1,并且|f(z0)|≥|c0|+|cn|.
[证明]记c0zn+c1zn-1+…+cn-1z=g(z),令=Arg(cn)-Arg(z0),则方程g(Z)-c0eiθ=0为n次方程,其必有n个根,设为z1,z2,…,zn,从而g(z)-c0eiθ=(z-z1)(z-z2)…(z-zn)c0,令z=0得-c0eiθ=(-1)nz1z2…znc0,取模得|z1z2…zn|=1。所以z1,z2,…,zn中必有一个zi使得|zi|≤1,从而f(zi)=g(zi)+cn=c0eiθ=cn,所以|f(zi)|=|c0eiθ+cn|=|c0|+|cn|.
9.单位根的应用。
例12证明:自⊙O上任意一点p到正多边形A1A2…An各个顶点的距离的平方和为定值。
[证明]取此圆为单位圆,O为原点,射线OAn为实轴正半轴,建立复平面,顶点A1对应复数设为,则顶点A2A3…An对应复数分别为ε2,ε3,…,εn.设点p对应复数z,则|z|=1,且=2n-
=2n-命题得证。
10.复数与几何。
例13如图15-2所示,在四边形ABCD内存在一点P,使得ΔPAB,ΔPCD都是以P为直角顶点的等腰直角三角形。求证:必存在另一点Q,使得ΔQBC,ΔQDA也都是以Q为直角顶点的等腰直角三角形。
[证明]以P为原点建立复平面,并用A,B,C,D,P,Q表示它们对应的复数,由题设及复数乘法的几何意义知D=iC,B=iA;取,则C-Q=i(B-Q),则ΔBCQ为等腰直角三角形;又由C-Q=i(B-Q)得,即A-Q=i(D-Q),所以ΔADQ也为等腰直角三角形且以Q为直角顶点。综上命题得证。
例14平面上给定ΔA1A2A3及点p0,定义As=As-3,s≥4,构造点列p0,p1,p2,…,使得pk+1为绕中心Ak+1顺时针旋转1200时pk所到达的位置,k=0,1,2,…,若p1986=p0.证明:ΔA1A2A3为等边三角形。
[证明]令u=,由题设,约定用点同时表示它们对应的复数,取给定平面为复平面,则p1=(1+u)A1-up0,
p2=(1+u)A2-up1,
p3=(1+u)A3-up2,
①×u2+②×(-u)得p3=(1+u)(A3-uA2+u2A1)+p0=w+p0,w为与p0无关的常数。同理得p6=w+p3=2w+p0,…,p1986=662w+p0=p0,所以w=0,从而A3-uA2+u2A1=0.由u2=u-1得A3-A1=(A2-A1)u,这说明ΔA1A2A3为正三角形。
三、基础训练题
1.满足(2x2+5x+2)+(y2-y-2)i=0的有序实数对(x,y)有__________组。
2.若z∈C且z2=8+6i,且z3-16z-=__________。
3.复数z满足|z|=5,且(3+4i)z是纯虚数,则__________。
4.已知,则1+z+z2+…+z1992=__________。
5.设复数z使得的一个辐角的绝对值为,则z辐角主值的取值范围是__________。
6.设z,w,λ∈C,|λ|≠1,则关于z的方程-Λz=w的解为z=__________。
7.设0x1,则2arctan__________。
8.若α,β是方程ax2+bx+c=0(a,b,c∈R)的两个虚根且,则__________。
9.若a,b,c∈C,则a2+b2c2是a2+b2-c20成立的__________条件。
10.已知关于x的实系数方程x2-2x+2=0和x2+2mx+1=0的四个不同的根在复平面上对应的点共圆,则m取值的集合是__________。
11.二次方程ax2+x+1=0的两根的模都小于2,求实数a的取值范围。
12.复平面上定点Z0,动点Z1对应的复数分别为z0,z1,其中z0≠0,且满足方程|z1-z0|=|z1|,①另一个动点Z对应的复数z满足z1z=-1,②求点Z的轨迹,并指出它在复平面上的形状和位置。
13.N个复数z1,z2,…,zn成等比数列,其中|z1|≠1,公比为q,|q|=1且q≠±1,复数w1,w2,…,wn满足条件:wk=zk++h,其中k=1,2,…,n,h为已知实数,求证:复平面内表示w1,w2,…,wn的点p1,p2,…,pn都在一个焦距为4的椭圆上。
四、高考水平训练题
1.复数z和cosθ+isinθ对应的点关于直线|iz+1|=|z+i|对称,则z=__________。
2.设复数z满足z+|z|=2+i,那么z=__________。
3.有一个人在草原上漫步,开始时从O出发,向东行走,每走1千米后,便向左转角度,他走过n千米后,首次回到原出发点,则n=__________。
4.若,则|z|=__________。
5.若ak≥0,k=1,2,…,n,并规定an+1=a1,使不等式恒成立的实数λ的最大值为__________。
6.已知点P为椭圆上任意一点,以OP为边逆时针作正方形OPQR,则动点R的轨迹方程为__________。
7.已知P为直线x-y+1=0上的动点,以OP为边作正ΔOPQ(O,P,Q按顺时针方向排列)。则点Q的轨迹方程为__________。
8.已知z∈C,则命题“z是纯虚数”是命题“”的__________条件。
9.若n∈N,且n≥3,则方程zn+1+zn-1=0的模为1的虚根的个数为__________。
10.设(x2006+x2008+3)2007=a0+a1x+a2x2+…+anxn,则+…+a3k-__________。
11.设复数z1,z2满足z1,其中A≠0,A∈C。证明:
(1)|z1+A||z2+A|=|A|2;(2)
12.若z∈C,且|z|=1,u=z4-z3-3z2i-z+1.求|u|的最大值和最小值,并求取得最大值、最小值时的复数z.
13.给定实数a,b,c,已知复数z1,z2,z3满足求
|az1+bz2+cz3|的值。
三、联赛一试水平训练题
1.已知复数z满足则z的辐角主值的取值范围是__________。
2.设复数z=cosθ+isinθ(0≤θ≤π),复数z,(1+i)z,2在复平面上对应的三个点分别是P,Q,R,当P,Q,R不共线时,以PQ,PR为两边的平行四边形第四个顶点为S,则S到原点距离的最大值为__________。
3.设复平面上单位圆内接正20边形的20个顶点所对应的复数依次为z1,z2,…,z20,则复数所对应的不同点的个数是__________。
4.已知复数z满足|z|=1,则|z+iz+1|的最小值为__________。
5.设,z1=w-z,z2=w+z,z1,z2对应复平面上的点A,B,点O为原点,∠AOB=900,|AO|=|BO|,则ΔOAB面积是__________。
6.设,则(x-w)(x-w3)(x-w7)(x-w9)的展开式为__________。
7.已知()m=(1+i)n(m,n∈N+),则mn的最小值是__________。
8.复平面上,非零复数z1,z2在以i为圆心,1为半径的圆上,z2的实部为零,z1的辐角主值为,则z2=__________。
9.当n∈N,且1≤n≤100时,的值中有实数__________个。
10.已知复数z1,z2满足,且,,,则的值是__________。
11.集合A={z|z18=1},B={w|w48=1},C={zw|z∈A,w∈B},问:集合C中有多少个不同的元素?
12.证明:如果复数A的模为1,那么方程的所有根都是不相等的实根(n∈N+).
13.对于适合|z|≤1的每一个复数z,要使0|αz+β|2总能成立,试问:复数α,β应满足什么条件?
六、联赛二试水平训练题
1.设非零复数a1,a2,a3,a4,a5满足
其中S为实数且|S|≤2,求证:复数a1,a2,a3,a4,a5在复平面上所对应的点位于同一圆周上。
2.求证:。
3.已知p(z)=zn+c1zn-1+c2zn-2+…+cn是复变量z的实系数多项式,且|p(i)|1,求证:存在实数a,b,使得p(a+bi)=0且(a2+b2+1)24b2+1.
4.运用复数证明:任给8个非零实数a1,a2,…,a8,证明六个数a1a3+a2a4,a1a5+a2a6,a1a7+a2a8,a3a5+a4a6,a3a7+a4a8,a5a7+a6a8中至少有一个是非负数。
5.已知复数z满足11z10+10iz9+10iz-11=0,求证:|z|=1.
6.设z1,z2,z3为复数,求证:
|z1|+|z2|+|z3|+|z1+z2+z3|≥|z1+z2|+|z2+z3|+|z3+z1|。

高中数学竞赛标准教材(第四章几个初等函数的性质)


第四章几个初等函数的性质

一、基础知识
1.指数函数及其性质:形如y=ax(a0,a1)的函数叫做指数函数,其定义域为R,值域为(0,+∞),当0a1时,y=ax是减函数,当a1时,y=ax为增函数,它的图象恒过定点(0,1)。
2.分数指数幂:。
3.对数函数及其性质:形如y=logax(a0,a1)的函数叫做对数函数,其定义域为(0,+∞),值域为R,图象过定点(1,0)。当0a1,y=logax为减函数,当a1时,y=logax为增函数。
4.对数的性质(M0,N0);
1)ax=Mx=logaM(a0,a1);
2)loga(MN)=logaM+logaN;
3)loga()=logaM-logaN;4)logaMn=nlogaM;,
5)loga=logaM;6)alogaM=M;7)logab=(a,b,c0,a,c1).
5.函数y=x+(a0)的单调递增区间是和,单调递减区间为和。(请读者自己用定义证明)
6.连续函数的性质:若ab,f(x)在[a,b]上连续,且f(a)f(b)0,则f(x)=0在(a,b)上至少有一个实根。
二、方法与例题
1.构造函数解题。
例1已知a,b,c∈(-1,1),求证:ab+bc+ca+10.
【证明】设f(x)=(b+c)x+bc+1(x∈(-1,1)),则f(x)是关于x的一次函数。
所以要证原不等式成立,只需证f(-1)0且f(1)0(因为-1a1).
因为f(-1)=-(b+c)+bc+1=(1-b)(1-c)0,
f(1)=b+c+bc+a=(1+b)(1+c)0,
所以f(a)0,即ab+bc+ca+10.
例2(柯西不等式)若a1,a2,…,an是不全为0的实数,b1,b2,…,bn∈R,则()()≥()2,等号当且仅当存在R,使ai=,i=1,2,…,n时成立。
【证明】令f(x)=()x2-2()x+=,
因为0,且对任意x∈R,f(x)≥0,
所以△=4()-4()()≤0.
展开得()()≥()2。
等号成立等价于f(x)=0有实根,即存在,使ai=,i=1,2,…,n。
例3设x,y∈R+,x+y=c,c为常数且c∈(0,2],求u=的最小值。
【解】u==xy+≥xy++2
=xy++2.
令xy=t,则0t=xy≤,设f(t)=t+,0t≤
因为0c≤2,所以0≤1,所以f(t)在上单调递减。
所以f(t)min=f()=+,所以u≥++2.
当x=y=时,等号成立.所以u的最小值为++2.
2.指数和对数的运算技巧。
例4设p,q∈R+且满足log9p=log12q=log16(p+q),求的值。
【解】令log9p=log12q=log16(p+q)=t,则p=9t,q=12t,p+q=16t,
所以9t+12t=16t,即1+
记x=,则1+x=x2,解得
又0,所以=
例5对于正整数a,b,c(a≤b≤c)和实数x,y,z,w,若ax=by=cz=70w,且,求证:a+b=c.
【证明】由ax=by=cz=70w取常用对数得xlga=ylgb=zlgc=wlg70.
所以lga=lg70,lgb=lg70,lgc=lg70,
相加得(lga+lgb+lgc)=lg70,由题设,
所以lga+lgb+lgc=lg70,所以lgabc=lg70.
所以abc=70=2×5×7.
若a=1,则因为xlga=wlg70,所以w=0与题设矛盾,所以a1.
又a≤b≤c,且a,b,c为70的正约数,所以只有a=2,b=5,c=7.
所以a+b=c.
例6已知x1,ac1,a1,c1.且logax+logcx=2logbx,求证c2=(ac)logab.
【证明】由题设logax+logcx=2logbx,化为以a为底的对数,得

因为ac0,ac1,所以logab=logacc2,所以c2=(ac)logab.
注:指数与对数式互化,取对数,换元,换底公式往往是解题的桥梁。
3.指数与对数方程的解法。
解此类方程的主要思想是通过指对数的运算和换元等进行化简求解。值得注意的是函数单调性的应用和未知数范围的讨论。
例7解方程:3x+4x+5x=6x.
【解】方程可化为=1。设f(x)=,则f(x)在(-∞,+∞)上是减函数,因为f(3)=1,所以方程只有一个解x=3.
例8解方程组:(其中x,y∈R+).
【解】两边取对数,则原方程组可化为①②
把①代入②得(x+y)2lgx=36lgx,所以[(x+y)2-36]lgx=0.
由lgx=0得x=1,由(x+y)2-36=0(x,y∈R+)得x+y=6,
代入①得lgx=2lgy,即x=y2,所以y2+y-6=0.
又y0,所以y=2,x=4.
所以方程组的解为.
例9已知a0,a1,试求使方程loga(x-ak)=loga2(x2-a2)有解的k的取值范围。
【解】由对数性质知,原方程的解x应满足.①②③
若①、②同时成立,则③必成立,
故只需解.
由①可得2kx=a(1+k2),④
当k=0时,④无解;当k0时,④的解是x=,代入②得k.
若k0,则k21,所以k-1;若k0,则k21,所以0k1.
综上,当k∈(-∞,-1)∪(0,1)时,原方程有解。

三、基础训练题
1.命题p:“(log23)x-(log53)x≥(log23)-y-(log53)-y”是命题q:“x+y≥0”的_________条件。
2.如果x1是方程x+lgx=27的根,x2是方程x+10x=27的根,则x1+x2=_________.
3.已知f(x)是定义在R上的增函数,点A(-1,1),B(1,3)在它的图象上,y=f-1(x)是它的反函数,则不等式|f-1(log2x)|1的解集为_________。
4.若log2a0,则a取值范围是_________。
5.命题p:函数y=log2在[2,+∞)上是增函数;命题q:函数y=log2(ax2-4x+1)的值域为R,则p是q的_________条件。
6.若0b1,a0且a1,比较大小:|loga(1-b)|_________|loga(1+b).
7.已知f(x)=2+log3x,x∈[1,3],则函数y=[f(x)]2+f(x2)的值域为_________。
8.若x=,则与x最接近的整数是_________。
9.函数的单调递增区间是_________。
10.函数f(x)=的值域为_________。
11.设f(x)=lg[1+2x+3x+…+(n-1)x+nxa],其中n为给定正整数,n≥2,a∈R.若f(x)在x∈(-∞,1]时有意义,求a的取值范围。
12.当a为何值时,方程=2有一解,二解,无解?
四、高考水平训练题
1.函数f(x)=+lg(x2-1)的定义域是_________.
2.已知不等式x2-logmx0在x∈时恒成立,则m的取值范围是_________.
3.若x∈{x|log2x=2-x},则x2,x,1从大到小排列是_________.
4.若f(x)=ln,则使f(a)+f(b)=_________.

5.命题p:函数y=log2在[2,+∞)上是增函数;命题q:函数y=log2(ax2-4x+1)的值域为R,则p是q的_________条件.
6.若0b1,a0且a1,比较大小:|loga(1-b)|_________|loga(1+b)|.
7.已知f(x)=2+log3x,x∈[1,3],则函数y=[f(x)]2+f(x2)的值域为_________.
8.若x=,则与x最接近的整数是_________.
9.函数y=的单调递增区间是_________.
10.函数f(x)=的值域为_________.
11.设f(x)=lg[1+2x+3x+…+(n-1)x+nxa],其中n为给定正整数,n≥2,a∈R。若f(x)在x∈(-∞,1]时有意义,求a的取值范围。
12.当a为何值时,方程=2有一解,二解,无解?
四、高考水平训练题
1.函数f(x)=+lg(x2-1)的定义域是__________.
2.已知不等式x2-logmx0在x∈时恒成立,则m的取值范围是________.
3.若x∈{x|log2x=2-x},则x2,x,1从大到小排列是________.
4.若f(x)=ln,则使f(a)+f(b)=成立的a,b的取值范围是________.
5.已知an=logn(n+1),设,其中p,q为整数,且(p,q)=1,则pq的值为_________.
6.已知x10,y10,xy=1000,则(lgx)(lgy)的取值范围是________.
7.若方程lg(kx)=2lg(x+1)只有一个实数解,则实数k的取值范围是________.
8.函数f(x)=的定义域为R,若关于x的方程f2(x)+bf(x)+c=0有7个不同的实数解,则b,c应满足的充要条件是________.
(1)b0且c0;(2)b0且c0;(3)b0且c=0;(4)b≥0且c=0。
9.已知f(x)=x,F(x)=f(x+t)-f(x-t)(t0),则F(x)是________函数(填奇偶性).
10.已知f(x)=lg,若=1,=2,其中|a|1,|b|1,则f(a)+f(b)=________.
11.设a∈R,试讨论关于x的方程lg(x-1)+lg(3-x)=lg(a-x)的实数解的个数。
12.设f(x)=|lgx|,实数a,b满足0ab,f(a)=f(b)=2f,求证:
(1)a4+2a2-4a+1=0,b4-4b3+2b2+1=0;(2)3b4.
13.设a0且a1,f(x)=loga(x+)(x≥1),(1)求f(x)的反函数f-1(x);(2)若f-1(n)(n∈N+),求a的取值范围。
五、联赛一试水平训练题
1.如果log2[log(log2x)]=log3[log(log3x)]=log5[log(log5z)]=0,那么将x,y,z从小到大排列为___________.
2.设对任意实数x0x1x2x30,都有log1993+log1993+log1993klog1993恒成立,则k的最大值为___________.
3.实数x,y满足4x2-5xy+4y2=5,设S=x2+y2,则的值为___________.
4.已知0b1,00α450,则以下三个数:x=(sinα)logbsina,y=(cosα)logbsina,z=(sinα)logbsina从小到大排列为___________.
5.用[x]表示不超过x的最大整数,则方程lg2x-[lgx]-2=0的实根个数是___________.
6.设a=lgz+lg[x(yz)-1+1],b=lgx-1+lg[xyz+1],c=lgy+lg[(xyz)-1+1],记a,b,c中的最大数为M,则M的最小值为___________.
7.若f(x)(x∈R)是周期为2的偶函数,当x∈[0,1]时,f(x)=,则,由小到大排列为___________.
8.不等式+20的解集为___________.
9.已知a1,b1,且lg(a+b)=lga+lgb,求lg(a-1)+lg(b-1).
10.(1)试画出由方程所确定的函数y=f(x)图象。
(2)若函数y=ax+与y=f(x)的图象恰有一个公共点,求a的取值范围。
11.对于任意n∈N+(n1),试证明:[]+[]+…+[]=[log2n]+[log3n]+…+[lognn]。
六、联赛二试水平训练题
1.设x,y,z∈R+且x+y+z=1,求u=的最小值。
2.当a为何值时,不等式loglog5(x2+ax+6)+loga3≥0有且只有一个解(a1且a1)。
3.f(x)是定义在(1,+∞)上且在(1,+∞)中取值的函数,满足条件;对于任何x,y1及u,v0,f(xuyv)≤[f(x)][f(y)]①都成立,试确定所有这样的函数f(x).
4.求所有函数f:R→R,使得xf(x)-yf(x)=(x-y)f(x+y)①成立。
5.设m≥14是一个整数,函数f:N→N定义如下:
f(n)=,
求出所有的m,使得f(1995)=1995.
6.求定义在有理数集上且满足下列条件的所有函数f:
f(x+y)=f(x)+f(y)+f(x)f(y),x,y∈Q.
7.是否存在函数f(n),将自然数集N映为自身,且对每个n1,f(n)=f(f(n-1))+f(f(n+1))都成立。
8.设p,q是任意自然数,求证:存在这样的f(x)∈Z(x)(表示整系数多项式集合),使对x轴上的某个长为的开区间中的每一个数x,有
9.设α,β为实数,求所有f:R+→R,使得对任意的x,y∈R+,f(x)f(y)=y2f成立。

第十三章排列组合与概率(高中数学竞赛标准教材)


第十三章排列组合与概率

一、基础知识
1.加法原理:做一件事有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事一共有N=m1+m2+…+mn种不同的方法。
2.乘法原理:做一件事,完成它需要分n个步骤,第1步有m1种不同的方法,第2步有m2种不同的方法,……,第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×…×mn种不同的方法。
3.排列与排列数:从n个不同元素中,任取m(m≤n)个元素,按照一定顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列,从n个不同元素中取出m个(m≤n)元素的所有排列个数,叫做从n个不同元素中取出m个元素的排列数,用表示,=n(n-1)…(n-m+1)=,其中m,n∈N,m≤n,
注:一般地=1,0!=1,=n!。
4.N个不同元素的圆周排列数为=(n-1)!。
5.组合与组合数:一般地,从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合,即从n个不同元素中不计顺序地取出m个构成原集合的一个子集。从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用表示:
6.组合数的基本性质:(1);(2);(3);(4);(5);(6)。
7.定理1:不定方程x1+x2+…+xn=r的正整数解的个数为。
[证明]将r个相同的小球装入n个不同的盒子的装法构成的集合为A,不定方程x1+x2+…+xn=r的正整数解构成的集合为B,A的每个装法对应B的唯一一个解,因而构成映射,不同的装法对应的解也不同,因此为单射。反之B中每一个解(x1,x2,…,xn),将xi作为第i个盒子中球的个数,i=1,2,…,n,便得到A的一个装法,因此为满射,所以是一一映射,将r个小球从左到右排成一列,每种装法相当于从r-1个空格中选n-1个,将球分n份,共有种。故定理得证。
推论1不定方程x1+x2+…+xn=r的非负整数解的个数为
推论2从n个不同元素中任取m个允许元素重复出现的组合叫做n个不同元素的m可重组合,其组合数为
8.二项式定理:若n∈N+,则(a+b)n=.其中第r+1项Tr+1=叫二项式系数。
9.随机事件:在一定条件下可能发生也可能不发生的事件叫随机事件。在大量重复进行同一试验时,事件A发生的频率总是接近于某个常数,在它附近摆动,这个常数叫做事件A发生的概率,记作p(A),0≤p(A)≤1.
10.等可能事件的概率,如果一次试验中共有n种等可能出现的结果,其中事件A包含的结果有m种,那么事件A的概率为p(A)=
11.互斥事件:不可能同时发生的两个事件,叫做互斥事件,也叫不相容事件。如果事件A1,A2,…,An彼此互斥,那么A1,A2,…,An中至少有一个发生的概率为
p(A1+A2+…+An)=p(A1)+p(A2)+…+p(An).
12.对立事件:事件A,B为互斥事件,且必有一个发生,则A,B叫对立事件,记A的对立事件为。由定义知p(A)+p()=1.
13.相互独立事件:事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫做相互独立事件。
14.相互独立事件同时发生的概率:两个相互独立事件同时发生的概率,等于每个事件发生的概率的积。即p(AB)=p(A)p(B).若事件A1,A2,…,An相互独立,那么这n个事件同时发生的概率为p(A1A2…An)=p(A1)p(A2)…p(An).
15.独立重复试验:若n次重复试验中,每次试验结果的概率都不依赖于其他各次试验的结果,则称这n次试验是独立的.
16.独立重复试验的概率:如果在一次试验中,某事件发生的概率为p,那么在n次独立重复试验中,这个事件恰好发生k次的概率为pn(k)=pk(1-p)n-k.
17.离散型随机为量的分布列:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫随机变量,例如一次射击命中的环数ξ就是一个随机变量,ξ可以取的值有0,1,2,…,10。如果随机变量的可能取值可以一一列出,这样的随机变量叫离散型随机变量。
一般地,设离散型随机变量ξ可能取的值为x1,x2,…,xi,…,ξ取每一个值xi(i=1,2,…)的概率p(ξ=xi)=pi,则称表
ξx1x2x3…xi…
pp1p2p3…pi…
为随机变量ξ的概率分布,简称ξ的分布列,称Eξ=x1p1+x2p2+…+xnpn+…为ξ的数学期望或平均值、均值、简称期望,称Dξ=(x1-Eξ)2p1+(x2-Eξ)2p2+…+(xn-Eξ)2pn+…为ξ的均方差,简称方差。叫随机变量ξ的标准差。
18.二项分布:如果在一次试验中某事件发生的概率是p,那么在n次独立重复试验中,这个事件恰好发生k次的概率为p(ξ=k)=,ξ的分布列为
ξ01…xi…N
p

此时称ξ服从二项分布,记作ξ~B(n,p).若ξ~B(n,p),则Eξ=np,Dξ=npq,以上q=1-p.
19.几何分布:在独立重复试验中,某事件第一次发生时所做试验的次数ξ也是一个随机变量,若在一次试验中该事件发生的概率为p,则p(ξ=k)=qk-1p(k=1,2,…),ξ的分布服从几何分布,Eξ=,Dξ=(q=1-p).
二、方法与例题
1.乘法原理。
例1有2n个人参加收发电报培训,每两个人结为一对互发互收,有多少种不同的结对方式?
[解]将整个结对过程分n步,第一步,考虑其中任意一个人的配对者,有2n-1种选则;这一对结好后,再从余下的2n-2人中任意确定一个。第二步考虑他的配对者,有2n-3种选择,……这样一直进行下去,经n步恰好结n对,由乘法原理,不同的结对方式有
(2n-1)×(2n-3)×…×3×1=
2.加法原理。
例2图13-1所示中没有电流通过电流表,其原因仅因为电阻断路的可能性共有几种?
[解]断路共分4类:1)一个电阻断路,有1种可能,只能是R4;2)有2个电阻断路,有-1=5种可能;3)3个电阻断路,有=4种;4)有4个电阻断路,有1种。从而一共有1+5+4+1=11种可能。
3.插空法。
例310个节目中有6个演唱4个舞蹈,要求每两个舞蹈之间至少安排一个演唱,有多少种不同的安排节目演出顺序的方式?
[解]先将6个演唱节目任意排成一列有种排法,再从演唱节目之间和前后一共7个位置中选出4个安排舞蹈有种方法,故共有=604800种方式。
4.映射法。
例4如果从1,2,…,14中,按从小到大的顺序取出a1,a2,a3使同时满足:a2-a1≥3,a3-a2≥3,那么所有符合要求的不同取法有多少种?
[解]设S={1,2,…,14},={1,2,…,10};T={(a1,a2,a3)|a1,a2,a3∈S,a2-a1≥3,a3-a2≥3},={()∈},若,令,则(a1,a2,a3)∈T,这样就建立了从到T的映射,它显然是单射,其次若(a1,a2,a3)∈T,令,则,从而此映射也是满射,因此是一一映射,所以|T|==120,所以不同取法有120种。
5.贡献法。
例5已知集合A={1,2,3,…,10},求A的所有非空子集的元素个数之和。
[解]设所求的和为x,因为A的每个元素a,含a的A的子集有29个,所以a对x的贡献为29,又|A|=10。所以x=10×29.
[另解]A的k元子集共有个,k=1,2,…,10,因此,A的子集的元素个数之和为10×29。
6.容斥原理。
例6由数字1,2,3组成n位数(n≥3),且在n位数中,1,2,3每一个至少出现1次,问:这样的n位数有多少个?
[解]用I表示由1,2,3组成的n位数集合,则|I|=3n,用A1,A2,A3分别表示不含1,不含2,不含3的由1,2,3组成的n位数的集合,则|A1|=|A2|=|A3|=2n,|A1A2|=|A2A3|=|A1A3|=1。|A1A2A3|=0。
所以由容斥原理|A1A2A3|==3×2n-3.所以满足条件的n位数有|I|-|A1A2A3|=3n-3×2n+3个。
7.递推方法。
例7用1,2,3三个数字来构造n位数,但不允许有两个紧挨着的1出现在n位数中,问:能构造出多少个这样的n位数?
[解]设能构造an个符合要求的n位数,则a1=3,由乘法原理知a2=3×3-1=8.当n≥3时:1)如果n位数的第一个数字是2或3,那么这样的n位数有2an-1;2)如果n位数的第一个数字是1,那么第二位只能是2或3,这样的n位数有2an-2,所以an=2(an-1+an-2)(n≥3).这里数列{an}的特征方程为x2=2x+2,它的两根为x1=1+,x2=1-,故an=c1(1+)n+c2(1+)n,由a1=3,a2=8得,所以
8.算两次。
例8m,n,r∈N+,证明:①
[证明]从n位太太与m位先生中选出r位的方法有种;另一方面,从这n+m人中选出k位太太与r-k位先生的方法有种,k=0,1,…,r。所以从这n+m人中选出r位的方法有种。综合两个方面,即得①式。
9.母函数。
例9一副三色牌共有32张,红、黄、蓝各10张,编号为1,2,…,10,另有大、小王各一张,编号均为0。从这副牌中任取若干张牌,按如下规则计算分值:每张编号为k的牌计为2k分,若它们的分值之和为2004,则称这些牌为一个“好牌”组,求好牌组的个数。
[解]对于n∈{1,2,…,2004},用an表示分值之和为n的牌组的数目,则an等于函数f(x)=(1+)2(1+)3…(1+)3的展开式中xn的系数(约定|x|1),由于f(x)=[(1+)(1+)…(1+)]3=3=3。
而0≤2004211,所以an等于的展开式中xn的系数,又由于==(1+x2+x3+…+x2k+…)[1+2x+3x2+…+(2k+1)x2k+…],所以x2k在展开式中的系数为a2k=1+3+5++(2k+1)=(k+1)2,k=1,2,…,从而,所求的“好牌”组的个数为a2004=10032=1006009.
10.组合数的性质。
例10证明:是奇数(k≥1).
[证明]=令i=pi(1≤i≤k),pi为奇数,则,它的分子、分母均为奇数,因是整数,所以它只能是若干奇数的积,即为奇数。
例11对n≥2,证明:
[证明]1)当n=2时,22=642;2)假设n=k时,有2k4k,当n=k+1时,因为
又4,所以2k+1.
所以结论对一切n≥2成立。
11.二项式定理的应用。
例12若n∈N,n≥2,求证:
[证明]首先其次因为,所以2+得证。
例13证明:
[证明]首先,对于每个确定的k,等式左边的每一项都是两个组合数的乘积,其中是(1+x)n-k的展开式中xm-h的系数。是(1+y)k的展开式中yk的系数。从而就是(1+x)n-k(1+y)k的展开式中xm-hyh的系数。
于是,就是展开式中xm-hyh的系数。
另一方面,===(xk-1+xk-2y+…+yk-1),上式中,xm-hyh项的系数恰为。
所以
12.概率问题的解法。
例14如果某批产品中有a件次品和b件正品,采用有放回的抽样方式从中抽取n件产品,问:恰好有k件是次品的概率是多少?
[解]把k件产品进行编号,有放回抽n次,把可能的重复排列作为基本事件,总数为(a+b)n(即所有的可能结果)。设事件A表示取出的n件产品中恰好有k件是次品,则事件A所包含的基本事件总数为akbn-k,故所求的概率为p(A)=
例15将一枚硬币掷5次,正面朝上恰好一次的概率不为0,而且与正面朝上恰好两次的概率相同,求恰好三次正面朝上的概率。
[解]设每次抛硬币正面朝上的概率为p,则掷5次恰好有k次正面朝上的概率为(1-p)5-k(k=0,1,2,…,5),由题设,且0p1,化简得,所以恰好有3次正面朝上的概率为
例16甲、乙两个乒乓球运动员进行乒乓球比赛,已知每一局甲胜的概率为0.6,乙胜的概率为0.4,比赛时可以用三局二胜或五局三胜制,问:在哪一种比赛制度下,甲获胜的可能性大?
[解](1)如果采用三局两胜制,则甲在下列两种情况下获胜:A1—2:0(甲净胜二局),A2—2:1(前二局甲一胜一负,第三局甲胜).p(A1)=0.6×0.6=0.36,p(A2)=×0.6×0.4×0.6=0.288.
因为A1与A2互斥,所以甲胜概率为p(A1+A2)=0.648.
(2)如果采用五局三胜制,则甲在下列三种情况下获胜:B1—3:0(甲净胜3局),B2—3:1(前3局甲2胜1负,第四局甲胜),B3—3:2(前四局各胜2局,第五局甲胜)。因为B1,B2,B2互斥,所以甲胜概率为p(B1+B2+B3)=p(B1)+p(B2)+p(B3)=0.63+×0.62×0.4×0.6+×0.62×0.42×0.6=0.68256.
由(1),(2)可知在五局三胜制下,甲获胜的可能性大。
例17有A,B两个口袋,A袋中有6张卡片,其中1张写有0,2张写有1,3张写有2;B袋中有7张卡片,其中4张写有0,1张写有1,2张写有2。从A袋中取出1张卡片,B袋中取2张卡片,共3张卡片。求:(1)取出3张卡片都写0的概率;(2)取出的3张卡片数字之积是4的概率;(3)取出的3张卡片数字之积的数学期望。
[解](1);(2);(3)记ξ为取出的3张卡片的数字之积,则ξ的分布为
ξ0248
p

所以
三、基础训练题
1.三边长均为整数且最大边长为11的三角形有_________个。
2.在正2006边形中,当所有边均不平行的对角线的条数为_________。
3.用1,2,3,…,9这九个数字可组成_________个数字不重复且8和9不相邻的七位数。
4.10个人参加乒乓球赛,分五组,每组两个人有_________种分组方法。
5.以长方体的顶点为顶点的三棱锥的个数是_________。
6.今天是星期二,再过101000天是星期_________。
7.由展开式所得的x的多项式中,系数为有理数的共有_________项。
8.如果凸n边形(n≥4)的任意三条对角线不共点,那么这些对角线在凸n边形内共有_________个交点。
9.袋中有a个黑球与b个白球,随机地每次从中取出一球(不放回),第k(1≤k≤a+b)次取到黑球的概率为_________。
10.一个箱子里有9张卡片,分别标号为1,2,…,9,从中任取2张,其中至少有一个为奇数的概率是_________。
11.某人拿着5把钥匙去开门,有2把能打开。他逐个试,试三次之内打开房门的概率是_________。
12.马路上有编号为1,2,3,…,10的十盏路灯,要将其中三盏关掉,但不能同时关掉相邻的两盏或三盏,也不能关掉两端的路灯,则满足条件的关灯方法种数是_________。
13.a,b,c,d,e五个人安排在一个圆桌周围就坐,若a,b不相邻有_________种安排方式。
14.已知i,m,n是正整数,且1i≤m≤n。证明:(1);(2)(1+m)n(1+n)m.
15.一项“过关游戏”规定:在第n关要抛掷一颗骰子n次,如果这n次抛掷所得到的点数之和大于2n,则算过关。问:(1)某人在这项游戏中最多能过几关?(2)他连过前三关的概率是多少?(注:骰子是一个在各面上分别有1,2,3,4,5,6点数的均匀正方体)
四、高考水平训练题
1.若n∈{1,2,…,100}且n是其各位数字和的倍数,则这种n有__________个。
2.从{-3,-2,-1,0,1,2,3,4}中任取3个不同元素作为二次函数y=ax2+bx+c的系数,能组成过原点,且顶点在第一或第三象限的抛物线有___________条。
3.四面体的顶点和各棱的中点共10个点,在其中任取4个不共面的点,有_________种取法。
4.三个人传球,从甲开始发球,每次接球后将球传给另外两人中的任意一个,经5次传球后,球仍回到甲手中的传法有_________种。
5.一条铁路原有m个车站(含起点,终点),新增加n个车站(n1),客运车票相应地增加了58种,原有车站有_________个。
6.将二项式的展开式按降幂排列,若前三项系数成等差数列,则该展开式中x的幂指数是整数的项有_________个。
7.从1到9这九个自然数中任取两个分别作为对数的真数和底数,共可得到_________种不同的对数值。
8.二项式(x-2)5的展开式中系数最大的项为第_________项,系数最小的项为第_________项。
9.有一批规格相同的均匀圆棒,每根被划分成长度相同的5节,每节用红、黄、蓝三色之一涂色,可以有_________种颜色不同的圆棒?(颠倒后相同的算同一种)
10.在1,2,…,2006中随机选取3个数,能构成递增等差数列的概率是_________。
11.投掷一次骰子,出现点数1,2,3,…,6的概率均为,连续掷6次,出现的点数之和为35的概率为_________。
12.某列火车有n节旅客车厢,进站后站台上有m(m≥n)名旅客候车,每位旅客随意选择车厢上车,则每节车厢都有旅客上车的概率是_________。
13.某地现有耕地10000公顷,规划10年后粮食单产比现在增加22%,人均粮食占有量比现在提高10%,如果人口年增长率为1%,那么耕地平均每年至多只能减少多少公顷(精确到1公顷)?(粮食单产=)
五、联赛一试水平训练题
1.若0abcd500,有_________个有序的四元数组(a,b,c,d)满足a+d=b+c且bc-ad=93.
2.已知直线ax+by+c=0中的a,b,c是取自集合{-3,-2,-1,0,1,2,3}中的3个不同的元素,并且该直线倾斜角为锐角,这样的直线条数是_________。
3.已知A={0,1,2,3,4,5,6,7},映射f:A→A满足:(1)若i≠j,则f(i)≠f(j);(2)若i+j=7,则f(i)+f(j)=7,这样的映射的个数为_________。
4.1,2,3,4,5的排列a1,a2,a3,a4,a5具有性质:对于1≤i≤4,a1,a2,…,ai不构成1,2,…,i的某个排列,这种排列的个数是_________。
5.骰子的六个面标有1,2,…,6这六个数字,相邻两个面上的数字之差的绝对值叫变差,变差的总和叫全变差V,则全变差V的最大值为_________,最小值为_________。
6.某次乒乓球单打比赛中,原计划每两名选手恰比赛一场,但有3名选手各比赛2场之后就退出了,这样,全部比赛只进行50场,上述三名选手之间比赛场数为_________。
7.如果a,b,c,d都属于{1,2,3,4}且a≠b,b≠c,c≠d,d≠a;且a是a,b,c,d中的最小值,则不同的四位数的个数为_________。
8.如果自然数a各位数字之和等于7,那么称a为“吉祥数”,将所有的吉祥数从小到大排成一列a1,a2,a3,…,若an=2005,则an=_________。
9.求值:=_________。
10.投掷一次骰子,出现点数1,2,…,6的概率均为,连续掷10次,出现的点数之和是30的概率为_________。
11.将编号为1,2,…,9这九个小球随机放置在圆周的九个等分点上,每个等分点上各有一个小球,设周围上所有相邻两球的号码之差的绝对值之和为S,求S达到最小值的放法的概率(注:如果某种放法经旋转或镜面反射后可与另一放法重合,则认为是相同的放法)。
12.甲、乙两人轮流向同一目标射击,第一次甲射击,以后轮流射击,甲每次击中的概率为p(0p1),乙每次击中的概率为q(0q1),求甲、乙首先击中的概率各是多少?
13.设m,n∈N,0m≤n,求证:…+
六、联赛二试水平训练题
1.100张卡片上分别写有数字1到100,一位魔术师把这100张卡片放入颜色分别是红色、白色、蓝色的三个盒子里,每个盒子里至少放入一张卡片。
一位观众从三个盒子中挑出两个,并从中各选取一张卡片,然后宣布这两张卡片上的两个数的和数,魔术师知道这个和数之后,便能够指出哪一个是没有被观众取出卡片的盒子。问:共有多少种放卡片的方法,使得这个魔术师总能够成功?(如果至少有一张卡片被放入不同颜色的盒子,两种方法被认为是不同的)
2.设S={1,2,…,10},A1,A2,…,Ak是S的k个子集合,满足:(1)|Ai|=5,i=1,2,…,k;(2)|AiAj|≤2,1≤ij≤k,求k的最大值。
3.求从集合{1,2,…,n}中任取满足下列条件的k个数{j1,j2,…,jk}的组合数;(1)1≤j1j2…jk≤n;(2)jh+1-jh≥m,h=1,2,…,k-1,其中m1为固定的正整数;(3)存在h0,1≤h0≤k-1,使得≥m+1.
4.设,其中S1,S2,…,Sm都是正整数且S1S2…Sm,求证组合数中奇数的个数等于2m。
5.个不同的数随机排成图13-2所示的三角形阵,设Mk是从上往下第k行中的最大数,求M1M2…Mn的概率。
6.证明: