88教案网

你的位置: 教案 > 高中教案 > 导航 > 平面向量的数量积的物理背景及其含义

高中向量的教案

发表时间:2020-10-31

平面向量的数量积的物理背景及其含义。

古人云,工欲善其事,必先利其器。准备好一份优秀的教案往往是必不可少的。教案可以让学生能够在教学期间跟着互动起来,帮助教师掌握上课时的教学节奏。写好一份优质的教案要怎么做呢?为了让您在使用时更加简单方便,下面是小编整理的“平面向量的数量积的物理背景及其含义”,供您参考,希望能够帮助到大家。

2.4.1平面向量的数量积的物理背景及其含义

一、教材分析
本节学习的关键是启发学生理解平面向量数量积的定义,理解定义之后便可引导学生推导数量积的运算律,然后通过概念辨析题加深学生对于平面向量数量积的认识.主要知识点:平面向量数量积的定义及几何意义;平面向量数量积的5个重要性质;平面向量数量积的运算律.
二.教学目标
1.了解平面向量数量积的物理背景,理解数量积的含义及其物理意义;
2.体会平面向量的数量积与向量投影的关系,理解掌握数量积的性质和运算律,并能运用性质和运算律进行相关的判断和运算;
3.体会类比的数学思想和方法,进一步培养学生抽象概括、推理论证的能力。
三、教学重点难点
重点:1、平面向量数量积的含义与物理意义,2、性质与运算律及其应用。
难点:平面向量数量积的概念
四、学情分析
我们的学生属于平行分班,没有实验班,学生已有的知识和实验水平有差距。有些学生对于基本概念不清楚,所以讲解时需要详细
五、教学方法
1.实验法:多媒体、实物投影仪。
2.学案导学:见后面的学案。
3.新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习
六、课前准备
1.学生的学习准备:预习学案。
2.教师的教学准备:多媒体课件制作,课前预习学案,课内探究学案,课后延伸拓展学案。。
七、课时安排:1课时
八、教学过程
(一)预习检查、总结疑惑
检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。

(二)情景导入、展示目标。
创设问题情景,引出新课
1、提出问题1:请同学们回顾一下,我们已经研究了向量的哪些运算?这些运算的结果是什么?
期望学生回答:向量的加法、减法及数乘运算。
2、提出问题2:请同学们继续回忆,我们是怎么引入向量的加法运算的?我们又是按照怎样的顺序研究了这种运算的?
期望学生回答:物理模型→概念→性质→运算律→应用
3、新课引入:本节课我们仍然按照这种研究思路来研究向量的另外一种运算:平面向量数量积的物理背景及其含义
(三)合作探究,精讲点拨
探究一:数量积的概念
1、给出有关材料并提出问题3:
(1)如图所示,一物体在力F的作用下产生位移S,
那么力F所做的功:W=|F||S|cosα。
(2)这个公式的有什么特点?请完成下列填空:
①W(功)是量,
②F(力)是量,
③S(位移)是量,
④α是。
(3)你能用文字语言表述“功的计算公式”吗?
期望学生回答:功是力与位移的大小及其夹角余弦的乘积
2、明晰数量积的定义
(1)数量积的定义:
已知两个非零向量与,它们的夹角为,我们把数量︱︱︱b︱cos叫做与的数量积(或内积),记作:,即:=︱︱︱︱cos
(2)定义说明:
①记法“”中间的“”不可以省略,也不可以用“”代替。
②“规定”:零向量与任何向量的数量积为零。
(3)提出问题4:向量的数量积运算与线性运算的结果有什么不同?影响数量积大小的因素有哪些?
期望学生回答:线性运算的结果是向量,而数量积的结果则是数,这个数值的大小不仅和向量与的模有关,还和它们的夹角有关。
(4)学生讨论,并完成下表:
的范围
0°≤90°
=90°
0°≤180°
的符号

例1:已知||=3,||=6,当①∥,②⊥,③与的夹角是60°时,分别求.
解:①当∥时,若与同向,则它们的夹角θ=0°,
∴=||||cos0°=3×6×1=18;
若与b反向,则它们的夹角θ=180°,
∴=||||cos180°=3×6×(-1)=-18;
②当⊥时,它们的夹角θ=90°,
∴=0;
③当与的夹角是60°时,有
=||||cos60°=3×6×=9
评述:两个向量的数量积与它们的夹角有关,其范围是[0°,180°],因此,当∥时,有0°或180°两种可能.
变式:对于两个非零向量、,求使|+t|最小时的t值,并求此时与+t的夹角。

探究二:研究数量积的意义
1.给出向量投影的概念:
如图,我们把││cos(││cos)
叫做向量在方向上(在方向上)的投影,
记做:OB1=︱││︱cos
2.提出问题5:数量积的几何意义是什么?
期望学生回答:数量积等于的长度︱︱与在的方向上的投影
︱︱cos的乘积。

3.研究数量积的物理意义
请同学们用一句话来概括功的数学本质:功是力与位移的数量积。

探究三:探究数量积的运算性质
1、提出问题6:
比较︱︱与︱︱×︱︱的大小,你有什么结论?
2、明晰:数量积的性质

3.数量积的运算律
(1)、提出问题7:我们学过了实数乘法的哪些运算律?这些运算律对向量是否也适用?
预测:学生可能会提出以下猜想:
①=
②()=()
③(+)=+
(2)、分析猜想:
猜想①的正确性是显而易见的。
关于猜想②的正确性,请同学们先来讨论:猜测②的左右两边的结果各是什么?它们一定相等吗?
期望学生回答:左边是与向量共线的向量,而右边则是与向量共线的向量,显然在向量与向量不共线的情况下猜测②是不正确的。
(3)、明晰:数量积的运算律:

例2、(师生共同完成)已知︱︱=6,︱︱=4,与的夹角为60°,求(+2)(-3),并思考此运算过程类似于实数哪种运算?
解:(+2)(-3)=.-3.+2.-6.
=36-3×4×6×0.5-6×4×4

=-72
评述:可以和实数做类比记忆数量积的运算律

变式:(1)(+)2=2+2+2
(2)(+)(-)=2—2

(四)反思总结,当堂检测。
教师组织学生反思总结本节课的主要内容,并进行当堂检测。
设计意图:引导学生构建知识网络并对所学内容进行简单的反馈纠正。(课堂实录)
(五)发导学案、布置预习。
我们已经学习平面向量数量积的物理背景及含义,那么,在下一节课我们一起来学习数量积的坐标运算。模。夹角。这节课后大家可以先预习这一部分,着重分析坐标的作用
设计意图:布置下节课的预习作业,并对本节课巩固提高。教师课后及时批阅本节的延伸拓展训练。
九、板书设计

十、教学反思
本课的设计采用了课前下发预习学案,学生预习本节内容,找出自己迷惑的地方。课堂上师生主要解决重点、难点、疑点、考点、探究点以及学生学习过程中易忘、易混点等,最后进行当堂检测,课后进行延伸拓展,以达到提高课堂效率的目的。我首先安排让学生讨论影响数量积结果的因素并完成表格,其次将数量积的几何意义提前,这样使学生从代数和

几何两个方面对数量积的“质变”特征有了更加充分的认识。通过尝试练习,一方面使学生尝试计算数量积,另一方面使学生理解数量积的物理意义,同时也为数量积的性质埋下伏笔。数量积的性质和运算律是数量积概念的延伸,教材中这两方面的内容都是以探究的形式出现,为了让学生很好的完成这两个探究活动,我始终按照先创设一定的情景,让学生去发现结论,教师明晰后,再由学生或师生共同完成证明。比如数量积的运算性质是将尝试练习的结论推广得到,数量积的运算律则是通过和实数乘法相类比得到,这样不仅使学生感到亲切自然,同时也培养了学生由特殊到一般的思维品质和类比创新的意识。
临清三中数学组编写人:王晓燕审稿人:刘桂江李怀奎
2.4.1平面向量的数量积的物理背景及其含义

课前预习学案
一、预习目标:
预习平面向量的数量积及其几何意义;平面向量数量积的重要性质及运算律;
二、预习内容:
1.平面向量数量积(内积)的定义:
2.两个向量的数量积与向量同实数积有很大区别
3.“投影”的概念:作图
4.向量的数量积的几何意义:
5.两个向量的数量积的性质:
设、为两个非零向量,e是与同向的单位向量.
1e=e=
2=
设、为两个非零向量,e是与同向的单位向量.
e=e=
3当与同向时,=当与反向时,=特别的=||2或
4cos=
5||≤||||

三、提出疑惑:
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点疑惑内容

课内探究学案
一、学习目标
1说出平面向量的数量积及其几何意义;
2.学会用平面向量数量积的重要性质及运算律;
3.了解用平面向量的数量积可以处理有关长度、角度和垂直的问题;
学习重难点:。平面向量的数量积及其几何意义
二、学习过程
创设问题情景,引出新课
1、提出问题1:请同学们回顾一下,我们已经研究了向量的哪些运算?这些运算的结果是什么?

2、提出问题2:请同学们继续回忆,我们是怎么引入向量的加法运算的?我们又是按照怎样的顺序研究了这种运算的?

3、新课引入:本节课我们仍然按照这种研究思路来研究向量的另外一种运算:平面向量数量积的物理背景及其含义
探究一:
数量积的概念
1、给出有关材料并提出问题3:
(1)如图所示,一物体在力F的作用下产生位移S,
那么力F所做的功:W=
(2)这个公式的有什么特点?请完成下列填空:
①W(功)是量,
②F(力)是量,
③S(位移)是量,
④α是。
(3)你能用文字语言表述“功的计算公式”吗?
2、明晰数量积的定义
(1)数量积的定义:
已知两个非零向量与,它们的夹角为,我们把数量︱︱︱︱cos叫做与的数量积(或内积),记作:,即:=︱︱︱︱cos
(2)定义说明:
①记法“”中间的“”不可以省略,也不可以用“”代替。
②“规定”:零向量与任何向量的数量积为零。
(3)提出问题4:向量的数量积运算与线性运算的结果有什么不同?影响数量积大小的因素有哪些?

(4)学生讨论,并完成下表:
的范围
0°≤90°
=90°
0°≤180°
的符号

例1:已知||=3,||=6,当①∥,②⊥,③与的夹角是60°时,分别求.
解:
变式:
.对于两个非零向量、,求使|+t|最小时的t值,并求此时与+t的夹角.

探究二:研究数量积的意义
1.给出向量投影的概念:
如图,我们把││cos(││cos)
叫做向量在方向上(在方向上)的投影,
记做:OB1=︱││︱cos
2.提出问题5:数量积的几何意义是什么?

3.研究数量积的物理意义
请同学们用一句话来概括功的数学本质:

探究三:探究数量积的运算性质
1、提出问题6:比较︱︱与︱︱×︱︱的大小,你有什么结论?

2、明晰:数量积的性质

3.数量积的运算律
(1)、提出问题7:我们学过了实数乘法的哪些运算律?这些运算律对向量是否也用?

(2)、明晰:数量积的运算律:

例2、(师生共同完成)已知︱︱=6,︱︱=4,与的夹角为60°,求(+2)(-3),并思考此运算过程类似于实数哪种运算?
解:

变式:(1)(+)2=2+2+2
(2)(+)(-)=2—2

(三)反思总结

(四)当堂检测

1.已知||=5,||=4,与的夹角θ=120o,求.

2.已知||=6,||=4,与的夹角为60o求(+2)(-3)
.
3.已知||=3,||=4,且与不共线,k为何值时,向量+k与-k互相垂直.

4.已知||=3,||=6,当①∥,②⊥,③与的夹角是60°时,分别求.

5.已知||=1,||=,(1)若∥,求;(2)若、的夹角为60°,求|+|;(3)若-与垂直,求与的夹角.

6.设m、n是两个单位向量,其夹角为60°,求向量=2m+n与=2n-3m的夹角.

课后练习与提高
1.已知||=1,||=,且(-)与垂直,则与的夹角是()
A.60°B.30°C.135°D.45°
2.已知||=2,||=1,与之间的夹角为,那么向量m=-4的模为()
A.2B.2C.6D.12
3.已知、是非零向量,则||=||是(+)与(-)垂直的()
A.充分但不必要条件B.必要但不充分条件?
C.充要条件D.既不充分也不必要条件
4.已知向量、的夹角为,||=2,||=1,则|+||-|=.
5.已知+=2i-8j,-=-8i+16j,其中i、j是直角坐标系中x轴、y轴正方向上的单位向量,那么=.
6.已知⊥、c与、的夹角均为60°,且||=1,||=2,|c|=3,则(+2-c)2=______.

参考答案:
1.D2.B3.A
4.5.1446.11

相关阅读

高中数学必修四2.4.1平面向量的数量积的物理背景及其含义导学案


2.4平面向量的数量积
2.4.1平面向量的数量积的物理背景及其含义
编审:周彦魏国庆
【学习目标】
1.掌握平面向量的数量积及其几何意义;
2.掌握平面向量数量积的重要性质及运算律;
3.了解用平面向量的数量积可以处理垂直的问题;
【自学新知】
知识回顾:(1)两个非零向量夹角的概念:已知非零向量与,作=,=,则
∠AOB=θ(0≤θ≤π)叫与的夹角.
说明:(1)当θ=0时,与同向;
(2)当θ=π时,与反向;
(3)当θ=时,与垂直,记⊥;
新知梳理:
1.平面向量数量积(内积)的定义:已知两个非零向量与,它们的夹角是θ,则叫与的数量积,记作,即有=,(0≤θ≤π).并规定向量与任何向量的数量积为.

思考感悟:
1、向量数量积是一个向量还是一个数量?它的符号什么时候为正?什么时候为负?

2、两个向量的数量积与实数乘向量的积有什么区别?
(1)两个向量的数量积是一个,不是向量,符号由的符号所决定.
(2)向量的数量积写成;符号“”既不能省略,也不能用“×”代替.
(3)在实数中,若,且,则b=0;但是在数量积中,若,且=0,不能推出=.因cos有可能为0.

2.“投影”的概念:
作图:
定义:||cos叫做向量在方向上的投影.

思考感悟:
投影不是向量,是一个数量。当为锐角时投影为值;当为钝角时投影为值,当为直角时投影为;当=0时投影为||;当=180时投影为||

3.向量的数量积的几何意义:
数量积等于与||cos的乘积.

4.两个向量的数量积的性质:设,为两个非零向量,
(1)=
(2)当与同向时,=,
当与反向时,=
特别的:=||2或;
||≤||||;
cos=
5.平面向量数量积的运算律
①交换律:=
②数乘结合律:()=()=()③分配律:(+)=+
说明:
(1)一般地,()≠()
(2)==
对点练习
1.下列叙述不正确的是()
A.向量的数量积满足交换律
B.向量的数量积满足分配律
C.向量的数量积满足结合律
D.是一个实数
2.||=3,||=4,向量+与-的位置关系为()
A.平行B.垂直
C.夹角为D.不平行也不垂直
3.已知|m→|=,n→=(cosθ,sinθ),m→n→=9,则m→,n→的夹角为()
A.150B.120
C.60D.30

4.已知,,,则向量在向量方向上的投影是___________,向量在向量方向上的投影是___________。

【合作探究】
典例精析:
例1.证明:

变式1.已知||=6,||=4,与的夹角为60o,求:
(1)(+2)(-3).
(2)|+|与|-|.

例2.已知||=12,||=9,,求与的夹角。

变式2.已知||=3,||=4,且与不共线,k为何值时,向量+k与-k互相垂直.

【课堂小结】

【当堂达标】
1.下列命题中:①若≠,且=,则=;②若=,则3<4;
③()=(),对任意向量,,都成立;④22=()2;正确命题的个数为____

2.若||=2sin15°,||=4cos375°、,夹角为30°,则为()
A.B.
C.D.

3.若||=||=|-|,则与+的夹角为()
A.30°B.60°
C.150°D.120°

4..已知、均为单位向量,它们的夹角为60°,那么|+3|=()
A.B.
C.D.4

【课时作业】
1.已知||=1,||=,且(-)与垂直,则与的夹角是()
A.60°B.30°
C.135°D.45°2.若向量的夹角为,,则向量的模

3.向量、满足(-)(2+)=-4,且||=2,||=4,则与夹角的余弦值等于
4、在Rt△ABC中,∠C=90°,AB=5,AC=4,求AB→BC→.

5.已知||=8,||=10,|+|=16,求与的夹角.

6*.向量互相垂直,向量互相垂直,求与夹角。

7*.已知||=3,||=3,与夹角为,求使向量的夹角为锐角时,的取值范围。

8.(2012全国卷)已知向量a,b夹角为45°,且|a|=1,|2a-b|=10,则|b|=________.

【延伸探究】
已知平面上三个向量的模都是1,他们互相之间的夹角均是,
(1)求证:
()若,求得取值范围。

2018人教A版高中数学必修4.1平面向量数量积的物理背景及其含义讲义


2.4.1平面向量数量积的物理背景及其含义
预习课本P103~105,思考并完成以下问题
(1)怎样定义向量的数量积?向量的数量积与向量数乘相同吗?
(2)向量b在a方向上的投影怎么计算?数量积的几何意义是什么?
(3)向量数量积的性质有哪些?
(4)向量数量积的运算律有哪些?
[新知初探]
1.向量的数量积的定义
(1)两个非零向量的数量积:
已知条件向量a,b是非零向量,它们的夹角为θ
定义a与b的数量积(或内积)是数量|a||b|cosθ
记法a·b=|a||b|cosθ
(2)零向量与任一向量的数量积:
规定:零向量与任一向量的数量积均为0.
[点睛](1)两向量的数量积,其结果是数量,而不是向量,它的值等于两向量的模与两向量夹角余弦值的乘积,其符号由夹角的余弦值来决定.
(2)两个向量的数量积记作a·b,千万不能写成a×b的形式.
2.向量的数量积的几何意义
(1)投影的概念:
①向量b在a的方向上的投影为|b|cosθ.
②向量a在b的方向上的投影为|a|cosθ.
(2)数量积的几何意义:
数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积.
[点睛](1)b在a方向上的投影为|b|cosθ(θ是a与b的夹角),也可以写成a·b|a|.
(2)投影是一个数量,不是向量,其值可为正,可为负,也可为零.
3.向量数量积的性质
设a与b都是非零向量,θ为a与b的夹角.
(1)a⊥ba·b=0.
(2)当a与b同向时,a·b=|a||b|,
当a与b反向时,a·b=-|a||b|.
(3)a·a=|a|2或|a|=a·a=a2.
(4)cosθ=a·b|a||b|.
(5)|a·b|≤|a||b|.
[点睛]对于性质(1),可以用来解决有关垂直的问题,即若要证明某两个向量垂直,只需判定它们的数量积为0;若两个非零向量的数量积为0,则它们互相垂直.
4.向量数量积的运算律
(1)a·b=b·a(交换律).
(2)(λa)·b=λ(a·b)=a·(λb)(结合律).
(3)(a+b)·c=a·c+b·c(分配律).
[点睛](1)向量的数量积不满足消去律:若a,b,c均为非零向量,且a·c=b·c,但得不到a=b.
(2)(a·b)·c≠a·(b·c),因为a·b,b·c是数量积,是实数,不是向量,所以(a·b)·c与向量c共线,a·(b·c)与向量a共线,因此,(a·b)·c=a·(b·c)在一般情况下不成立.
[小试身手]
1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)
(1)两个向量的数量积仍然是向量.()
(2)若a·b=b·c,则一定有a=c.()
(3)若a,b反向,则a·b=-|a||b|.()
(4)若a·b=0,则a⊥b.()
答案:(1)×(2)×(3)√(4)×
2.若|a|=2,|b|=12,a与b的夹角为60°,则a·b=()
A.2B.12
C.1D.14
答案:B
3.已知|a|=10,|b|=12,且(3a)·15b=-36,则a与b的夹角为()
A.60°B.120°
C.135°D.150°
答案:B
4.已知a,b的夹角为θ,|a|=2,|b|=3.
(1)若θ=135°,则a·b=________;
(2)若a∥b,则a·b=________;
(3)若a⊥b,则a·b=________.
答案:(1)-32(2)6或-6(3)0
向量数量积的运算

[典例](1)已知向量a与b的夹角为120°,且|a|=4,|b|=2,求:①a·b;②(a+b)·
(a-2b).

(2)如图,正三角形ABC的边长为2,=c,=a,=b,求a·b+b·c+c·a.
[解](1)①由已知得a·b=|a||b|cosθ=4×2×cos120°=-4.
②(a+b)·(a-2b)=a2-a·b-2b2=16-(-4)-2×4=12.
(2)∵|a|=|b|=|c|=2,且a与b,b与c,c与a的夹角均为120°,
∴a·b+b·c+c·a=2×2×cos120°×3=-3.
向量数量积的求法
(1)求两个向量的数量积,首先确定两个向量的模及向量的夹角,其中准确求出两向量的夹角是求数量积的关键.
(2)根据数量积的运算律,向量的加、减与数量积的混合运算类似于多项式的乘法
运算.

[活学活用]
已知|a|=3,|b|=4,a与b的夹角为120°,求:
(1)a·b;(2)a2-b2;
(3)(2a-b)·(a+3b).

解:(1)a·b=|a||b|cos120°=3×4×-12=-6.
(2)a2-b2=|a|2-|b|2=32-42=-7.
(3)(2a-b)·(a+3b)=2a2+5a·b-3b2
=2|a|2+5|a||b|·cos120°-3|b|2
=2×32+5×3×4×-12-3×42=-60.
与向量的模有关的问题

[典例](1)(浙江高考)已知e1,e2是平面单位向量,且e1·e2=12.若平面向量b满足b·e1=b·e2=1,则|b|=________.
(2)已知向量a,b的夹角为45°,且|a|=1,|2a-b|=10,则|b|=________.
[解析](1)令e1与e2的夹角为θ,
∴e1·e2=|e1|·|e2|cosθ=cosθ=12.
又0°≤θ≤180°,∴θ=60°.
∵b·(e1-e2)=0,
∴b与e1,e2的夹角均为30°,
∴b·e1=|b||e1|cos30°=1,
从而|b|=1cos30°=233.
(2)∵a,b的夹角为45°,|a|=1,
∴a·b=|a||b|cos45°=22|b|,
|2a-b|2=4-4×22|b|+|b|2=10,∴|b|=32.
[答案](1)233(2)32
求向量的模的常见思路及方法
(1)求模问题一般转化为求模的平方,与向量数量积联系,并灵活应用a2=|a|2,勿忘记开方.
(2)a·a=a2=|a|2或|a|=a2,可以实现实数运算与向量运算的相互转化.

[活学活用]
已知向量a,b满足|a|=|b|=5,且a与b的夹角为60°,求|a+b|,|a-b|,|2a+b|.
解:∵|a+b|2=(a+b)2=(a+b)(a+b)
=|a|2+|b|2+2a·b=25+25+2|a||b|cos60°
=50+2×5×5×12=75,
∴|a+b|=53.
∵|a-b|2=(a-b)2=(a-b)(a-b)
=|a|2+|b|2-2a·b
=|a|2+|b|2-2|a||b|cos60°=25,
∴|a-b|=5.
∵|2a+b|2=(2a+b)(2a+b)
=4|a|2+|b|2+4a·b
=4|a|2+|b|2+4|a||b|cos60°=175,
∴|2a+b|=57.

两个向量的夹角和垂直
题点一:求两向量的夹角
1.(重庆高考)已知非零向量a,b满足|b|=4|a|,且a⊥(2a+b),则a与b的夹角为()
A.π3B.π2
C.2π3D.5π6
解析:选C∵a⊥(2a+b),∴a·(2a+b)=0,
∴2|a|2+a·b=0,
即2|a|2+|a||b|cos〈a,b〉=0.
∵|b|=4|a|,∴2|a|2+4|a|2cos〈a,b〉=0,
∴cos〈a,b〉=-12,∴〈a,b〉=2π3.
题点二:证明两向量垂直
2.已知向量a,b不共线,且|2a+b|=|a+2b|,求证:(a+b)⊥(a-b).
证明:∵|2a+b|=|a+2b|,
∴(2a+b)2=(a+2b)2.
即4a2+4a·b+b2=a2+4a·b+4b2,
∴a2=b2.
∴(a+b)·(a-b)=a2-b2=0.
又a与b不共线,a+b≠0,a-b≠0,
∴(a+b)⊥(a-b).
题点三:利用夹角和垂直求参数
3.已知a⊥b,|a|=2,|b|=3且向量3a+2b与ka-b互相垂直,则k的值为()
A.-32B.32
C.±32D.1
解析:选B∵3a+2b与ka-b互相垂直,
∴(3a+2b)·(ka-b)=0,
∴3ka2+(2k-3)a·b-2b2=0.
∵a⊥b,∴a·b=0,
又|a|=2,|b|=3,
∴12k-18=0,k=32.

求向量a与b夹角的思路
(1)求向量夹角的关键是计算a·b及|a||b|,在此基础上结合数量积的定义或性质计算cosθ=a·b|a||b|,最后借助θ∈[0,π],求出θ的值.
(2)在个别含有|a|,|b|与a·b的等量关系式中,常利用消元思想计算cosθ的值.

层级一学业水平达标
1.已知向量a,b满足|a|=1,|b|=4,且a·b=2,则a与b的夹角θ为()
A.π6B.π4
C.π3D.π2
解析:选C由题意,知a·b=|a||b|cosθ=4cosθ=2,又0≤θ≤π,所以θ=π3.
2.已知|b|=3,a在b方向上的投影为32,则a·b等于()
A.3B.92
C.2D.12
解析:选B设a与b的夹角为θ.∵|a|cosθ=32,
∴a·b=|a||b|cosθ=3×32=92.
3.已知|a|=|b|=1,a与b的夹角是90°,c=2a+3b,d=ka-4b,c与d垂直,则k的值为()
A.-6B.6
C.3D.-3
解析:选B∵c·d=0,
∴(2a+3b)·(ka-4b)=0,
∴2ka2-8a·b+3ka·b-12b2=0,
∴2k=12,∴k=6.
4.已知a,b满足|a|=4,|b|=3,夹角为60°,则|a+b|=()
A.37B.13
C.37D.13
解析:选C|a+b|=a+b2=a2+2a·b+b2
=42+2×4×3cos60°+32=37.
5.在四边形ABCD中,=,且·=0,则四边形ABCD是()
A.矩形B.菱形
C.直角梯形D.等腰梯形
解析:选B∵=,即一组对边平行且相等,·=0,即对角线互相垂直,∴四边形ABCD为菱形.
6.给出以下命题:
①若a≠0,则对任一非零向量b都有a·b≠0;
②若a·b=0,则a与b中至少有一个为0;
③a与b是两个单位向量,则a2=b2.
其中,正确命题的序号是________.
解析:上述三个命题中只有③正确,因为|a|=|b|=1,所以a2=|a|2=1,b2=|b|2=1,故a2=b2.当非零向量a,b垂直时,有a·b=0,显然①②错误.
答案:③
7.设e1,e2是两个单位向量,它们的夹角为60°,则(2e1-e2)·(-3e1+2e2)=________.
解析:(2e1-e2)·(-3e1+2e2)=-6e21+7e1·e2-2e22=-6+7×cos60°-2=-92.
答案:-92
8.若|a|=1,|b|=2,c=a+b,且c⊥a,则向量a与b的夹角为________.
解析:∵c⊥a,∴c·a=0,
∴(a+b)·a=0,即a2+a·b=0.
∵|a|=1,|b|=2,∴1+2cos〈a,b〉=0,
∴cos〈a,b〉=-12.
又∵0°≤〈a,b〉≤180°,∴〈a,b〉=120°.
答案:120°
9.已知e1与e2是两个夹角为60°的单位向量,a=2e1+e2,b=2e2-3e1,求a与b的
夹角.
解:因为|e1|=|e2|=1,
所以e1·e2=1×1×cos60°=12,
|a|2=(2e1+e2)2=4+1+4e1·e2=7,故|a|=7,
|b|2=(2e2-3e1)2=4+9-12e1·e2=7,故|b|=7,
且a·b=-6e21+2e22+e1·e2=-6+2+12=-72,
所以cos〈a,b〉=a·b|a|·|b|=-727×7=-12,
所以a与b的夹角为120°.
10.已知|a|=2|b|=2,且向量a在向量b方向上的投影为-1.
(1)求a与b的夹角θ;
(2)求(a-2b)·b;
(3)当λ为何值时,向量λa+b与向量a-3b互相垂直?
解:(1)∵|a|=2|b|=2,
∴|a|=2,|b|=1.
又a在b方向上的投影为|a|cosθ=-1,
∴a·b=|a||b|cosθ=-1.
∴cosθ=-12,∴θ=2π3.
(2)(a-2b)·b=a·b-2b2=-1-2=-3.
(3)∵λa+b与a-3b互相垂直,
∴(λa+b)·(a-3b)=λa2-3λa·b+b·a-3b2
=4λ+3λ-1-3=7λ-4=0,∴λ=47.
层级二应试能力达标
1.已知|a|=2,|b|=1,且a与b的夹角为π3,则向量m=a-4b的模为()
A.2B.23
C.6D.12
解析:选B|m|2=|a-4b|2=a2-8a·b+16b2=4-8×2×1×12+16=12,所以|m|=23.
2.在Rt△ABC中,C=90°,AC=4,则·等于()
A.-16B.-8
C.8D.16
解析:选D法一:因为cosA=ACAB,故·=||·||cosA=||2=16,故选D.
法二:在上的投影为||cosA=||,故·=||||cosA=||2=16,故选D.

3.已知向量a,b满足|a|=1,|b|=2,且a在b方向上的投影与b在a方向上的投影相等,则|a-b|=()
A.1B.3
C.5D.3
解析:选C由于投影相等,故有|a|cos〈a,b〉=|b|cos〈a,b〉,因为|a|=1,|b|
=2,所以cos〈a,b〉=0,即a⊥b,则|a-b|=|a|2+|b|2-2a·b=5.
4.如图,在边长为2的菱形ABCD中,∠BAD=60°,E为BC的中点,则·=()
A.-3B.0
C.-1D.1
解析:选C·=AB―→+12AD―→·(-)
=12·-||2+12||2
=12×2×2×cos60°-22+12×22=-1.
5.设向量a,b,c满足a+b+c=0,(a-b)⊥c,a⊥b,若|a|=1,则|a|2+|b|2+|c|2的值是________.
解析:法一:由a+b+c=0得c=-a-b.
又(a-b)·c=0,∴(a-b)·(-a-b)=0,即a2=b2.
则c2=(a+b)2=a2+b2+2a·b=a2+b2=2,
∴|a|2+|b|2+|c|2=4.
法二:如图,作==a,
=b,则=c.
∵a⊥b,∴AB⊥BC,
又∵a-b=-=,
(a-b)⊥c,∴CD⊥CA,
所以△ABC是等腰直角三角形,
∵|a|=1,∴|b|=1,|c|=2,∴|a|2+|b|2+|c|2=4.
答案:4
6.已知向量a,b的夹角为45°,且|a|=4,12a+b·(2a-3b)=12,则|b|=________;b在a方向上的投影等于________.
解析:12a+b·(2a-3b)=a2+12a·b-3b2=12,即3|b|2-2|b|-4=0,解得|b|=2(舍负),b在a方向上的投影是|b|cos45°=2×22=1.
答案:21
7.已知非零向量a,b,满足|a|=1,(a-b)·(a+b)=12,且a·b=12.
(1)求向量a,b的夹角;(2)求|a-b|.
解:(1)∵(a-b)·(a+b)=12,
∴a2-b2=12,
即|a|2-|b|2=12.
又|a|=1,
∴|b|=22.
∵a·b=12,
∴|a|·|b|cosθ=12,
∴cosθ=22,
∴向量a,b的夹角为45°.
(2)∵|a-b|2=(a-b)2
=|a|2-2|a||b|cosθ+|b|2=12,
∴|a-b|=22.
8.设两个向量e1,e2,满足|e1|=2,|e2|=1,e1与e2的夹角为π3,若向量2te1+7e2与e1+te2的夹角为钝角,求实数t的取值范围.
解:由向量2te1+7e2与e1+te2的夹角为钝角,
得2te1+7e2·e1+te2|2te1+7e2|·|e1+te2|0.即
(2te1+7e2)·(e1+te2)0,化简即得
2t2+15t+70,解得-7t-12.
当夹角为π时,也有(2te1+7e2)·(e1+te2)0,
但此时夹角不是钝角,
设2te1+7e2=λ(e1+te2),λ0,可得
2t=λ,7=λt,λ0,λ=-14,t=-142.
∴所求实数t的取值范围是
-7,-142∪-142,-12.

平面向量的数量积


俗话说,凡事预则立,不预则废。高中教师要准备好教案,这是教师工作中的一部分。教案可以让学生们充分体会到学习的快乐,减轻高中教师们在教学时的教学压力。您知道高中教案应该要怎么下笔吗?下面是小编精心为您整理的“平面向量的数量积”,仅供您在工作和学习中参考。

课题:2.4平面向量的数量积(2)
班级:姓名:学号:第学习小组
【学习目标】
1、掌握平面向量数量积的坐标表示;
2、掌握向量垂直的坐标表示的等价条件。
【课前预习】
1、(1)已知向量和的夹角是,||=2,||=1,则(+)2=,|+|=。
(2)已知:||=2,||=5,=-3,则|+|=,|-|=。
(3)已知||=1,||=2,且(-)与垂直,则与的夹角为
2、设轴上的单位向量,轴上的单位向量,则=,=,=,=,若=,=,则=+.=+。
3、推导坐标公式:=。
4、(1)=,则||=___________;,则||=。
(2)=;(3)⊥;(4)//。
5、已知=,=,则||=,||=,=,
=;=。

【课堂研讨】
例1、已知=,=,求(3-)(-2),与的夹角。

例2、已知||=1,||=,+=,试求:
(1)|-|(2)+与-的夹角

例3、在中,设=,=,且是直角三角形,求的值。

【学后反思】
1、平面向量数量积的概念及其几何意义;2、数量积的性质及其性质的简单应用。

课题:2.4平面向量的数量积检测案(2)
班级:姓名:学号:第学习小组
【课堂检测】
1、求下列各组中两个向量与的夹角:
(1)=,=(2)=,=
2、设,,,求证:是直角三角形。
3、若=,=,当为何值时:
(1)(2)(3)与的夹角为锐角

【课后巩固】
1、设,,是任意的非零向量,且相互不共线,则下列命题正确的有:
①()-()=②||-|||-
|③()-()不与垂直④(3+4)(3-4)=9||2-16||2
⑤若为非零向量,=,且≠,则⊥(-)
2、若=,=且与的夹角为钝角,则的取值范围是。
3、已知=,则与垂直的单位向量的坐标为。
4、已知若=,=,则+与-垂直的条件是
5、的三个顶点的坐标分别为,,,判断三角形的形状。

6、已知向量=,||=2,求满足下列条件的的坐标。
(1)⊥(2)

7、已知向量=,=。
(1)求|+|和|-|;(2)为何值时,向量+与-3垂直?
(3)为何值时,向量+与-3平行?

8、已知向量,,,其中分别为直角坐标系内轴与轴正方向上的单位向量。
(1)若能构成三角形,求实数应满足的条件;
(2)是直角三角形,求实数的值。

课题:2.4平面向量的数量积(2)
班级:姓名:学号:第学习小组
【学习目标】
3、掌握平面向量数量积的坐标表示;
4、掌握向量垂直的坐标表示的等价条件。
【课前预习】
1、(1)已知向量和的夹角是,||=2,||=1,则(+)2=,|+|=。
(2)已知:||=2,||=5,=-3,则|+|=,|-|=。
(3)已知||=1,||=2,且(-)与垂直,则与的夹角为
2、设轴上的单位向量,轴上的单位向量,则=,=,=,=,若=,=,则=+.=+。
3、推导坐标公式:=。
4、(1)=,则||=___________;,则||=。
(2)=;(3)⊥;(4)//。
5、已知=,=,则||=,||=,=,
=;=。

【课堂研讨】
例1、已知=,=,求(3-)(-2),与的夹角。

例2、已知||=1,||=,+=,试求:
(1)|-|(2)+与-的夹角

例3、在中,设=,=,且是直角三角形,求的值。

【学后反思】
1、平面向量数量积的概念及其几何意义;2、数量积的性质及其性质的简单应用。

课题:2.4平面向量的数量积检测案(2)
班级:姓名:学号:第学习小组
【课堂检测】
1、求下列各组中两个向量与的夹角:
(1)=,=(2)=,=

2、设,,,求证:是直角三角形。
3、若=,=,当为何值时:
(1)(2)(3)与的夹角为锐角

【课后巩固】
1、设,,是任意的非零向量,且相互不共线,则下列命题正确的有:
①()-()=②||-|||-
|③()-()不与垂直④(3+4)(3-4)=9||2-16||2
⑤若为非零向量,=,且≠,则⊥(-)
2、若=,=且与的夹角为钝角,则的取值范围是。
3、已知=,则与垂直的单位向量的坐标为。
4、已知若=,=,则+与-垂直的条件是
5、的三个顶点的坐标分别为,,,判断三角形的形状。

6、已知向量=,||=2,求满足下列条件的的坐标。
(1)⊥(2)

7、已知向量=,=。
(1)求|+|和|-|;(2)为何值时,向量+与-3垂直?
(3)为何值时,向量+与-3平行?

8、已知向量,,,其中分别为直角坐标系内轴与轴正方向上的单位向量。
(1)若能构成三角形,求实数应满足的条件;
(2)是直角三角形,求实数的值。

《平面向量的数量积》学案


一名优秀的教师在教学时都会提前最好准备,作为高中教师就要根据教学内容制定合适的教案。教案可以让学生能够在课堂积极的参与互动,帮助高中教师能够井然有序的进行教学。那么,你知道高中教案要怎么写呢?小编收集并整理了“《平面向量的数量积》学案”,欢迎您参考,希望对您有所助益!

《平面向量的数量积》学案

教学目标:掌握平面向量数量积的概念、性质及简单应用
教学重点:平面向量数量积的概念、性质及应用
教学难点:对平面向量数量积应用的准确把握
教学过程:
题型一:平面向量数量积的性质与运算
【例题1】.关于平面向量,有下列5个命题:
①若,则
②‖


⑤非零向量和满足,则与的夹角为
其中真命题的序号为(写出所有真命题的序号)
【例题2】.(1)在Rt△ABC中,∠C=90°,AC=4,则AB→AC→=________.
(2)若向量=(1,1),=(2,5),=(3,x),满足条件(8-)=30,则x=__________.

题型二:向量的夹角与模
【例题3】.已知||=4,||=3,(2-3)(2+)=61.
(1)求与的夹角θ;
(2)求|+|;
(3)若AB→=,BC→=,求△ABC的面积.

变式训练1:已知是平面内两个互相垂直的单位向量,若向量满足,则的最大值是

变式训练2:已知平面向量且。
题型三:向量数量积的应用
【例题4】.给定两个长度为1的平面向量和,它们的夹角为.如图所示,点C在以O为圆心的圆弧上变动.若其中,则的最大值为。

变式训练:已知

课堂练习:
1、已知=(2,3),=(-4,7),则在方向上的投影为______.
2、设x,y∈R,向量=(x,1),=(1,y),=(2,-4),且⊥,∥,则|+|=________.
3、已知正方形ABCD的边长为1,点E是AB边上的动点,则DE→CB→的值为__________
DE→DC→的最大值为________.
4、在直角三角形ABC中,点D是斜边AB的中点,点P为线段CD的中点,则|PA|2+|PB|2|PC|2=______.
5、在矩形ABCD中,AB=2,BC=2,点E为BC的中点,点F在边CD上,若AB→AF→=2,则AE→BF→的值是________.
课堂小结: