88教案网

你的位置: 教案 > 高中教案 > 导航 > 简易逻辑

小学语文微课教案

发表时间:2020-12-01

简易逻辑。

俗话说,磨刀不误砍柴工。作为高中教师就要精心准备好合适的教案。教案可以让学生更好的吸收课堂上所讲的知识点,帮助高中教师提高自己的教学质量。你知道如何去写好一份优秀的高中教案呢?小编特地为大家精心收集和整理了“简易逻辑”,仅供参考,大家一起来看看吧。

简易逻辑

1.理解逻辑联结词“或”、“且”、“非”的含义;理解四种命题及其相互关系;掌握充分条件、必要条件及充要条件的意义.
2.学会运用数形结合、分类讨论的思想方法分析和解决有关集合问题,形成良好的思维品质;学会判断和推理,解决简易逻辑问题,培养逻辑思维能力.

1.简易逻辑是一个新增内容,据其内容的特点,在高考中应一般在选择题、填空题中出现,如果在解答题中出现,则只会是中低档题.
2.集合、简易逻辑知识,作为一种数学工具,在函数、方程、不等式、排列组合及曲线与方程等方面都有广泛的运用,高考题中常以上面内容为载体,以集合的语言为表现形式,结合简易逻辑知识考查学生的数学思想、数学方法和数学能力,题型常以解答题的形式出现.
第1课时逻辑联结词和四种命题

一、逻辑联结词
1.可以的语句叫做命题.命题由两部分构成;
命题有之分;数学中的定义、公理、定理等都是命题.
2.逻辑联结词有,不含的命题是简单命题.
由的命题是复合命题.复合命题的构成形式有三种:,(其中p,q都是简单命题).
3.判断复合命题的真假的方法—真值表:“非p”形式的复合命题真假与p的当p与q都真时,p且q形式的复合命题,其他情形;当p与q都时,“p或q”复合形式的命题为假,其他情形.
二、四种命题
1.四种命题:原命题:若p则q;逆命题:、否命题:逆否命题:.
2.四种命题的关系:原命题为真,它的逆命题、否命题、逆否命题.原命题与它的逆否命题同、否命题与逆命题同.
3.反证法:欲证“若p则q”为真命题,从否定其出发,经过正确的逻辑推理导出矛盾,从而判定原命题为真,这样的方法称为反证法.

例1.下列各组命题中,满足“p或q”为真,“p且q”为假,“非p”为真的是()
A.p:0=;q:0∈
B.p:在ABC中,若cos2A=cos2B,则A=B;y=sinx在第一象限是增函数
C.;不等式的解集为
D.p:圆的面积被直线平分;q:椭圆的一条准线方程是x=4
解:由已知条件,知命题p假且命题q真.选项(A)中命题p、q均假,排除;选项(B)中,
命题p真而命题q假,排除;选项(D)中,命题p和命题q都为真,排除;故选(C).
变式训练1:如果命题“p或q”是真命题,“p且q”是假命题.那么()
A.命题p和命题q都是假命题
B.命题p和命题q都是真命题
C.命题p和命题“非q”真值不同
D.命题q和命题p的真值不同
解:D
例2.分别写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假:
(1)若q1,则方程x2+2x+q=0有实根;
(2)若ab=0,则a=0或b=0;
(3)若x2+y2=0,则x、y全为零.
解:(1)逆命题:若方程x2+2x+q=0有实根,则q<1,为假命题.否命题:若q≥1,则方程x2+2x+q=0无实根,为假命题.逆否命题:若方程x2+2x+q=0无实根,则q≥1,为真命题.
(2)逆命题:若a=0或b=0,则ab=0,为真命题.
否命题:若ab≠0,则a≠0且b≠0,为真命题.
逆否命题:若a≠0且b≠0,则ab≠0,为真命题.
(3)逆命题:若x、y全为零,则x2+y2=0,为真命题.
否命题:若x2+y2≠0,则x、y不全为零,为真命题.
逆否命题:若x、y不全为零,则x2+y2≠0,为真命题.
变式训练2:写出下列命题的否命题,并判断原命题及否命题的真假:?
(1)如果一个三角形的三条边都相等,那么这个三角形的三个角都相等;?
(2)矩形的对角线互相平分且相等;?
(3)相似三角形一定是全等三角形.?
解:(1)否命题是:“如果一个三角形的三条边不都相等,那么这个三角形的三个角也不都相等”.?
原命题为真命题,否命题也为真命题.?
(2)否命题是:“如果四边形不是矩形,那么对角线不互相平分或不相等”?
原命题是真命题,否命题是假命题.?
(3)否命题是:“不相似的三角形一定不是全等三角形”.?
原命题是假命题,否命题是真命题.
例3.已知p:有两个不等的负根,q:无实根.若p或q为真,p且q为假,求m的取值范围.
分析:由p或q为真,知p、q必有其一为真,由p且q为假,知p、q必有一个为假,所以,“p假且q真”或“p真且q假”.可先求出命题p及命题q为真的条件,再分类讨论.
解:p:有两个不等的负根.
q:无实根.
因为p或q为真,p且q为假,所以p与q的真值相反.
(ⅰ)当p真且q假时,有;
(ⅱ)当p假且q真时,有.
综合,得的取值范围是{或}.
变式训练3:已知a0,设命题p:函数y=ax在R上单调递减,q:不等式x+|x-2a|1的解集为R,若p和q中有且只有一个命题为真命题,求a的取值范围.
解:由函数y=ax在R上单调递减知0a1,所以命题p为真命题时a的取值范围是0a1,令y=x+|x-2a|,
则y=不等式x+|x-2a|1的解集为R,只要ymin1即可,而函数y在R上的最小值为2a,所以2a1,即a即q真a若p真q假,则0a≤若p假q真,则a≥1,所以命题p和q有且只有一个命题正确时a的取值范围是0a≤或a≥1.
例4.若a,b,c均为实数,且a=x2-2y+,b=y2-2z+,c=z2-2x+.求证:a、b、c中至少有一个大于0.
证明:假设都不大于0,即,则


,.
相矛盾.因此中至少有一个大于0.
变式训练4:已知下列三个方程:①x2+4ax-4a+3=0,②x2+(a-1)x+a2=0,③x2+2ax-2a=0中至少有一个方程有实根,求实数a的取值范围.
解:设已知的三个方程都没有实根.

解得.
故所求a的取值范围是a≥-1或a≤-.

1.有关“p或q”与“p且q”形式的复合命题语句中,字面上未出现“或”与“且”字,此时应从语句的陈述中搞清含义从而分清是“p或q”还是“p且q”形式.
2.当一个命题直接证明出现困难时,通常采用间接证明法,反证法就是一种间接证法.
3.反证法的第一步为否定结论,需要掌握常用词语的否定(如“至少”等),而且推理过程中,一定要把否定的结论当条件用,从而推出矛盾.用反证法证明命题的一般步骤为:(1)假设命题的结论不成立,即假设命题结论的反面成立;(2)从这个假设出发,经过正确的推理论证得出矛盾;(3)由矛盾判断假设不正确,从而肯定所证命题正确.
第2课时充要条件

1.充分条件:如果则p叫做q的条件,q叫做p的条件.
2.必要条件:如果则p叫做q的条件,q叫做p的条件.
3.充要条件:如果且则p叫做q的条件.

例1.在下列各题中,判断A是B的什么条件,并说明理由.
1.A:,B:方程有实根;
2.A:,B:;
3.A:;B:;
4.A:圆与直线相切,B:
分析:要判断A是B的什么条件,只要判断由A能否推出B和由B能否推出A即可.
解:(1)当,取,则方程无实根;若方程有实根,则由推出或6,由此可推出.所以A是B的必要非充分条件.
(2)若则
所以成立
若成立取,知不一定成立,
故A是B的充分不必要条件.
(3)由,由解得,所以A推不出B,但B可以推出A,故A是B的必要非充分条件.
(4)直线与圆相切圆(0,0)到直线的距离,即==.所以A是B的充要条件.
变式训练1:指出下列命题中,p是q的什么条件(在“充分不必要条件”、“必要不充分条件”、“充要条件”、“既不充分也不必要条件”中选出一种作答).?
(1)在△ABC中,p:∠A=∠B,q:sinA=sinB;?
(2)对于实数x、y,p:x+y≠8,q:x≠2或y≠6;?
(3)非空集合A、B中,p:x∈A∪B,q:x∈B;??
(4)已知x、y∈R,p:(x-1)2+(y-2)2=0,q:(x-1)(y-2)=0.?
解:(1)在△ABC中,∠A=∠BsinA=sinB,反之,若sinA=sinB,因为A与B不可能互补(因为三角形三个内角和为180°),所以只有A=B.故p是q的充要条件.?
(2)易知:p:x+y=8,q:x=2且y=6,显然qp.但pq,即q是p的充分不必要条件,根据原命题和逆否命题的等价性知,p是q的充分不必要条件.?
(3)显然x∈A∪B不一定有x∈B,但x∈B一定有x∈A∪B,所以p是q的必要不充分条件.?
(4)条件p:x=1且y=2,条件q:x=1或y=2,?
所以pq但qp,故p是q的充分不必要条件.?
例2.已知p:-2<m<0,0<n<1;q:关于x的方程x2+mx+n=0有两个小于1的正根,试分析p是q的什么条件.
解:若方程x2+mx+n=0有两个小于1的正根,设为x1、x2.
则0<x1<1、0<x2<1,∵x1+x2=-m,x1x2=n
∴0<-m<2,0<n<1∴-2<m<0,0<n<1
∴p是q的必要条件.
又若-2<m<0,0<n<1,不妨设m=-1,n=.
则方程为x2-x+=0,∵△=(-1)2-4×=-1<0.∴方程无实根∴p是q的非充分条件.
综上所述,p是q的必要非充分条件.
变式训练2:证明一元二次方程ax2+bx+c=0有一正根和一负根的充要条件是ac0.?
证明:充分性:若ac0,则b2-4ac0,且0,?
∴方程ax2+bx+c=0有两个相异实根,且两根异号,即方程有一正根和一负根.?
必要性:若一元二次方程ax2+bx+c=0有一正根和一负根,则=b2-4ac0,x1x2=0,∴ac0.
综上所述,一元二次方程ax2+bx+c=0有一正根和一负根的充要条件是ac0.
例3.已知p:|1-|≤2,q::x2-2x+1-m2≤0(m0),若是的必要而不充分条件,求实数m的取值范围.
解:由题意知:命题:若┒p是┑q的必要而不充分条件的等价命题即逆否命题为:p是q的充分不必要条件.
p:|1-|≤2-2≤-1≤2-1≤≤3-2≤x≤10
q:x2-2x+1-m2≤0[x-(1-m)][x-(1+m)]≤0*
∵p是q的充分不必要条件,
∴不等式|1-|≤2的解集是x2-2x+1-m2≤0(m0)解集的子集.
又∵m0,∴不等式*的解集为1-m≤x≤1+m
∴,∴m≥9,
∴实数m的取值范围是[9,+∞
变式训练3:已知集合和集合,求a的一个取值范围,使它成为的一个必要不充分条件.
解:,

所以是必要但不充分条件.说明:此题答案不唯一.
例4.“函数y=(a2+4a-5)x2-4(a-1)x+3的图象全在x轴的上方”,这个结论成立的充分必要条件是什么?
解:函数的图象全在轴上方,若是一次函数,则
若函数是二次函数,则:
反之若,由以上推导,函数的图象在轴上方,综上,充要条件是.
变式训练4:已知P={x||x-1||2},S={x|x2+,的充要条件是,求实数的取值范围.
分析:的充要条件是,即任取,反过来,任取
据此可求得的值.
解:的充要条件是
∵P={x||x-1|>2}}=
S={x|x2+(a+1)x+a>0)}={x|(x+a)(x+1)>0}

1.处理充分、必要条件问题时,首先要分清条件与结论,然后才能进行推理和判断.不仅要深刻理解充分、必要条件的概念,而且要熟知问题中所涉及到的知识点和有关概念.
2.确定条件为不充分或不必要的条件时,常用构造反例的方法来说明.
3.等价变换是判断充分、必要条件的重要手段之一,特别是对于否定的命题,常通过它的等价命题,即逆否命题来考查条件与结论间的充分、必要关系.
4.对于充要条件的证明题,既要证明充分性,又要证明必要性,从命题角度出发,证原命题为真,逆命题也为真;求结论成立的充要条件可以从结论等价变形(换)而得到,也可以从结论推导必要条件,再说明具有充分性.
5.对一个命题而言,使结论成立的充分条件可能不止一个,必要条件也可能不止一个.
简易逻辑章节测试题
一、选择题
1.设集合的()
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分又不必要条件
2.已知p是r的充分不必要条件,s是r的必要条件,q是s的必要条件,那么p是q的()
?A.充分不必要条件B.必要不充分条件?
?C.充要条件?D.既不充分也不必要条件?
3.(2009合肥模拟)已知条件p:(x+1)24,条件q:xa,且的充分而不必要条件,则a的取值范围是()
A.a≥1B.a≤1?C.a≥-3?D.a≤-3??
4.“a=2”是“直线ax+2y=0平行于直线x+y=1”的()
A.充分而不必要条件?B.必要而不充分条件?
C.充分必要条件?D.既不充分也不必要条件?
5.设集合M={x|x2},P={x|x3},那么“x∈M或x∈P”是“x∈M∩P”的()
?A.充分不必要条件B.必要不充分条件?
C.充要条件D.既不充分也不必要条件?
6.在下列电路图中,表示开关A闭合是灯泡B亮的必要但不充分条件的线路图是()
7.(2008浙江理,3)已知a,b都是实数,那么“a2b2”是“ab”的()
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件
8.(2008北京海淀模拟)若集合A={1,m2},集合B={2,4},则“m=2”是“A∩B={4}”的()
A.充分不必要条件B.必要不充分条件?
C.充分必要条件?D.既不充分也不必要条件?
9.若数列{an}满足=p(p为正常数,n∈N*),则称{an}为“等方比数列”.?
甲:数列{an}是等方比数列;?乙:数列{an}是等比数列,则()
A.甲是乙的充分条件但不是必要条件?
B.甲是乙的必要条件但不是充分条件?
C.甲是乙的充要条件?
D.甲既不是乙的充分条件也不是乙的必要条件?
10.命题p:若a、bR,则|a|+|b|1是|a+b|1的充分而不必要条件.命题q:函数y=的定义域是,则()
A.“p或q”为假B.“p且q”为真
C.p真q假D.p假q真
二、填空题
11.已知数列,那么“对任意的n∈N*,点都在直线上”是“为等差数列”的条件.
12.设集合A={5,log2(a+3)},集合B={a,b},若A∩B={2},则A∪B=.
13.已知条件p:|x+1|2,条件q:5x-6x2,则非p是非q的条件.?
14.不等式|x|a的一个充分条件为0x1,则a的取值范围为.?
15.已知下列四个命题:①a是正数;②b是负数;③a+b是负数;④ab是非正数.
选择其中两个作为题设,一个作为结论,写出一个逆否命题是真命题的复合命题.
三、解答题
16.设命题p:(4x-3)2≤1;命题q:x2-(2a+1)x+a(a+1)≤0,若p是q的必要不充分条件,求实数a的取值范围.?

17.求关于x的方程ax2-(a2+a+1)x+a+1=0至少有一个正根的充要条件.?

18.设p:实数x满足x2-4ax+3a20,其中a0;q:实数x满足x2-x-6≤0,或x2+2x-8>0,且的必要不充分条件,求a的取值范围.?

19.(1)是否存在实数p,使“4x+p0”是“x2-x-20”的充分条件?如果存在,求出p的取值范围;
(2)是否存在实数p,使“4x+p0”是“x2-x-20”的必要条件?如果存在,求出p的取值范围.

20.已知,设函数在R上单调递减,:不等式的解集为R,如果和有且仅有一个正确,求c的取值范围.

简易逻辑章节测试题答案
1.B
2.A??
3.A??
4.C??
5.B??
6.B??
7.D
8.A??
9.B??
10.D
11.充分而不必要条件
12.{1,2,5}?
13.充分不必要?
14.a≥1?
15.若①③则②(或若①②则④或若①③则④)
16.解设A={x|(4x-3)2≤1},B={x|x2-(2a+1)x+a(a+1)≤0},?
易知A={x|≤x≤1},B={x|a≤x≤a+1}.?
由p是q的必要不充分条件,从而p是q的充分不必要条件,即AB,∴
故所求实数a的取值范围是[0,].
17.解方法一若a=0,则方程变为-x+1=0,x=1满足条件,若a≠0,则方程至少有一个正根等价于?
?或
或-1a0或a0.?
综上:方程至少有一正根的充要条件是a-1.?
方法二若a=0,则方程即为-x+1=0,?
∴x=1满足条件;?
若a≠0,∵Δ=(a2+a+1)2-4a(a+1)=(a2+a)2+2(a2+a)+1-4a(a+1)?
=(a2+a)2-2a(a+1)+1=(a2+a-1)2≥0,∴方程一定有两个实根.?
故而当方程没有正根时,应有解得a≤-1,
∴至少有一正根时应满足a-1且a≠0,综上:方程有一正根的充要条件是a-1.
18.解设A={x|p}={x|x2-4ax+3a20,a0}={x|3axa,a0},?
B={x|q}={x|x2-x-6≤0或x2+2x-80}={x|x2-x-6≤0}∪{x|x2+2x-80}?
={x|-2≤x≤3}∪{x|x-4或x2}=
方法一∵的必要不充分条件,∴.
则而RB==RA=

则综上可得-
方法二由p是q的必要不充分条件,
∴p是q的充分不必要条件,
∴AB,∴a≤-4或3a≥-2,又∵a0,∴a≤-4或-≤a0.
19.解(1)当x2或x-1时,x2-x-20,由4x+p0,得x-故-≤-1时,
“x-”“x-1”“x2-x-20”.∴p≥4时,“4x+p0”是“x2-x-20”的充分条件.
(2)不存在实数p满足题设要求.
20.解:函数在R上单调递减
不等式的解集为函数
,在R上恒大于1
函数在上的最小值为
不等式的解集为R
,如果p正确,且q不正确
则,如果p不正确,且q正确,则,所以c的取值范围为.

相关知识

集合与简易逻辑教案


1、设全集为,则有:,。
2、,。
3、,,则有如下关系:
(1)若时,则是的充分条件;
(2)若时,则是的充分不必要条件;
(3)若时,则是的充要条件。
4、由n个元素所组成的集合,其子集有个,即,真子集个,非空的真子集个。
5、如果原命题是若P则,则原命题的否定是若P则非,而原命题的否命题是若非P则非,但对于全称命题其否定则应加以区别。
例如:命题对任意的,的否定为:存在,
6、使用反证法的重要一环是如何正确提出与原结论相反的假定,常见的有:
7、一般地,已知函数,定义域和值域有如下性质:
(1)若的定义域为A,且在集合B上有意义,则。
(2)若的值域为A,且的取值范围为B,则。
(3)若的单调增(减)区间为A,且在区间B上单调递增(减),则。
8、描述法给出的集合,解题中应注意代表元素的属性。有关集合问题的讨论不能遗漏了空集。空集是任何集合的子集,是任何非空集合的真子集。有关集合问题的讨论应注意集合语言转化的等价性。
9、充要条件的判定:
(1)先分清哪是条件,哪是结论,将条件放在左边,结论放在右边;
(2)从条件推到结论,说明条件是充分的;从结论推到条件,说明条件是必要的。
10、非形式复合命题的真假与的真假相反;且形式复合命题,当与同为真时为真,其它情况时为假;或形式复合命题,当与同为假时为假,其它情况时为真。

集合与简易逻辑


一名优秀的教师在教学方面无论做什么事都有计划和准备,作为高中教师就需要提前准备好适合自己的教案。教案可以让学生更好地进入课堂环境中来,帮助高中教师提高自己的教学质量。你知道如何去写好一份优秀的高中教案呢?小编为此仔细地整理了以下内容《集合与简易逻辑》,仅供参考,大家一起来看看吧。

第十八教时
教材:逻辑联结词(1)
目的:要求学生了解复合命题的意义,并能指出一个复合命题是有哪些简单命题与逻辑联结词,并能由简单命题构成含有逻辑联结词的复合命题。
过程:
一、提出课题:简单逻辑、逻辑联结词
二、命题的概念:例:125①3是12的约数②0.5是整数③
定义:可以判断真假的语句叫命题。正确的叫真命题,错误的叫假命题。
如:①②是真命题,③是假命题
反例:3是12的约数吗?x5都不是命题
不涉及真假(问题)无法判断真假
上述①②③是简单命题。这种含有变量的语句叫开语句(条件命题)。
三、复合命题:
1.定义:由简单命题再加上一些逻辑联结词构成的命题叫复合命题。
2.例:(1)10可以被2或5整除④10可以被2整除或10可以被5整除
(2)菱形的对角线互相菱形的对角线互相垂直且菱形的
垂直且平分⑤对角线互相平分
(3)0.5非整数⑥非“0.5是整数”
观察:形成概念:简单命题在加上“或”“且”“非”这些逻辑联结词成复合命题。
3.其实,有些概念前面已遇到过
如:或:不等式x2x60的解集{x|x2或x3}
且:不等式x2x60的解集{x|2x3}即{x|x2且x3}
四、复合命题的构成形式
如果用p,q,r,s……表示命题,则复合命题的形式接触过的有以下三种:
即:p或q(如④)记作pq
p且q(如⑤)记作pq
非p(命题的否定)(如⑥)记作p
小结:1.命题2.复合命题3.复合命题的构成形式

第一章“集合与简易逻辑”教材分析


第一章“集合与简易逻辑”教材分析

本章安排的是“集合与简易逻辑”,这一章主要讲述集合的初步知识与简易逻辑知识两部分内容.集合的初步知识是现行高中数学教科书中原来就有的内容,这部分主要包括集合的有关概念、集合的表示及集合同集合之间的关系.简易逻辑知识则是新增加的内容,这部分主要介绍逻辑联结词“或”、“且”、“非”、四种命题及其相互关系、充要条件等有关知识

集合概念及其基本理论,称为集合论,是近代数学的一个重要的基础.一方面,许多重要的学科,如数学中的数理逻辑、近世代数、实变函数、泛函分析、概率统计、拓扑等,都建立在集合理论的基础上.另一方面,集合论及其所反映的数学思想,在越来越广泛的领域中得到应用.

逻辑是研究思维形式及其规律的一门基础学科.学习数学,需要全面地理解概念,正确地进行表述、推理和判断,这就离不开对逻辑知识的掌握和运用.更广泛地说,在日常生活、学习、工作中,基本的逻辑知识也是认识问题、研究问题不可缺少的工具,是人们文化素质的组成部分.

在高中数学中,集合的初步知识与简易逻辑知识,与其他内容有着密切联系,它是学习、掌握和使用数学语言的基础,这就是把它们安排在高中数学起始章的出发点.

本章共编排了8小节,教学时间约需22课时:

11集合

约2课时

12子集、全集、补集

约2课时

13交集、并集

约2课时

14绝对值不等式的解法

约2课时

15一元二次不等式的解法

约4课时

16逻辑联结词

约2课时

17四种命题

约2课时

18充分条件与必要条件

约2课时

小结与复习

约4课时

说明:本章是高中数学的起始章,课时安排得相对宽松一些,像小结与复习部分安排4课时,其中考虑到了对初中内容进行适当复习、巩固的因素.

一内容与要求

大体上按照集合与逻辑这两个基本内容,第一章编排成两大节.

第一大节是“集合”.学生在小学和初中数学中,已经接触过集合,对于诸如数集(整数的集合、有理数的集合)、点集(圆)等,都有了一定的感性认识.在此基础上,这一大节首先结合实例引出集合与集合的元素的概念,并介绍了集合的表示方法.然后,从讨论集合与集合之间的包含与相等的关系入手,给出子集的概念,此外,还给出了与子集相联系的全集与补集的概念.接着,又讲述了属于集合运算的交集、并集的初步知识.鉴于不等式的内容目前初中数学只讲述一元一次不等式与一元一次不等式组,考虑到集合知识的运用与巩固,又考虑到下一章讨论函数的定义域与值域的需要,第一大节最后安排的是绝对值不等式与一元二次不等式的解法.此外,在这一大节之后,还附了一篇关于有限集合元素个数的阅读材料.

这一大节的重点是有关集合的基本概念.学习集合的初步知识,可以使学生更好地理解数学中出现的集合语言,可以使学生更好地使用集合语言表述数学问题,并且可以使学生运用集合的观点研究、处理数学问题,这里,起重要作用的就是有关集合的基本概念.

这一大节的难点是有关集合的各个概念的含义以及这些概念相互之间的区别与联系.学生是从本章才正式开始学习集合知识的,这部分包含了比较多的新概念,还有相应的新符号,有些概念、符号还容易混淆,这些因素都可能造成学生学习的障碍.

第二大节是“简易逻辑”.学生在初中数学中,学习过简单的命题(包括原命题与逆命题)知识,掌握了简单的推理方法(包括对反证法的了解).由此,这一大节首先给出含有“或”、“且”、“非”的复合命题的意义,介绍了判断含有“或”、“且”、“非”的复合命题的真假的方法.接下来,讲述四种命题及其相互关系,并且在初中的基础上,结合四种命题的知识,进一步讲解反证法.然后,通过若干实例,讲述了充分条件、必要条件和充要条件的有关知识.

这一大节的重点是逻辑联结词“或”、“且”、“非”与充要条件.学习简易逻辑知识,主要是为了培养学生进行简单推理的技能,发展学生的思维能力,在这方面,逻辑联结词“或”、“且”、“非”与充要条件的有关内容是十分必要的.

这一大节的难点是对一些代数命题真假的判断.初中阶段,学生只是对简单的推理方法有一定程度的熟悉,并且,相关的技能和能力,主要还是通过几何课的学习获得的,初中代数侧重的是运算的技能和能力,因此,像对代数命题的证明,学生还需要有一个逐步熟悉的过程.

根据《全日制普通高级中学数学教学大纲(试验修订版)》的规定,本章的教学要求是:

⒈理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合;掌握带绝对值的不等式与一元二次不等式的解法.

⒉理解逻辑联结词“或”、“且”、“非”的含义;理解四种命题及其相互关系;进一步了解反证法,会用反证法证明简单的问题;掌握充要条件的意义.

二本章的特点

⒈注意初中与高中的衔接

近年来,在与本章有关的内容上,按照教学大纲,初中的教学要求有哪些变化呢?

先看有关集合的部分.初中适当渗透一些集合思想,这一点基本没有变化.此外,初中去掉了一元二次不等式与绝对值不等式的内容.

再看有关逻辑的部分.1996年以前的初中毕业生,应该达到以下要求:⑴了解命题的概念;⑵初步掌握逆命题和逆定理的概念,能正确叙述题设与结论都是简单命题的命题的逆命题,了解正确命题的逆命题的逆命题不一定正确;⑶了解四种命题及其相互关系;⑷理解用反证法证明命题的思路,能用反证法证明一些比较简单的几何题.从1996年起,对于高一新生,初中的要求又有进一步调整.上述⑵改为:了解逆命题和逆定理的概念,原命题成立它的逆命题不一定成立,会识别两个互逆命题.⑶删去.⑷改为:了解反证法.

基于以上情况,考虑到学习高中数学的需要,新教材一方面补充了一些必要的知识点,例如关于一元二次不等式与绝对值不等式的解法;另一方面对一些初中相对薄弱的内容,适当予以加强,例如关于反证法等.

例如,关于交集、并集的概念,教科书先从图形表示入手,让学生有一个直观的认识,然后给出定义,再用实例加以说明,并且,引出概念的图形也只是采用了一种简明的形式,而没有画出全部可能出现的情况.

又如,本章是对比初中学过的一元一次不等式,并且借助二次函数的图象,讲述一元二次不等式解法的.

⒉重视集合与逻辑在中学数学学习中的应用

本章是高中数学的基础,学习本章,主要目的是为了理解后续章节出现的集合与逻辑语言,会用集合与逻辑语言描述学习中遇到的数学问题,进而解决这些问题.像对一些性质、定理的理解,对函数的定义域、值域的描述,对推理方法的掌握,等等.

本章在集合与逻辑内容的编排上,既考虑到知识的系统性,又照顾到学生的可接受性,并且始终围绕着集合与逻辑在中学数学学习中的应用这一基本出发点.

在集合这部分,有关集合运算的内容,就注意在解方程和不等式方面的应用,在数学概念的分类方面的应用.

在逻辑这部分,有关命题的内容,突出的是对逻辑联结词“或”、“且”、“非”的理解和对复合命题真值的认识,而不过多地涉及对一个语句是不是命题的判断.此外,像关于复合命题的否定,对近期学习影响不大,学生学习又比较困难,本章基本未涉及.

为了帮助学生理解逻辑联结词“或”、“且”、“非”,教科书中介绍了“或门电路”、“与门电路”,这是两个应用的实例.实际上,计算机的“智能”装置就是以数学逻辑为基础进行设计的

三教学中应注意的问题

⒈教学要求的把握要适时、适度

本章是高中数学的起始章,适当地把握本章的教学要求是教学中应该重视的问题.

集合与逻辑的初步知识是高中数学的基础知识,学习这些内容,主要是为今后进一步学习其他知识作基本语言、基本方法的准备,相应地,对知识系统性、严谨性的要求一定要适度.

学习有关集合的初步知识,其目的主要在于应用.具体说,就是在学习其他知识时,能读懂其中的简单的集合概念和符号;在处理简单的实际问题时,能根据需要,运用集合语言进行表述.在安排训练时,要把握一定的分寸,不要搞偏题、怪题.集合有关性质的证明,一般不要求学生掌握.有些可能混淆但在实际问题中并不多见的关系,就不必故意编排在一起,让学生去一一进行辨析.

本章安排的是集合与逻辑的初步知识,这些知识的讲述,是以初中数学的内容为基础的.从引出有关知识的实例,到具体应用的问题,基本都属于初中数学的范围,这种局限自然会对有关知识的理解和掌握造成一定影响.随着后续章节的学习,对集合与逻辑知识的应用将越来越广泛和深入,相应地,对集合与逻辑知识理解和掌握的水平也就越来越高了.因此,本章的教学要求,应该避免一步到位.

关于含有“或”、“且”、“非”的复合命题的真值表,在开始时,教学重点还是借助三个真值表,加深对含有“或”、“且”、“非”的复合命题的了解,而不必急于让学生掌握对一般复合命题的真假的判断.

关于充分条件、必要条件与充要条件,本章对教学要求的尺度,还是控制在对初中代数、几何的有关问题的理解上为宜.

⒉提高集合与逻辑的教学效益

目前高中数学教学的一个突出问题是教学效益不高.具体表现在:一方面,学生用在数学上的时间比较多,像与美国比,是美国学生的好几倍;另一方面,学生在考试中表现良好,但创造性能力和应用能力有一定欠缺,个性发展也存在着不足之处.

为了后续章节的学习,在本章必须给学生打下适当的集合与逻辑基础,限于学生的预备知识与接受能力,在本章又不能过多地追求理论的完整,只有处理好这个关系,才能提高教学效益.因此,在实际教学时,一定要抓住重点.怎样把握本章的教学重点呢?一是要有助于对初中数学的理解,二是要能为高中数学的学习扫除障碍.换句话说,学习集合与逻辑,要着眼于用集合与逻辑的知识解决数学学习中的问题,而不要在概念的严谨性、知识的系统性上花过多的时间与精力.像逻辑中有不少问题,在学术界内部都有争论,在高一数学课上,就完全没有必要去涉及了.

⒊使用数学符号要规范

本章教材有不少集合与逻辑的数学符号,这些符号的采用,依据的是新的国家标准,其中有些符号与原教科书不同,在教学时应该注意.

第一章集合与简易逻辑小结


教学目的:

⒈理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合;掌握带绝对值的不等式与一元二次不等式的解法.

⒉理解逻辑联结词“或”、“且”、“非”的含义;理解四种命题及其相互关系;进一步了解反证法,会用反证法证明简单的问题;掌握充要条件的意义.

教学重点:

1.有关集合的基本概念;

2.逻辑联结词“或”、“且”、“非”与充要条件

【高考评析】

集合知识作为整个数学知识的基础,在高考中重点考察的是集合的化简,以及利用集合与简易逻辑的知识来指导我们思维,寻求解决其他问题的方法.

【学法指导】本章的基本概念较多,要力求在理解的基础上进行记忆.

【数学思想】

1、等价转化的数学思想;2、求补集的思想;

3、分类思想;4、数形结合思想.

【解题规律】1、如何解决与集合的运算有关的问题:

1)对所给的集合进行尽可能的化简;

2)有意识应用维恩图来寻找各集合之间的关系;

3)有意识运用数轴或其它方法来直观显示各集合的元素.

2.如何解决与简易逻辑有关的问题:

1)力求寻找构成此复合命题的简单命题;

2)利用子集与推出关系的联系将问题转化为集合问题

二、基本知识点:

集合:

1、集合中的元素属性:

(1)(2)(3)

2、常用数集符号:NZQR

3、子集:数学表达式

4、补集:数学表达式

5、交集:数学表达式

6、并集:数学表达式

7、空集:它的性质(1)(2)

8、如果一个集合A有n个元素(CradA=n),那么它有个个子集,

个非空真子集

注意:(1)元素与集合间的关系用符号表示;

(2)集合与集合间的关系用符号表示

解不等式:

1、绝对值不等式的解法:

(1)公式法:|f(x)|g(x)|f(x)|g(x)

(2)几何法

(3)定义法(利用定义打开绝对值)

(4)两边平方

2、一元二次不等式或的求解原理:利用二次函数的图象通过二次函数与二次不等式的联系从而推证出任何一元二次不等式的解集

对应的图形

不等式

△0

△=0

△0

3、分式、高次不等式的解法:

4、一元二次方程实根分布:

简易逻辑:

1、命题的定义:可以判断真假的语句叫做命题

2、逻辑联结词、简单命题与复合命题:

“或”、“且”、“非”这些词叫做逻辑联结词;不含有逻辑联结词的命题是简单命题;由简单命题和逻辑联结词“或”、“且”、“非”构成的命题是复合命题

构成复合命题的形式:p或q(记作“p∨q”);p且q(记作“p∧q”);非p(记作“┑q”)

3、“或”、“且”、“非”的真值判断

(1)“非p”形式复合命题的真假与P的真假相反;

(2)“p且q”形式复合命题当P与q同为真时为真,其他情况时为假;

(3)“p或q”形式复合命题当p与q同为假时为假,其他情况时为真.

4、四种命题的形式:

原命题:若P则q;逆命题:若q则p;

否命题:若┑P则┑q;逆否命题:若┑q则┑p

(1)交换原命题的条件和结论,所得的命题是逆命题;

(2)同时否定原命题的条件和结论,所得的命题是否命题;

(3)交换原命题的条件和结论,并且同时否定,所得的命题是逆否命题.

5、四种命题之间的相互关系:

一个命题的真假与其他三个命题的真假有如下三条关系:(原命题逆否命题)

①、原命题为真,它的逆命题不一定为真

②、原命题为真,它的否命题不一定为真

③、原命题为真,它的逆否命题一定为真

6、反证法:从命题结论的反面出发(假设),引出(与已知、公理、定理…)矛盾,从而否定假设证明原命题成立,这样的证明方法叫做反证法

7、如果已知pq那么我们说,p是q的充分条件,q是p的必要条件

判断两条件间的关系技巧:

(1)(2)

注意:(1)复合命题的三种形式与假言命题中的四种命题的区别

(2)复合命题中的“p或q”与假言命题中的“若p则q”它们的“P”的区别

三、巩固训练

(一)、选择题:

1、下列关系式中不正确的是()

A0B0C0D0

2、下列语句为命题是()

A等腰三角形B对顶角相等C≥0D0是自然数吗?

3、命题“方程|x|=1的解是x=±1”中,使用逻辑联结词的情况是()

A使用了逻辑联结词“或”B使用了逻辑联结词“且”

C使用了逻辑联结词“非”D没有使用逻辑联结词

4、不等式的解集为()

ABCD

5、不全为0的充要条件是()

A都不是0B最多有一个是0

C只有一个是0D中至少有一个不是0

6、≥()

A充分而不必要条件B必要而不充分条件

C充分必要条件D即不充分也不必要条件

7、如果命题则

A即不充分也不必要条件B必要而不充分条件

C充分而不必要条件D充要条件

8、至少有一个负的实根的充要条件是()

ABCD

(二)、填空题:

9、不等式的解集是则==

10、分式不等式的解集为:_______________.

11、命题“”的逆命题、否命题、逆否命题中,真命题有____个.

12、设A=,B=,若AB,则的取值范围是________.

(三)、解答题:

13、解下列不等式

③||

④()

14、利用反证法证明:

15、已知一元二次不等式对一切实数都成立,求的取值范围

16、已知集合A=,求实数的取值范围(表示正实数集合)