88教案网

你的位置: 教案 > 高中教案 > 导航 > 概率

高中概率教案

发表时间:2020-12-01

概率。

一名优秀的教师在教学方面无论做什么事都有计划和准备,作为教师就需要提前准备好适合自己的教案。教案可以让讲的知识能够轻松被学生吸收,帮助教师能够井然有序的进行教学。所以你在写教案时要注意些什么呢?下面是由小编为大家整理的“概率”,仅供参考,希望能为您提供参考!

概率

(一)事件与概率
1.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别。
2.了解互斥事件、对立事件的意义及其运算公式.
(二)古典概型
①1.理解古典概型及其概率计算公式.
②2.会计算一些随机事件所含的基本事件数及事件发生的概率。
(三)随机数与几何概型
①1.了解随机数的意义,能运用模拟方法估计概率.
②2.了解几何概型的意义.

概率则是概率论入门,目前的概率知识只是为进一步学习概率和统计打好基础,做好铺垫.学习中要注意基本概念的理解,要注意与其他数学知识的联系,要通过一些典型问题的分析,总结运用知识解决问题的思维规律.纵观近几年高考,概率的内容在选择、填空解答题中都很有可能出现。
第1课时随机事件的概率

1.随机事件及其概率
(1)必然事件:在一定的条件下必然发生的事件叫做必然事件.
(2)不可能事件:在一定的条件下不可能发生的事件叫做不可能事件.
(3)随机事件:在一定的条件下,也可能发生也可能不发生的事件叫做随机事件.
(4)随机事件的概率:一般地,在大量重复进行同一试验时,事件A发生的频率总是接近于某个常数,在它附近摆动,这时就把这个常数叫做事件,这时就把这个常数叫做事件的概率,记作.
(5)概率从数量上反映了一个事件发生的可能性的大小,它的取值范围是,必然事件的概率是1,不可能事件的概率是0.
2.等可能性事件的概率
(1)基本事件:一次试验连同其中可能出现的每一个结果称为一个基本事件.
(2)等可能性事件的概率:如果一次试验由n个基本事件组成,而且所有结果出现的可能性都相等,那么每一个基本事件的概率是.如果某个事件A包含的结果有m个,那么事件A的概率:

例1.1)一个盒子装有5个白球3个黑球,这些球除颜色外,完全相同,从中任意取出两个球,求取出的两个球都是白球的概率;
(2)箱中有某种产品a个正品,b个次品,现有放回地从箱中随机地连续抽取3次,每次1次,求取出的全是正品的概率是()
A.B.C.D.
(3)某班有50名学生,其中15人选修A课程,另外35人选修B课程,从班级中任选两名学生,他们是选修不同课程的学生的概率是多少?
解:(1)从袋内8个球中任取两个球共有种不同结果,从5个白球中取出2个白球有种不同结果,则取出的两球都是白球的概率为
(2)(3)
变式训练1.盒中有1个黑球9个白球,它们除颜色不同外,其它没什么差别,现由10人依次摸出1个球,高第1人摸出的是黑球的概率为P1,第10人摸出是黑球的概率为P10,则()
A.B.
C.P10=0D.P10=P1
解:D
例2.甲、乙两袋装有大小相同的红球和白球,甲袋装有2个红球,2个白球;乙袋装有2个红球,n个白球,两甲、乙两袋中各任取2个球.
(1)若n=3,求取到的4个球全是红球的概率;
(2)若取到4个球中至少有2个红球的概率为,求n.
解:(1)记“取到的4个球全是红球”为事件.
(2)记“取到的4个球至多有1个红球”为事件B,“取到的4个球只有1个红球”为事件B1,“取到的4个球全是白球”为事件B2,由题意,得

所以
,化简,得7n2-11n-6=0,解得n=2,或(舍去),故n=2.
变式训练2:在一个口袋中装有5个白球和3个黑球,这些球除颜色外完全相同.从中摸出3个球,至少摸到2个黑球的概率等于()
A.B.
C.D.
解:A
例3.袋中装着标有数字1,2,3,4,5的小球各2个,从袋中任取3个小球,按3个小球上最大数字的9倍计分,每个小球取出的可能性都相等,用表示取出的3个小球上的最大数字,求:
(1)取出3个小球上的数字互不相同的概率;
(2)计分介于20分到40分之间的概率.
解:(1)“一次取出的3个小球上的数字互不相同”的事件记为A,

(2)“一次取球所得计分介于20分到40分之间”的事件记为C,则P(C)=P(“=3”或“=4”)=P(“=3”)+P(“=4”)=
变式训练3:从数字1,2,3,4,5中任取3个,组成没有重复数字的三位数,计算:
①这个三位数字是5的倍数的概率;
②这个三位数是奇数的概率;
③这个三位数大于400的概率.
解:⑴⑵⑶
例4.在一次口试中,要从20道题中随机抽出6道题进行回答,答对了其中的5道就获得优秀,答对其中的4道就可获得及格.某考生会回答20道题中的8道题,试求:
(1)他获得优秀的概率是多少?
(2)他获得及格与及格以上的概率有多大?
解:从20道题中随机抽出6道题的结果数,即是从20个元素中任取6个元素的组合数.由于是随机抽取,故这些结果出现的可能性都相等.
(1)记“他答对5道题”为事件,由分析过程已知在这种结果中,他答对5题的结果有种,故事件的概率为
(2)记“他至少答对4道题”为事件,由分析知他答对4道题的可能结果为种,故事件的概率为:
答:他获得优秀的概率为,获得及格以上的概率为
变式训练4:有5个指定的席位,坐在这5个席位上的人都不知道指定的号码,当这5个人随机地在这5个席位上就坐时.
(1)求5个人中恰有3人坐在指定的席位上的概率;
(2)若在这5个人侍在指定位置上的概率不小于,则至多有几个人坐在自己指定的席位上?
解:(1)
(2)由于3人坐在指定位置的概率,故可考虑2人坐在指定位置上的概率,设5人中有2人坐在指定位置上为事件B,则,又由于坐在指定位置上的人越多其概率越少,而要求概率不小于,则要求坐在指定位置上的人越少越好,故符合题中条件时,至多2人坐在指定席位上.

1.实际生活中所遇到的事件包括必然事件、不可能事件及随机事件.随机事件在现实世界中是广泛存在的.在一次试验中,事件是否发生虽然带有偶然性,当在大量重复试验下,它的发生呈现出一定的规律性,即事件发生的频率总是接近于某个常数,这个常数就叫做这个事件的概率.
2.如果一次试验中共有种等可能出现的结果,其中事件A包含的结果有m种,那么事件A的概率从集合的角度看,一次试验中等可能出现的所有结果组成一个集合I,其中事件A包含的结果组成I的一个子集A,因此从排列、组合的角度看,m、n实际上是某些事件的排列数或组合数.因此这种“古典概率”的问题,几乎使有关排列组合的计算与概率的计算成为一回事.
3.利用等可能性的概率公式,关键在于寻找基本事件数和有利事件数.
第2课时互斥事件有一个发生的概率

1.的两个事件叫做互斥事件.
2.的互斥事件叫做对立事件.
3.从集合的角度看,几个事件彼此互斥,是指由各个事件所含的结果组成的集合彼此.事件A的对立事件所含的结果组成的集合,是全集中由事件A所含的结果组成的集合的补集.
4.由于集合是可以进行运算的,故可用集合表示的事件也能进行某些运算.设A、B是两个事件,那么A+B表示这样一个事件:在同一试验中,A或B中就表示A+B发生.我们称事件A+B为事件A、B的和.它可以推广如下:“”表示这样一个事件,在同一试验中,中即表示发生,事实上,也只有其中的某一个会发生.
5.如果事件A、B互斥,那么事件A+B发生的概率,等于.即P(A+B)=.
6.由于是一个必然事件,再加上,故,于是,这个公式很有用,常可使概率的计算得到简化.当直接求某一事件的概率较为复杂时,可转化去求其对立事件的概率.

例1.某射手在一次射击训练中,射中10环,9环,8环,7环的概率分别为0.21,0.23,0.25,0.28,计算这个射手在一次射击中:①射中10环或7环的概率;②不够7环的概率.
解:①0.49;②0.03.
变式训练1.一个口袋内有9张大小相同的票,其号数分别是1,2,3,,9,从中任取2张,其号数至少有1个为偶数的概率等于()
A.B.
C.D.
解:D
例2.袋中有红、黄、白3种颜色的球各1只,从中每次任取1只,有放回地抽取3次,求:
(1)3只全是红球的概率.
(2)3只颜色全相同的概率.
(3)3只颜色不全相同的概率.
(4)3只颜色全不相同的概率.
解:(1)记“3只全是红球”为事件A.从袋中有放回地抽取3次,每次取1只,共会出现种等可能的结果,其中3只全是红球的结果只有一种,故事件A的概率为.
(2)“3只颜色全相同”只可能是这样三种情况:“3只全是红球”(事件A);“3只全是黄球”(设为事件B);“3只全是白球”(设为事件C).故“3只颜色全相同”这个事件为A+B+C,由于事件A、B、C不可能同时发生,因此它们是互斥事件.再由于红、黄、白球个数一样,故不难得,
故.
(3)3只颜色不全相同的情况较多,如是两只球同色而另一只球不同色,可以两只同红色或同黄色或同白色等等;或三只球颜色全不相同等.考虑起来比较麻烦,现在记“3只颜色不全相同”为事件D,则事件为“3只颜色全相同”,显然事件D与是对立事件.

(4)要使3只颜色全不相同,只可能是红、黄、白各一只,要分三次抽取,故3次抽到红、黄、白各一只的可能结果有种,故3只颜色全不相同的概率为

变式训练2.从装有2个红球和2个黑球的口袋内任取2个球,那么互斥而不对立的两个事件是()
A.至少有1个黑球与都是黑球
B.至少有1个黑球与至少有1个红球
C.恰有1个黑球与恰有2个黑球
D.至少有1个黑球与都是红球
解:C
例3.设人的某一特征(如眼睛大小)是由他的一对基因所决定的,以d表示显性基因,r表示隐性基因,则具有dd基因的人为纯显性,具有rr基因的人是纯隐性,具有rd基因的人为混合性,纯显性与混合性的人都显露显性基因决定的一某一特征,孩子从父母身上各得到一个基因,假定父母都是混合性,问:①1个孩子有显性决定特征的概率是多少?②2个孩子至少有一个显性决定特征的概率是多少?
解:①;②
变式训练3.盒中有6只灯泡,其中2只是次品,4只是正品,从其中任取两只,试求下列事件的概率:
①取到两只都是次品;
②取到两只中正品、次品各1只;
③取到两只中至少有1只正品.
解:⑴⑵⑶
例4.从男女学生共36名的班级中,任意选出2名委员,任何人都有同样的当选机会,如果选得同性委员的概率等于,求男女相差几名?
解:设男生有名,则女生有36-名,选得2名委员都是男生的概率为:
选得2名委员都是女生的概率为
以上两种选法是互斥的,又选得同性委员的概率是
得:
解得:或
即:男生有15名,女生有21名;或男生有21名,女生有15名.总之,男、女生相差6名.
变式训练4.学校某班学习小组共10小,有男生若干人,女生若干人,现要选出3人去参加某项调查活动,已知至少有一名女生去的概率为,求该小组男生的人数?
解:6人

1.互斥事件概率的加法公式、对立事件概率的加法公式,都必须在各个事件彼此互斥的前提下使用.
2.要搞清两个重要公式:
的运用前提.
3.在求某些稍复杂的事件的概率时,通常有两种方法:一是将所求事件的概率化成一些彼此互斥事件的概率的和;二是先去求此事件的对立事件的概率.
第3课时相互独立事件同时发生的概率

1.事件A(或B)是否发生对事件B(或A)发生的概率,这样的两个事件叫独立事件.
2.设A,B是两个事件,则A·B表示这样一个事件:它的发生,表示事件A,B,类似地可以定义事件A1·A2·……An.
3.两个相互独立事件A,B同时发生的概率,等于每个事件发生的概率的积,即P(A·B)
=一般地,如果事件相互独立,那么:P(A1·A2……An)=.
4.n次独立重复试验中恰好发生次的概率:如果在一次试验中某事件发生的概率是P,那么在次独立重复试验中这个事件恰好发生次的概率是.

例1.如图所示,用A、B、C三类不同的元件连接成两个系统、,当元件A、B、C都正常工作时,系统正常工作,当元件A正常工作且元件B、C至少有1个正常工作时系统正常工作,已知元件A、B、C正常工作的概率依次为0.8、0.9、0.9,分别求系统、正常工作时的概率.

解:分别记元件A、B、C正常工作为事件A、B、C,
由已知条件
(Ⅰ)因为事件A、B、C是相互独立的,所以,系统正常工作的概率
故系统正常工作的概率为0.648.
(Ⅱ)系统正常工作的概率
故系统正常工作的概率为0.792.
变式训练1.有甲、乙两地生产某种产品,甲地的合格率为90%,乙地的合格率为92%,从两地生产的产品中各抽取1件,都抽到合格品的概率等于()
A.112%B.9.2%C.82.8%D.0.8%
解:C
例2.箱内有大小相同的20个红球,80个黑球,从中任意取出1个,记录它的颜色后再放回箱内,进行搅拌后再任意取出1个,记录它的颜色后又放回,假设三次都是这样抽取,试回答下列问题:
①求事件A:“第一次取出黑球,第二次取出红球,第三次取出黑球”的概率;
②求事件B:“三次中恰有一次取出红球”的概率.
解:(①;②
变式训练2:从甲袋中摸出一个红球的概率是,从乙袋中摸出1个红球的概率是,从两袋中各摸出1个球,则等于()
A.2个球不都是红球的概率
B.2个球都是红球的概率
C.至少有1个红球的概率
D.2个球中恰好有1个红球的概率
解:C
例3.两台雷达独立工作,在一段时间内,甲雷达发现飞行目标的概率是0.9,乙雷达发现目标的概率是0.85,计算在这一段时间内,下列各事件的概率:
(1)甲、乙两雷达均未发现目标;
(2)至少有一台雷达发现目标;
(3)至多有一台雷达发现目标
解:①0.015;②0.985;③0.235
变式训练3:甲、乙、丙三人分别独立解一道题,甲做对的概率为,甲、乙、丙三人都做对的概率是,甲、乙、丙三人全做错的概率是.
(1)求乙、丙两人各自做对这道题的概率;
(2)求甲、乙、丙三人中恰有一人做对这一道题的概率.
解:①,或,;②
例4.有三种产品,合格率分别为0.90,0.95和0.95,各取一件进行检验.
(1)求恰有一件不合格的概率;
(2)求至少有两件不合格的概率.(精确到0.01)
解:设三种产品各取一件,抽到的合格产品的事件分别为A、B和C
(Ⅰ)因为事件A、B、C相互独立,恰有一件不合格的概率为
答:恰有一件不合格的概率为0.176.
(Ⅱ)解法一:至少有两件不合格的概率为

答:至少有两件不合格的概率为0.012.
解法二:三件都合格的概率为:

由(Ⅰ)可知恰好有一件不合格的概率为0.176,所以至少有两件不合格的概率为
答:至少有两件不合格的概率为0.012.
变式训练4.甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为,甲、丙两台机床加工的零件都是一等品的概率为.①分别求甲、乙、丙三台机床各自加工的零件是一等品的概率;②从甲、乙、丙加工的零件中各取一个检验,求至少有一个一等品的概率.
解:①,,;②

1.当且仅当事件与事件互相独立时,才有,故首先要搞清两个事件的独立性.
2.独立重复试验在概率论中占有相当重要地地位,这种试验的结果只有两种,我们主要研究在n次独立重复试验中某事件发生k次的概率:,其中P是1次试验中某事件发生的概率,其实正好是二项式的展开式中的第k+1项,很自然地联想起二项式定理.
第4课时离散型随机变量的分布列

1.如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做,随机变量通常用希腊字母,等表示.
2.如果随机变量可能取的值,那么这样的随机变量叫做离散型随机变量.
3.从函数的观点来看,P(=xk)=Pk,k=1,2,…,n,…称为离散型随机变量的概率函数或概率分布,这个函数可以用表示,这个叫做离散型随机变量的分布列.
4.离散型随机变量分布列的性质
(1)所有变量对应的概率值(函数值)均为非负数,即.
(2)所有这些概率值的总和为即.
(3)根据互斥事件的概率公式,离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的
5.二项分布:如果在一次试验中某事件发生的概率为P,那么在n次独立重复试验中这个事件恰好发生k次的概率,有了这个函数,就能写出它的分布列,由于是二项式展开式的通项,所以称这个分布为二项分布列,记作

例1.袋子中有1个白球和2个红球.
⑴每次取1个球,不放回,直到取到白球为止.求取球次数的分布列.
⑵每次取1个球,放回,直到取到白球为止.求取球次数的分布列.
⑶每次取1个球,放回,直到取到白球为止,但抽取次数不超过5次.求取球次数的分布列.
⑷每次取1个球,放回,共取5次.求取到白球次数的分布列.
解:⑴



所求的分布列是

123
jaB88.cOm

⑵每次取到白球的概率是,不取到白球的概率是,所求的分布列是
123……
P……

12345
P

∴P=(=k)=C5k()k·()5-k,
其中
∴所求的分布列是
012345
P

变式训练1.是一个离散型随机变量,其分布列为
-101
则q=()
A.1B.
C.D.
解:D
例2.一袋中装有6个同样大小的黑球,编号为1,2,3,4,5,6,现从中随机取出3个球,以表示取出球的最大号码,求的分布列.
解:随机变量的取值为3,4,5,6从袋中随机地取3个球,包含的基本事件总数为,事件“”包含的基本事件总数为,事件“”包含的基本事件总数为;事件“”包含的基本事件总数为;事件包含的基本事件总数为;从而有

∴随机变量的分布列为:
3456
变式训练2:现有一大批种子,其中优质良种占30%,从中任取2粒,记为2粒中优质良种粒数,则的分布列是.
解:
012
P0.490.420.09
例3.一接待中心有A、B、C、D四部热线电话,已知某一时刻电话A、B占线的概率均为0.5,电话C、D占线的概率均为0.4,各部电话是否占线相互之间没有影响,假设该时刻有部电话占线,试求随机变量的概率分布.
解:
01234
0.090.30.370.20.04
变式训练3:将编号为1,2,3,4的贺卡随意地送给编号为一,二,三,四的四个教师,要求每个教师都得到一张贺卡,记编号与贺卡相同的教师的个数为,求随机变量的概率分布.解:
0124
P

1.本节综合性强,涉及的概念、公式较多,学习时应准确理解这些概念、公式的本质内涵,注意它们的区别与联系.例如,若独立重复试验的结果只有两种(即与,是必然事件),在次独立重复试验中,事件恰好发生次的概率就是二项式展开式中的第项,故此公式称为二项分布公式;又如两事件的概率均不为0,1时,“若互斥,则一定不相互独立”、“若相互独立,则一定不互斥”等体现了不同概念、公式之间的内在联系.
2.运用P(A·B)=P(A)·P(B)等概率公式时,应特别注意各自成立的前提条件,切勿混淆不清.例如,当为相互独立事件时,运用公式便错.
3.独立重复试验是指在同样条件下可重复进行的,各次之间相互独立的一种试验,每次试验都只有两重结果(即某事件要么发生,要么不发生),并且在任何一次试验中,事件发生的概率均相等.
独立重复试验是相互独立事件的特例(概率公式也是如此),就像对立事件是互斥事件的特例一样,只是有“恰好”字样的用独立重复试验的概率公式计算更简单,就像有“至少”或“至多”字样的题用对立事件的概率公式计算更简单一样.
4.解决概率问题要注意“三个步骤,一个结合”:
(1)求概率的步骤是:
第一步,确定事件性质,即所给的问题归结为四类事件中的某一种.
第二步,判断事件的运算,即是至少有一个发生,还是同时发生,分别运用相加或相乘事件.
第三步,运用公式求得.

(2)概率问题常常与排列组合问题相结合.
第4课时离散型随机变量的期望与方差

1.若离散型随机变量的分布列为
.则称为的数学期望.它反映了离散型随机变量取值的平均水平.
2.对于随机变量,称
为的方差.的算术平方根叫做的标准差.随机变量的方差与标准差都反映了随机变量取值的.
3.数学期望与方差产生的实际背景与初中平均数及样本方差这两个概念有关.
平均数:
=++…
样本方差:

以上两式中恰是出现的频率.这与数学期望与方差的定义式一致.
4.数学期望与方差的性质:若(为随机变量),则,.
5.服从二项分布的随机变量的期望与方差:若,则

例1.从4名男生和2名女生中任选3人参加演讲比赛,设随机变量表示所选3人中女生的人数.
①求的分布列;
②求的数学期望;
③求“所选3人中女生人数≤1”的概率.
解:①
012
P

②E=1

变式训练1:如果袋中有6个红球,4个白球,从中任取1球,记住颜色后放回,连续摸取4次,设为取得红球的次数,则的期望=()
A.B.
C.D.
解:B
例2抛掷两个骰子,当至少有一个5点或6点出现时,就说这次试验成功,求在30次试验中成功次数的期望和方差.
解:,其中.所以
变式训练2:布袋中有大小相同的4只红球,3只黑球,今从袋中随机取出4只球,设取到一只红球得1分,取到一只黑球得3分,试求得分的概率分布和数学期望.
解:
例3甲、乙两名射手在同一条件下进行射击,分布列如下表:
射手甲
击中环数8910
概率0.60.2
射手乙
击中环数8910
概率0.40.4
用击中环数的期望与方差分析比较两名射手的射击水平.
解:

∴甲乙两名射手所得环数的平均值相等,但射手甲所得环数比较集中,射手乙所得环数比较分散,射手甲射击水平较稳定.
变式训练3:某商场根据天气预报来决定节日是在商场内还是在商场外开展促销活动,统计资料表明,每年五一节商场内的促销活动可获得经济效益2.5万元,商场外的促销活动如果不遇到有雨天可获得经济效益12万元,如果促销活动遇到有雨天,则带来经济损失5万元,4月30号气象台预报五一节当地有雨的概率是40%,问商场应该采取哪种促销方式?
解:采用场外促销方式
例4某突发事件,在不采取任何预防措施的情况下发生的概率为0.3,一旦发生,可造成400万元的损失,现有甲、乙两种相互独立的预防措施可供采用.单独采用甲、乙预防措施所需的费用分别为45万元和30万元,采用相应预防措施后,此突发事件不发生的概率分别为0.9和0.85.若预防方案允许甲、乙两种预防措施单独采用,联合采用或不采用,试确定预防方案使总费用最少.(总费用=采取预防措施的费用+发生突发事件损失的期望值).
解:联合甲、乙,总费用最少为81万元
变式训练4:假设1部机器在1天内发生故障的概率为0.2,机器发生故障时,全天停止工作,若1周的5个工作日里无故障,可获得利润10万元,发生1次故障仍可获得利润5万元;发生2次故障所获利润为0;发生3次或3次以上故障就要亏损2万元,求1周的期望利润是多少?(精确到0.001).
解:用随机变量表示1周5天内发生故障的天数,则服从地一项分布~B(5,0.2),
从而,
,P(=2)=0.205
P(≥3)=0.057设为所获得利润,则
E=10×0.328+5×0.410+0×0.205-2×0.057
=5.215(万元)

1.数学期望与方差,标准差都是离散型随机变量最重要的数字特征,它们分别反映了随机变量取值的平均水平、稳定程度、集中与离散的程度.离散型随机变量的期望与方差都与随机变量的分布列紧密相连,复习时应重点记住以下重要公式与结论:
一般地,若离散型随机变量的分布列为
………
………
则期望,
方差,
标准差
若,则,这里
概率章节测试题
一、选择题
1.已知非空集合A、B满足AB,给出以下四个命题:
①若任取x∈A,则x∈B是必然事件②若xA,则x∈B是不可能事件
③若任取x∈B,则x∈A是随机事件④若xB,则xA是必然事件
其中正确的个数是()
A、1B、2C、3D、4
2.一射手对同一目标独立地射击四次,已知至少命中一次的概率为,则此射手每次射击命中的概率为()
A.B.C.D.
3.设是离散型随机变量,,,且,现已知:,,则的值为()
(A)(B)(C)3(D)
4.福娃是北京2008年第29届奥运会吉祥物,每组福娃都由“贝贝”、“晶晶”、“欢欢”、“迎迎”和“妮妮”这五个福娃组成.甲、乙两位好友分别从同一组福娃中各随机选择一个福娃留作纪念,按先甲选再乙选的顺序不放回地选择,则在这两位好友所选择的福娃中,“贝贝”和“晶晶”恰好只有一个被选中的概率为()
A.B.C.D.
5.(汉沽一中2008~2009届月考文9).面积为S的△ABC,D是BC的中点,向△ABC内部投一点,那么点落在△ABD内的概率为()
A.B.C.D.
6.(汉沽一中2008~2009届月考文9).面积为S的△ABC,D是BC的中点,向△ABC内部投一点,那么点落在△ABD内的概率为()
A.B.C.D.
7.在圆周上有10个等分,以这些点为顶点,每3个点可以构成一个三角形,如果随机选择了3个点,刚好构成直角三角形的概率是()
A.B.C.D.
8.已知某人每天早晨乘坐的某一班次公共汽车的准时到站率为60%,则他在3天乘车中,此班次公共汽车至少有2天准时到站的概率为()
A.B.C.D.
9.甲、乙、丙三位同学上课后独立完成5道自我检测题,甲及格概率为,乙及格概率为,丙及格概率为,则三人中至少有一人及格的概率为()
A.B.C.D.
10.从集合中随机取出6个不同的数,在这些选法中,第二小的数为的概率是
A.B.C.D.
二、填空题
11.已知离散型随机变量的分布列如右表.若,,则,.
12.点A为周长等于3的圆周上的一个定点,若在该圆周上随机取一点B,则劣弧AB的长度小于1的概率为。
13.6位身高不同的同学拍照,要求分成两排,每排3人,则后排每人均比其前排的同学身材要高的概率是_________.
14.从分别写有的五张卡片中第一次取出一张卡片,记下数字后放回,再从中取出一张卡片.两次取出的卡片上的数字和恰好等于4的概率是.
三、解答题
15.将、两枚骰子各抛掷一次,观察向上的点数,问:
(1)共有多少种不同的结果?
(2)两数之和是3的倍数的结果有多少种?
(3)两数之和是3的倍数的概率是多少?

16.甲、乙两人进行摸球游戏,一袋中装有2个黑球和1个红球。规则如下:若一方摸中红球,将此球放入袋中,此人继续摸球;若一方没有摸到红球,将摸到的球放入袋中,则由对方摸彩球。现甲进行第一次摸球。
(1)在前三次摸球中,甲恰好摸中一次红球的所有情况;
(2)在前四次摸球中,甲恰好摸中两次红球的概率;
(3)设是前三次摸球中,甲摸到的红球的次数,
求随机变量的概率分布与期望.

17.某商场举行抽奖活动,从装有编号0,1,2,3四个小球的抽奖箱中,每次取出后放回,连续取两次,取出的两个小球号码相加之和等于5中一等奖,等于4中二等奖,等于3中三等奖.
(1)求中三等奖的概率;
(2)求中奖的概率.

18.将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落.小球在下落过程中,将3次遇到黑色障碍物,最后落入袋或袋中.已知小球每次遇到黑色障碍物时向左、右两边下落的概率都是.
(1)求小球落入袋中的概率;
(2)在容器入口处依次放入4个小球,记为落入
袋中小球的个数,试求的概率和的数学期望.

19.某射手在一次射击中命中9环的概率是0.28,命中8环的概率是0.19,不够8环的概率是0.29,计算这个射手在一次射击中命中9环或10环(最高环数)的概率.

20.学校文娱队的每位队员唱歌、跳舞至少会一项,已知会唱歌的有2人,会跳舞的有5人,现从中选2人.设为选出的人中既会唱歌又会跳舞的人数,且.
(1)求文娱队的人数;
(2)写出的概率分布列并计算.

21.有甲、乙、丙三种产品,每种产品的测试合格率分别为0.8,0.8和0.6,从三种产品中各抽取一件进行检验。
(1)求恰有两件合格的概率;
(2)求至少有两件不合格的概率。

22.有一批数量很大的产品,其次品率是10%。
(1)连续抽取两件产品,求两件产品均为正品的概率;
(2)对这批产品进行抽查,每次抽出一件,如果抽出次品,则抽查终止,否则继续抽查,直到抽出次品,但抽查次数最多不超过4次,求抽查次数的分布列及期望。

概率章节测试题答案
一、选择题
1.解析:①③④正确,②错误.
答案:C
2.答案:B
3.答案:C
4.答案:C.选C
5.B
6.B
7.答案:C
8.答案:C
9.答案:B
10.答案:B
二、填空题
11.【解析】由题知,,,解得,.
12.解析:如图可设,则,根据几何概率可知其整体事件是其周长,则其概率是
14.答案:
15.解:(1)共有种结果;
(2)共有12种结果;
(3).
16.解:(1)甲红甲黑乙红黑均可;甲黑乙黑甲红。。。
(2)。。。。。。
(3)设的分布是
0123
P
E=。。。。。。
17.解:设“中三等奖”的事件为A,“中奖”的事件为B,从四个小球中有放回的取两个共有
(0,0),(0,1),(0,2),(0,3),(1,0),(1,1),(1,2),(1,3),(2,0),
(2,1),(2,2),(2,3),(3,0),(3,1),(3,2),(3,3)16种不同的方法。
(1)两个小球号码相加之和等于3的取法有4种:
(0,3)、(1,2)、(2,1)、(3,0)………
故………
(2)两个小球号码相加之和等于3的取法有4种。
两个小球相加之和等于4的取法有3种:(1,3),(2,2),(3,1)
两个小球号码相加之和等于5的取法有2种:(2,3),(3,2),……
由互斥事件的加法公式得
18.解:(1)解法一:记小球落入袋中的概率,则,
由于小球每次遇到黑色障碍物时一直向左或者一直向右下落,小球将落入袋,所以
.…
解法二:由于小球每次遇到黑色障碍物时,有一次向左和两次向右或两次向左和一次向右下落时小球将落入袋.

(2)由题意,所以有

.
19.【解析】记这个射手在一次射击中“命中10环或9环”为事件A,“命中10环、9环、8环、不够8环”分别记为B、C、D、E.
则,,
∵C、D、E彼此互斥,
∴P(C∪D∪E)=P(C)+P(D)+P(E)=0.28+0.19+0.29=0.76.
又∵B与C∪D∪E为对立事件,
∴P(B)=1-P(C∪D∪E)=1-0.76=0.24.
B与C互斥,且A=B∪C,
∴P(A)=P(B+C)=P(B)+P(C)=0.24+0.28=0.52.…
答:某射手在一次射击中命中9环或10环(最高环数)的概率为0.52.
20.解:设既会唱歌又会跳舞的有x人,则文娱队中共有(7-x)人,那么只会一项的人数是(7-2x)人.
(I)∵,
∴.………
即.
∴.
∴x=2.……
故文娱队共有5人.………………
(II)的概率分布列为
012
P
,……
,…………
∴=1.
21.解:(1)设从甲、乙、丙三种产品中各抽出一件测试为事件A,B,C,由已知P(A)=0.8,P(B)=0.8,P(C)=0.6
则恰有两件产品合格的概率为

(2)三件产品均测试合格的概率为

由(1)知,恰有一件测试不合格的概率为

所以至少有两件不合格的概率为

22.解:(1)两件产品均为正品的概率为

(2)可能取值为1,2,3,4
;;

所以次数的分布列如下


相关阅读

《随机事件的概率》教案


《随机事件的概率》教案
一、教学目标

知识与技能目标:了解生活中的随机现象;了解必然事件,不可能事件,随机事件的概念;理解随机事件的频率与概率的含义。

过程与方法目标:通过做实验的过程,理解在大量重复试验的情况下,随机事件的发生呈现规律性,进而理解频率和概率的关系;通过一系列问题的设置,培养学生独立思考、发现问题、分析问题和解决问题的能力。

情感、态度、价值观目标:渗透偶然寓于必然,事件之间既对立又统一的辩证唯物主义思想;增强学生的科学素养。

二、教学重点、难点

教学重点:根据随机事件、必然事伯、不可能事件的概念判断给定事件的类型,并能用概率来刻画生活中的随机现象,理解频率和概率的区别与联系。

教学难点:理解随机事件的频率定义与概率的统计定义及计算方法,理解频率和概率的区别与联系。

三、教学准备

多媒体课件

四、教学过程

(一)情境设置,引入课题

相传古代有个国王,由于崇尚迷信,世代沿袭着一条奇特的法规:凡是死囚,在临刑时要抽一次“生死签”,即在两张小纸片上分别写着“生”和“死”的字样,由执法官监督,让犯人当众抽签,如果抽到“死”字的签,则立即处死;如果抽到“生”字的签,则当场赦免。

有一次国王决定处死一个敢于“犯上”的大臣,为了不让这个囚臣得到半点获赦机会,他与几个心腹密谋暗议,暗中叮嘱执法官,把两张纸上都写成“死”。

但最后“犯上”的大臣还是获得赦免,你知道他是怎么做的吗?

相信聪明的同学们应该知道“犯上”的大臣的聪明之举:将所抽到的签吞毁掉,为证明自己抽到“生”字的签,只需验证所剩的签为“死”签。

我们如果学习了随机事件的概率,便不难用数学的角度来解释“犯上”的大臣的聪明之举。下面中公资深讲师跟大家来认识一下事件的概念。(二)探索研究,理解事件

问题1:下面有一些事件,请同学们从这些事件发生与否的角度,分析一下它们各有什么特点?

①“导体通电后,发热”;

②“抛出一块石块,自由下落”;

③“某人射击一次,中靶”;

④“在标准大气压下且温度高于0℃时,冰自然融化”;

⑦“某地12月12日下雨”;

⑧“从标号分别为1,2,3,4,5的5张标签中,得到1号签”。

给出定义:

事件:是指在一定条件下所出现的某种结果。它分为必然事件、不可能事件和随机事件。

问题2:列举生活中的必然事件,随机事件,不可能事件。

问题3:随机事件在一次试验中可能发生,也可能不发生,在大量重复试验下,它是否有一定规律?

实验1:学生分组进行抛硬币,并比较各组的实验结果,引发猜想。

给出频数与频率的定义
问题4:猜想频率的取值范围是什么?

实验2:计算机模拟抛硬币,并展示历史上大量重复抛硬币的结果。

问题5:结合计算机模拟抛硬币与历史上大量重复抛硬币的结果,判断猜想正确与否。

频率的性质:

1.频率具有波动性:试验次数n不同时,所得的频率f不一定相同。

2.试验次数n较小时,f的波动性较大,随着试验次数n的不断增大,频率f呈现出稳定性。

概率的定义

事件A的概率:在大量重复进行同一试验时,事件A发生的频率m/n总接近于某个常数,在它附近摆动,这时就把这个常数叫做事件A的概率,记作P(A)。

概率的性质

由定义可知0≤P(A)≤1,显然必然事件的概率是1,不可能事件的概率是0。

频率与概率的关系

①一个随机事件发生于否具有随机性,但又存在统计的规律性,在进行大量的重复事件时某个事件是否发生,具有频率的稳定性,而频率的稳定性又是必然的,因此偶然性和必然性对立统一。

②不可能事件和确定事件可以看成随机事件的极端情况。③随机事件的频率是指事件发生的次数和总的试验次数的比值,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这个摆动的幅度越来越小,而这个接近的某个常数,我们称之为概事件发生的概率。

④概率是有巨大的数据统计后得出的结果,讲的是一种大的整体的趋势,而频率是具体的统计的结果。

⑤概率是频率的稳定值,频率是概率的近似值。

例某射手在同一条件下进行射击,结果如下表所示:

(1)填写表中击中靶心的频率;

(2)这个射手射击一次,击中靶心的概率约是什么?

问题6:如果某种彩票中奖的概率为1/1000,那么买1000张彩票一定能中奖吗?请用概率的意义解释。

(三)课堂练习,巩固提高

1.将一枚硬币向上抛掷10次,其中正面向上恰有5次是()

A.必然事件B.随机事件

C.不可能事件D.无法确定

2.下列说法正确的是()

A.任一事件的概率总在(0.1)内

B.不可能事件的概率不一定为0

C.必然事件的概率一定为1

D.以上均不对

3.下表是某种油菜子在相同条件下的发芽试验结果表,请完成表格并回答题。

(1)完成上面表格:

(2)该油菜子发芽的概率约是多少?4.生活中,我们经常听到这样的议论:“天气预报说昨天降水概率为90%,结果根本一点雨都没下,天气预报也太不准确了。”学了概率后,你能给出解释吗?

(四)课堂小节

概率是一门研究现实世界中广泛存在的随机现象的科学,正确理解概率的意义是认识、理解现实生活中有关概率的实例的关键,学习过程中应有意识形成概率意识,并用这种意识来理解现实世界,主动参与对事件发生的概率的感受和探索。

五、板书设计

六、教学反思

略。

25.1.2概率的意义


一名爱岗敬业的教师要充分考虑学生的理解性,高中教师要准备好教案,这是高中教师的任务之一。教案可以让学生更好的消化课堂内容,帮助高中教师掌握上课时的教学节奏。高中教案的内容要写些什么更好呢?小编特地为大家精心收集和整理了“25.1.2概率的意义”,仅供参考,欢迎大家阅读。

课题:25.1.2概率的意义
教学目标:
〈一〉知识与技能
1.知道通过大量重复试验时的频率可以作为事件发生概率的估计值
2.在具体情境中了解概率的意义
〈二〉教学思考
让学生经历猜想试验--收集数据--分析结果的探索过程,丰富对随机现象的体验,体会概率是描述不确定现象规律的数学模型.初步理解频率与概率的关系.
〈三〉解决问题
在分组合作学习过程中积累数学活动经验,发展学生合作交流的意识与能力.锻炼质疑、独立思考的习惯与精神,帮助学生逐步建立正确的随机观念.
〈四〉情感态度与价值观
在合作探究学习过程中,激发学生学习的好奇心与求知欲.体验数学的价值与学习的乐趣.通过概率意义教学,渗透辩证思想教育.
【教学重点】在具体情境中了解概率意义.
【教学难点】对频率与概率关系的初步理解
【教具准备】壹元硬币数枚、图钉数枚、多媒体课件
【教学过程】
一、创设情境,引出问题
教师提出问题:周末市体育场有一场精彩的篮球比赛,老师手中只有一张球票,小强与小明都是班里的篮球迷,两人都想去.我很为难,真不知该把球给谁.请大家帮我想个办法来决定把球票给谁.
学生:抓阄、抽签、猜拳、投硬币,……
教师对同学的较好想法予以肯定.(学生肯定有许多较好的想法,在众多方法中推举出大家较认可的方法.如抓阄、投硬币)
追问,为什么要用抓阄、投硬币的方法呢?
由学生讨论:这样做公平.能保证小强与小明得到球票的可能性一样大
在学生讨论发言后,教师评价归纳.
用抛掷硬币的方法分配球票是个随机事件,尽管事先不能确定“正面朝上”还上“反面朝上”,但同学们很容易感觉到或猜到这两个随机事件发生的可能性是一样的,各占一半,所以小强、小明得到球票的可能性一样大.
质疑:那么,这种直觉是否真的是正确的呢?
引导学生以投掷壹元硬币为例,不妨动手做投掷硬币的试验来验证一下.
说明:现实中不确定现象是大量存在的,新课标指出:“学生数学学习内容应当是现实的、有意义、富有挑战的”,设置实际生活问题情境贴近学生的生活实际,很容易激发学生的学习热情,教师应对此予以肯定,并鼓励学生积极思考,为课堂教学营造民主和谐的气氛,也为下一步引导学生开展探索交流活动打下基础.
二、动手实践,合作探究
1.教师布置试验任务.
(1)明确规则.
把全班分成10组,每组中有一名学生投掷硬币,另一名同学作记录,其余同学观察试验必须在同样条件下进行.
(2)明确任务,每组掷币50次,以实事求是的态度,认真统计“正面朝上”的频数及“正面朝上”的频率,整理试验的数据,并记录下来..
2.教师巡视学生分组试验情况.
注意:
(1).观察学生在探究活动中,是否积极参与试验活动、是否愿意交流等,关注学生是否积极思考、勇于克服困难.
(2).要求真实记录试验情况.对于合作学习中有可能产生的纪律问题予以调控.
3.各组汇报实验结果.
由于试验次数较少,所以有可能有些组试验获得的“正面朝上”的频率与先前的猜想有出入.
提出问题:是不是我们的猜想出了问题?引导学生分析讨论产生差异的原因.
在学生充分讨论的基础上,启发学生分析讨论产生差异的原因.使学生认识到每次随机试验的频率具有不确定性,同时相信随机事件发生的频率也有规律性,引导他们小组合作,进一步探究.
解决的办法是增加试验的次数,鉴于课堂时间有限,引导学生进行全班交流合作.
4.全班交流.
把各组测得数据一一汇报,教师将各组数据记录在黑板上.全班同学对数据进行累计,按照书上P140要求填好25-2.并根据所整理的数据,在25.1-1图上标注出对应的点,完成统计图.

表25-2
抛掷次数50100150200250300350400450500
“正面向上”的频数
“正面向上”的频率

想一想1(投影出示).观察统计表与统计图,你发现“正面向上”的频率有什么规律?
注意学生的语言表述情况,意思正确予以肯定与鼓励.“正面朝上”的频率在0.5上下波动.
想一想2(投影出示)
随着抛掷次数增加,“正面向上”的频率变化趋势有何规律?
在学生讨论的基础上,教师帮助归纳.使学生认识到每次试验中随机事件发生的频率具有不确定性,同时发现随机事件发生的频率也有规律性.在试验次数较少时,“正面朝上”的频率起伏较大,而随着试验次数的逐渐增加,一般地,频率会趋于稳定,“正面朝上”的频率越来越接近0.5.这也与我们刚开始的猜想是一致的.我们就用0.5这个常数表示“正面向上”发生的可能性的大小.
说明:注意帮助解决学生在填写统计表与统计图遇到的困难.通过以上实践探究活动,让学生真实地感受到、清楚地观察到试验所体现的规律,即大量重复试验事件发生的频率接近事件发生的可能性的大小(概率).鼓励学生在学习中要积极合作交流,思考探究.学会倾听别人意见,勇于表达自己的见解.

为了给学生提供大量的、快捷的试验数据,利用计算机模拟掷硬币试验的课件,丰富学生的体验、提高课堂教学效率,使他们能直观地、便捷地观察到试验结果的规律性--大量重复试验中,事件发生的频率逐渐稳定到某个常数附近.
其实,历史上有许多著名数学家也做过掷硬币的试验.让学生阅读历史上数学家做掷币试验的数据统计表(看书P141表25-3).
表25-3
试验者抛掷次数(n)“正面朝上”次数(m)“正面向上”频率(m/n)
棣莫弗204810610.518
布丰404020480.5069
费勒1000049790.4979
皮尔逊1200060190.5016
皮尔逊24000120120.5005

通过以上学生亲自动手实践,电脑辅助演示,历史材料展示,让学生真实地感受到、清楚地观察到试验所体现的规律,大量重复试验中,事件发生的频率逐渐稳定到某个常数附近,即大量重复试验事件发生的频率接近事件发生的可能性的大小(概率).同时,又感受到无论试验次数多么大,也无法保证事件发生的频率充分地接近事件发生的概率.
在探究学习过程中,应注意评价学生在活动中参与程度、自信心、是否愿意交流等,鼓励学生在学习中不怕困难积极思考,敢于表达自己的观点与感受,养成实事求是的科学态度.
5.下面我们能否研究一下“反面向上”的频率情况?
学生自然可依照“正面朝上”的研究方法,很容易总结得出:“反面向上”的频率也相应稳定到0.5.
教师归纳:
(1)由以上试验,我们验证了开始的猜想,即抛掷一枚质地均匀的硬币时,“正面向上”与“反面向上”的可能性相等(各占一半).也就是说,用抛掷硬币的方法可以使小明与小强得到球票的可能性一样.
(2)在实际生活还有许多这样的例子,如在足球比赛中,裁判用掷硬币的办法来决定双方的比赛场地等等.
说明:这个环节,让学生亲身经历了猜想试验——收集数据——分析结果的探索过程,在真实数据的分析中形成数学思考,在讨论交流中达成知识的主动建构,为下一环节概率意义的教学作了很好的铺垫.
三、评价概括,揭示新知
问题1.通过以上大量试验,你对频率有什么新的认识?有没有发现频率还有其他作用?
学生探究交流.发现随机事件的可能性的大小可以用随机事件发生的频率逐渐稳定到的值(或常数)估计或去描述.
通过猜想试验及探究讨论,学生不难有以上认识.对学生可能存在语言上、描述中的不准确等注意予以纠正,但要求不必过高.
归纳:以上我们用随机事件发生的频率逐渐稳定到的常数刻画了随机事件的可能性的大小.
那么我们给这样的常数一个名称,引入概率定义.给出概率定义(板书):一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率(probability),记作P(A)=p.
注意指出:
1.概率是随机事件发生的可能性的大小的数量反映.
2.概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同.
想一想(学生交流讨论)
问题2.频率与概率有什么区别与联系?
从定义可以得到二者的联系,可用大量重复试验中事件发生频率来估计事件发生的概率.另一方面,大量重复试验中事件发生的频率稳定在某个常数(事件发生的概率)附近,说明概率是个定值,而频率随不同试验次数而有所不同,是概率的近似值,二者不能简单地等同.
说明:猜想试验、分析讨论、合作探究的学习方式十分有益于学生对概率意义的理解,使之明确频率与概率的联系,也使本节课教学重难点得以突破.为下节课进一步研究概率和今后的学习打下了基础.当然,学生随机观念的养成是循序渐进的、长期的.这节课教学应把握教学难度,注意关注学生接受情况.
四.练习巩固,发展提高.
学生练习
1.书上P143.练习.1.巩固用频率估计概率的方法.
2.书上P143.练习.2巩固对概率意义的理解.
教师应当关注学生对知识掌握情况,帮助学生解决遇到的问题.
五.归纳总结,交流收获:
1.学生互相交流这节课的体会与收获,教师可将学生的总结与板书串一起,使学生对知识掌握条理化、系统化.
2.在学生交流总结时,还应注意总结评价这节课所经历的探索过程,体会到的数学价值与合作交流学习的意义.
【作业设计】
(1)完成P144习题25.12、4
(2)课外活动分小组活动,用试验方法获得图钉从一定高度落下后钉尖着地的概率.
课后教学反思:

频率与概率教案


一名优秀的教师就要对每一课堂负责,作为高中教师就要早早地准备好适合的教案课件。教案可以让学生能够在课堂积极的参与互动,帮助高中教师能够井然有序的进行教学。那么,你知道高中教案要怎么写呢?小编经过搜集和处理,为您提供频率与概率教案,欢迎您参考,希望对您有所助益!

6.1频率与概率
本节通过一个课堂实验活动,让学生逐步计算一个随机事件发生的实验频率,并观察其规律性,从而归纳出实验频率趋近于理论概率这一规律性,同时进一步介绍一种计算概率的方法——列表法.实验频率稳定于理沦概率是本节乃至本章的教学重点及难点之一,第二个重点则为能运用树状图或列表法计算简单事件发生的概率.因此在教学过程中应注意:(1)注重学生的合作和交流活动,在活动中促进知识的学习,并进一步发展学生的合作交流意识和能力.这是社会迅猛发展的要求.同时.在本节中.要归纳出实验频率稳定于理论概率这一规律,必须借助于大量重复实验,而课堂时间是有限的,靠一个学生完成实验次数自然不可能.因此必须综合多个学生甚至全班学生的实验数据,这就需要全班学生合作交流来完成.(2)注重引导学生积极参加实验活动,在实验中体会频率的稳定性,感受实验频率与理论概率之间的关系,并形成对概率的全面理解.发展学生的初步辩证思维能力,突破实验频率稳定于理论概率这一难点,进一步体会概率是描述随机现象的数学模型.(3)关注学生对知识技能的理解和应用,借助列表和树状图计算简单事件发生的概率.
6.1频率与概率(一)
教学目标
(一)教学知识点
通过实验.理解当实验次数较大时实验频率稳定于理论概率,并据此估计某一事件发生的概率.
(二)能力训练要求
经历实验、统计等活动过程,在活动中进一步发展学生合作交流的意识和能力.
(三)情感与价值观要求
1.积极参与数学活动.通过实验提高学生学习数学的兴趣.
2.发展学生的辩证思维能力.
教学重点1.通过实验.理解当实验次数较大时。实验频率稳定于理论概率.并据此估计某一事件发生的概率.
2.在活动中发展学生的合作交流意识和能力.
教学难点
辩证地理解当实验次数较大时,实验频率稳定于理沦概率.
教学方法
实验——交流合作法.
教具准备
每组准备两组相同的牌,每组牌都有两张;
多媒体演示:
教学过程
Ⅰ.创设问题情境,引入新课
[师]我们在七年级时,曾用掷硬币的方法决定小明和小丽谁去看周末的电影:任意掷一枚均匀的硬币.如果正面朝上,小丽去;如果反面朝上,小明去.这样决定对双方公平吗?
[生]公平!因为我们做过这样的试验,历史上的数学家也做过掷硬币的实验,经过实验发现当次数很大时,任意掷一枚硬币.会出现两种可能的结果:正面朝上、反面朝上.
这两种结果出现的可能性相同.都是
[师]很好!我们再来看一个问题:任意掷一枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).“6”朝上的概率是多少?
[生]任意掷一枚均匀的小立方体,所有可能出现的结果有6种:“1”朝上,“2”朝上。
“3”朝上,“4”朝上,“5”朝上,“6”朝上,每种结果出现的概率都相等,其中“6”朝上的结果只有一种,因此P(“6”朝上)=.
[师]上面两个游戏涉及的是一步实验.如果是连续掷两次均匀的硬币。会出现几种等可能的结果.出现“一正一反”的概率为多少呢?如果将上面均匀的小立方体也连续掷两次,会出现几种等可能的结果,两次总数都是偶数的概率为多少呢?从这一节开始我们将进一步学习概率的有关知识.
我们用实验的方法估计出了任意掷一枚硬币“正面朝上”和“反面朝上”的概率.同样
的我们也可以通过实验活动.估计较复杂事件的概率.
Ⅱ.分组实验,进一步理解当实验次数较大时,实验频率稳定于理论概率.
1.活动一:
活动课题
通过摸牌活动,探索出“实验次数很大时,实验的频率渐趋稳定”这一规律.
活动方式
分组实验,全班合作交流.
活动步骤
准备两组相同的牌,
每组两张。两张牌的牌
面数字分别是1和2.
从每组牌中各摸出一张,
称为一次实验.
(1)估计一次实验中。两张牌的牌面数字和可能有哪些值?
(2)以同桌为单位,每人做30次实验,根据实验结果填写下面的表格:
牌面数字和234
频数
频率
(3)根据上表,制作相应的频数分布直方图.
(4)根据频数分布直方图.估计哪种情况的频率最大?
(5)计算两张牌的牌面数字和等于3的频率是多少?
(6)六个同学组成一组,分别汇总其中两人、三人、四人、五人、六人的实验数据,相应得到实验60次、90次、120次、150次、180次时两张牌的牌面数字之和等于3的频率,填
写下表.并绘制相应的折线统计图.
实验次数6090120150180
两张牌面数字和等于3的频数
两张牌面数字和等于3的频率
(在具体实验活动的展开过程中.要力图体现各个步骤的渐次递进.(1)在一次实验中,两张牌的牌面数字和可能为2,3,4:(2)学生根据自己的实验结果如实填写实验数据;(3)制作相应的频数分布直方图,一方面为了复习巩固八年级下册有关频数、频率的知识,同时也便于学生更为直观地获得(4)的结论;(4)一般而言,学生通过实验以及上面(2)(3)的图表容易猜想两张牌的牌面数字和为3的频率最大.理论上.两张牌的牌面数字和为2,3,4的概率依次为,应该说,经过30次实验,学生基本能够猜想两张牌的牌面数字和为3的频率最大.当然,这里一定要保证实验的次数,如果实验次数太少,结论可能会有较大出入;(5)有了(4)中的结沦.自然过渡到研究其频率的大小.当然,两张牌的牌面数字和等于3的频率因各组实验结果而异.正是有了学生结论的差异性,才顺理成章地展开问题(6),汇总组内每人的实验数据;(6)目的在于通过逐步汇总学生的实验数据,得到实验60次、90次、120次、150次、180次时的频率.并绘制相应的折线统计图,从而动态地研究频率随着实验次数的变化而变化的情况)
2.议一议
[师]在上面的实验中,你发现了什么?如果继续增加实验次数呢?与其他小组交流所绘制的图表和发现的结论.
[生]在与各组交流图表的过程中,我发现:在各组的折线统计图中,随着实验次数的增加,频率的“波动”较小了.
[生]随着实验次数的增加,实验结果的差异较小。实验的数据即两张牌的牌面数字和等于3的频率比较稳定.
[生]一个人的实验数据相差可能较大,而多人汇总后的实验数据即两张牌的牌面数字和等于3的频率相差较小.
[师]也就是说,同学们从实验中都能体会到实验次数较大时,实验频率比较稳定.请问同学们估计一下,当实验次数很大时,两张牌的牌面数字和等于3的频率大约是多少?
[生]大约是.
[师]很好!准能将实验次数更进一步增加呢?越大越好.
[生]可以把全班各组数据集中起来,这样实验次数就会大大增加.
[师]太棒了!“众人拾柴火焰高”,我们集小全班的实验数据,交流合作,可以使实验次数达到一千多次.下面我们汇总全班的实验次数及两张牌的牌面数字和为3的频数,求出两张牌的牌面数字和等于3的频率.
(可让各组一一汇报,然后清同学们自己算出)
[生]约为.
[师]与你们的估计相近吗?[生]相近.
3.做—做
[师]你能用我们学过的知识计算出两张牌的牌面数字和为3的概率吗?
[生]每组牌中,每张牌被摸到的可能性是相同的,因此.一次实验中.两张牌的牌面数字的和等可能的情况有:
1+1=2;1+2=3;
2+1=3;2+2=4.
共有四种情况.而和为3的情况有2种,因此,P(两张牌的牌面数字和等于3)==.
[生]也可以用树状图来表示,即
两张牌的牌面数字的和有四种等可能的情况,而两张牌的牌面数字和为3的情况有2次,因此.两张牌的牌面数字的和为3的概率为=.
4.想一想
[师]我们在前面估算出了当实验次数很大时,两张牌的牌面数字和等于3的频率约为.接着又用树状图计算出了两张牌的牌面数字和等于3的概率也为.比较两者之间的关系,你可以发现什么呢?同学们可相互交流意见.
[生]可以发现“实验频率稳定于理论概率”这一结论.
[生]也就是说,当实验次数很大时,两张牌的牌面数字和等于3的频率稳定在相应的概率附近.
[师]很好!由于实验次数很大时,两张牌的牌面数字和等于3的频率稳定在相应的概率附近,因此我们可以通过多次实验,用一个事件发生的频率来估计这一事件发生的概率.
“当实验次数很大时,两张牌的牌面数字和等于3的频率稳定在相心的概率附近”是否意味着。实验次数越大。就越为靠近?应该说.作为一个整体趋势,上述结论是正确的,但也可能会出现这样的情形:增加了几次实验,实验数据与理论概率的差距反而扩大了.同学们可从绘制的折线统计图中发现.
Ⅲ.随堂练习
活动二:
活动课题
利用学生原有的实验数据统计两张牌的牌面数字和为2的频率,进—步体会当实验次数很大时,频率的稳定性及其与概率之间的关系.
活动方式
小组活动,全班讨论交流.
活动步骤
(1)六个同学组成一个小组,根据原来的实验分别汇总其中两人、二人、四人、五人、六人的数据,相应得到实验60次、90次、120次、150次、180次时两张牌的牌面数字和等于2的频率.
(2)根据上面的数据绘制相应的统计图
表,如折线统计图.
(3)根据统计图表估计两张牌的牌面数字和等于2的概率.
(活动完成后,讨论、总结)
[生]由我们组绘制的折线统计图可以发现随着实验次数的增加,实验的频率在处波动.而且波动越来越小.
[生]由此可估计两张牌的牌面数字和等于2的概率为.
[师]你能用树状图计算出它的理论概率吗?
[生]可以,如下图:
因此,P(两张牌的牌面数字和为2)=.
Ⅳ.课时小结
本节课通过实验、统计等活动,进一步理解“当实验次数很大时,实验频率稳定于理论概率”这一重要的概率思想.
Ⅴ.课后作业
习题6.1
Ⅵ.活动与探究下列说法正确的是……………()A.某事件发生的概率为,这就是说:在两次重复实验中,必有一次发生
B.一个袋子里有100个球,小明摸了8次,每次都只摸到黑球,没摸到白球,结论:袋子里只有黑色的球
C.两枚一元的硬币同时抛下,可能出现的情形有:①两枚均为正;②两枚均为反;③一正一反,所以出现一正一反的概率是
D.全年级有400名同学,一定会有2人同一天过生日
[过程]“当实验次数很大时,实验频率稳定于理论概率”并不意味着,实验次数越大,就越为靠近,应该说,作为一个整体趋势,上述结论是正确的,更不能某某事件的概率为,在两次重复试验中.就一定有一次发生、因此A不正确,B也不正确
而对于C,两枚硬币同时抛下,等可能的情况由树状图可知有四种:
因此,出现一正一反的概率为即,对于D,根据抽屉原理可知是正确的.
[结果]应选D.
板书设计
§6.1.1频率与概率
活动一:
活动目的[
活动方式
活动步骤:(1)(2)(3)(4)(5)(6)
活动结果:当实验次数很大时,实验频率稳定于理论概率.
注:对上述结果的正确理解.应该说作为一种整体趋势是正确的.
活动二:
活动目的
活动方式:分组、全班交流讨论.
活动步骤:(1)(2)
活动结果:同上.

概率统计的解题技巧


【命题趋向】
概率统计命题特点:
1.在近五年高考中,新课程试卷每年都有一道概率统计解答题,并且这五年的命题趋势是一道概率统计解答题逐步增加到一道客观题和一道解答题;从分值上看,从12分提高到17分;由其是实施新课标考试的省份,增加到两道客观题和一道解答题.值得一提的是此累试题体现了考试中心提出的突出应用能力考查以及突出新增加内容的教学价值和应用功能的指导思想,在命题时,提高了分值,提高了难度,并设置了灵活的题目情境,如测试成绩、串联并联系统、计算机上网、产品合格率、温度调节等,所以在概率统计复习中要注意全面复习,加强基础,注重应用.
2.就考查内容而言,用概率定义(除法)或基本事件求事件(加法、减法、乘法)概率,常以小题形式出现;随机变量取值-取每一个值的概率-列分布列-求期望方差常以大题形式出现.概率与统计还将在选择与填空中出现,可能与实际背景及几何题材有关.
【考点透视】
1.了解随机事件的发生存在着规律性和随机事件概率的意义.
2.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率.
3.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率.
4.会计算事件在n次独立重复试验中恰好发生k次的概率.
5.掌握离散型随机变量的分布列.
6.掌握离散型随机变量的期望与方差.
7.掌握抽样方法与总体分布的估计.
8.掌握正态分布与线性回归.
【例题解析】
考点1.求等可能性事件、互斥事件和相互独立事件的概率
解此类题目常应用以下知识:
(1)等可能性事件(古典概型)的概率:P(A)==;
等可能事件概率的计算步骤:
①计算一次试验的基本事件总数;
②设所求事件A,并计算事件A包含的基本事件的个数;
③依公式求值;
④答,即给问题一个明确的答复.
(2)互斥事件有一个发生的概率:P(AB)=P(A)P(B);
特例:对立事件的概率:P(A)P()=P(A)=1.
(3)相互独立事件同时发生的概率:P(A·B)=P(A)·P(B);
特例:独立重复试验的概率:Pn(k)=.其中P为事件A在一次试验中发生的概率,此式为二项式[(1-P)P]n展开的第k1项.
(4)解决概率问题要注意四个步骤,一个结合:
①求概率的步骤是:
第一步,确定事件性质
即所给的问题归结为四类事件中的某一种.
第二步,判断事件的运算
即是至少有一个发生,还是同时发生,分别运用相加或相乘事件.
第三步,运用公式求解
第四步,答,即给提出的问题有一个明确的答复.
例1.(2007年上海卷文)在五个数字中,若随机取出三个数字,则剩下两个数字都是奇数的概率是(结果用数值表示).
[考查目的]本题主要考查概率的概念和等可能性事件的概率求法.
[解答过程]0.3提示:
例2.(2007年全国II卷文)一个总体含有100个个体,以简单随机抽样方式从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的概率为.
[考查目的]本题主要考查用样本分析总体的简单随机抽样方式,同时考查概率的概念和等可能性事件的概率求法.
用频率分布估计总体分布,同时考查数的区间497.5g~501.5的意义和概率的求法.
[解答过程]提示:
例3(2007年全国I卷文)从自动打包机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g):
492496494495498497501502504496
497503506508507492496500501499
根据的原理,该自动包装机包装的袋装食盐质量在497.5g~501.5g之间的概率约为__________.
[考查目的]本题主要考查用频率分布估计总体分布,同时考查数的区间497.5g~501.5的意义和概率的求法.
[解答过程]在497.5g~501.5内的数共有5个,而总数是20个,所以有
点评:首先应理解概率的定义,在确定给定区间的个体的数字时不要出现错误.
例4.(2006年湖北卷)接种某疫苗后,出现发热反应的概率为0.80.现有5人接种该疫苗,至少有3人出现发热反应的概率为__________.(精确到0.01)
[考查目的]本题主要考查运用组合、概率的基本知识和分类计数原理解决问题的能力,以及推理和运算能力.
[解答提示]至少有3人出现发热反应的概率为
.
故填0.94.
例5.(2006年江苏卷)右图中有一个信号源和五个接收器.接收器与信号源在同一个串联线路中时,就能接收到信号,否则就不能接收到信号.若将图中左端的六个接线点随机地平均分成三组,将右端的六个接线点也随机地平均分成三组,再把所有六组中每组的两个接线点用导线连接,则这五个接收器能同时接收到信号的概率是
(A)(B)(C)(D)
[考查目的]本题主要考查运用组合、概率知识,以及分步计数原理解决问题的能力,以及推理和运算能力.
[解答提示]由题意,左端的六个接线点随机地平均分成三组有种分法,同理右端的六个接线点也随机地平均分成三组有种分法;要五个接收器能同时接收到信号,则需五个接收器与信号源串联在同一个线路中,即五个接收器的一个全排列,再将排列后的第一个元素与信号源左端连接,最后一个元素与信号源右端连接,所以符合条件的连接方式共有种,所求的概率是,所以选D.
点评:本题要求学生能够熟练运用排列组合知识解决计数问题,并进一步求得概率问题,其中隐含着平均分组问题.
例6.(2007年全国II卷文)
从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件:取出的2件产品中至多有1件是二等品的概率.
(1)求从该批产品中任取1件是二等品的概率;
(2)若该批产品共100件,从中任意抽取2件,求事件:取出的2件产品中至少有一件二等品的概率.
[考查目的]本小题主要考查相互独立事件、互斥事件等的概率计算,运用数学知识解决问题的能力,以及推理与运算能力.
[解答过程](1)记表示事件取出的2件产品中无二等品,
表示事件取出的2件产品中恰有1件二等品.
则互斥,且,故
于是.
解得(舍去).
(2)记表示事件取出的2件产品中无二等品,则.
若该批产品共100件,由(1)知其中二等品有件,故.
例7.(2006年上海卷)两部不同的长篇小说各由第一、二、三、四卷组成,每卷1本,共8本.将它们任意地排成一排,左边4本恰好都属于同一部小说的概率

(结果用分数表示).
[考查目的]本题主要考查运用排列和概率知识,以及分步计数原理解决问题的能力,以及推理和运算能力.
[解答提示]从两部不同的长篇小说8本书的排列方法有种,左边4本恰好都属于同一部小说的的排列方法有种.所以,将符合条件的长篇小说任意地排成一排,左边4本恰好都属于同一部小说的概率是种.所以,填.
例8.(2006年浙江卷)甲、乙两袋装有大小相同的红球和白球,甲袋装有2个红球,2个白球;乙袋装有2个红球,n个白球.由甲,乙两袋中各任取2个球.
(Ⅰ)若n=3,求取到的4个球全是红球的概率;(Ⅱ)若取到的4个球中至少有2个红球的概率为,求n.
[考查目的]本题主要考查排列组合、概率等基本知识,同时考察逻辑思维能力和数学应用能力.
[标准解答](I)记取到的4个球全是红球为事件.
(II)记取到的4个球至多有1个红球为事件,取到的4个球只有1个红球为事件,取到的4个球全是白球为事件.
由题意,得
所以,,
化简,得解得,或(舍去),
故.
例9.(2007年全国I卷文)
某商场经销某商品,顾客可采用一次性付款或分期付款购买.根据以往资料统计,顾客采用一次性付款的概率是0.6,经销一件该商品,若顾客采用一次性付款,商场获得利润200元;若顾客采用分期付款,商场获得利润250元.
(Ⅰ)求3位购买该商品的顾客中至少有1位采用一次性付款的概率;
(Ⅱ)求3位顾客每人购买1件该商品,商场获得利润不超过650元的概率.
[考查目的]本小题主要考查相互独立事件、独立重复试验等的概率计算,运用数学知识解决问题的能力,以及推理与运算能力.
[解答过程](Ⅰ)记表示事件:位顾客中至少位采用一次性付款,则表示事件:位顾客中无人采用一次性付款.
,.
(Ⅱ)记表示事件:位顾客每人购买件该商品,商场获得利润不超过元.
表示事件:购买该商品的位顾客中无人采用分期付款.
表示事件:购买该商品的位顾客中恰有位采用分期付款.
则.
,.
.
例10.(2006年北京卷)某公司招聘员工,指定三门考试课程,有两种考试方案.
方案一:考试三门课程,至少有两门及格为考试通过;
方案二:在三门课程中,随机选取两门,这两门都及格为考试通过.
假设某应聘者对三门指定课程考试及格的概率分别是,且三门课程考试是否及格相互之间没有影响.
(Ⅰ)分别求该应聘者用方案一和方案二时考试通过的概率;
(Ⅱ)试比较该应聘者在上述两种方案下考试通过的概率的大小.(说明理由)
[考查目的]本题主要考查互斥事件有一个发生的概率和对立事件的概率,以及不等式等基本知识,同时考查逻辑思维能力和数学应用能力.
[标准解答]记该应聘者对三门指定课程考试及格的事件分别为A,B,C,
则P(A)=a,P(B)=b,P(C)=c.
(Ⅰ)应聘者用方案一考试通过的概率
p1=P(A·B·)P(·B·C)P(A··C)P(A·B·C)
=a×b×(1-c)(1-a)×b×ca×(1-b)×ca×b×c=abbcca-2abc.
应聘者用方案二考试通过的概率
p2=P(A·B)P(B·C)P(A·C)=×(a×bb×cc×a)=(abbcca)
(Ⅱ)p1-p2=abbcca-2abc-(abbcca)=(abbcca-3abc)
≥=.
∴p1≥p2
例11.(2007年陕西卷文)
某项选拔共有四轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰.已知某选手能正确回答第一、二、三、四轮的问题的概率分别为、、、,且各轮问题能否正确回答互不影响.
(Ⅰ)求该选手进入第四轮才被淘汰的概率;
(Ⅱ)求该选手至多进入第三轮考核的概率.(注:本小题结果可用分数表示)
[考查目的]本小题主要考查相互独立事件、独立重复试验的概率计算,运用数学知识解决问题的能力,以及推理与运算能力.
[解答过程](Ⅰ)记该选手能正确回答第轮的问题的事件为,则,,,,
该选手进入第四轮才被淘汰的概率.
(Ⅱ)该选手至多进入第三轮考核的概率
.
考点2离散型随机变量的分布列
1.随机变量及相关概念
①随机试验的结果可以用一个变量来表示,这样的变量叫做随机变量,常用希腊字母ξ、η等表示.
②随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.
③随机变量可以取某区间内的一切值,这样的随机变量叫做连续型随机变量.
2.离散型随机变量的分布列
①离散型随机变量的分布列的概念和性质
一般地,设离散型随机变量可能取的值为,,……,,……,取每一个值(1,2,……)的概率P()=,则称下表.


PP1P2…

为随机变量的概率分布,简称的分布列.
由概率的性质可知,任一离散型随机变量的分布列都具有下述两个性质:
(1),1,2,…;(2)…=1.
②常见的离散型随机变量的分布列:
(1)二项分布
次独立重复试验中,事件A发生的次数是一个随机变量,其所有可能的取值为0,1,2,…n,并且,其中,,随机变量的分布列如下:
01…
…P

称这样随机变量服从二项分布,记作,其中、为参数,并记:.
(2)几何分布
在独立重复试验中,某事件第一次发生时所作的试验的次数是一个取值为正整数的离散型随机变量,表示在第k次独立重复试验时事件第一次发生.
随机变量的概率分布为:
123…k…
Ppqp


例12.(2007年四川卷理)
厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品.
(Ⅰ)若厂家库房中的每件产品合格的概率为0.8,从中任意取出4件进行检验,求至少有1件是合格的概率;
(Ⅱ)若厂家发给商家20件产品中,其中有3件不合格,按合同规定该商家从中任取2件.都进行检验,只有2件都合格时才接收这批产品.否则拒收,求出该商家检验出不合格产品数的分布列及期望,并求出该商家拒收这批产品的概率.
(Ⅱ)该选手在选拔中回答问题的个数记为,求随机变量的分布列与数学期望.
(注:本小题结果可用分数表示)
[考查目的]本题考查相互独立事件、互斥事件等的概率计算,考察随机事件的分布列,数学期望等,考察运用所学知识与方法解决实际问题的能力.
[解答过程]解法一:(Ⅰ)记该选手能正确回答第轮的问题的事件为,则,,,
该选手被淘汰的概率
.
(Ⅱ)的可能值为,,
,
.
的分布列为
123
.
解法二:(Ⅰ)记该选手能正确回答第轮的问题的事件为,则,,.
该选手被淘汰的概率.
(Ⅱ)同解法一.
考点3离散型随机变量的期望与方差
随机变量的数学期望和方差
(1)离散型随机变量的数学期望:…;期望反映随机变量取值的平均水平.
⑵离散型随机变量的方差:……;
方差反映随机变量取值的稳定与波动,集中与离散的程度.
⑶基本性质:;.
(4)若~B(n,p),则;D=npq(这里q=1-p);
如果随机变量服从几何分布,,则,D=其中q=1-p.
例14.甲、乙两名工人加工同一种零件,两人每天加工的零件数相等,所得次品数分别为ε、η,ε和η的分布列如下:
ε012η012
P
P
则比较两名工人的技术水平的高低为.
思路启迪:一是要比较两名工人在加工零件数相等的条件下出次品数的平均值,即期望;二是要看出次品数的波动情况,即方差值的大小.
解答过程:工人甲生产出次品数ε的期望和方差分别为:
,
;
工人乙生产出次品数η的期望和方差分别为:
,
由Eε=Eη知,两人出次品的平均数相同,技术水平相当,但DεDη,可见乙的技术比较稳定.
小结:期望反映随机变量取值的平均水平;方差反映随机变量取值的稳定与波动,集中与离散的程度.
例15.(2007年全国I理)
某商场经销某商品,根据以往资料统计,顾客采用的付款期数的分布列为
12345
0.40.20.20.10.1
商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元.表示经销一件该商品的利润.
(Ⅰ)求事件:购买该商品的3位顾客中,至少有1位采用1期付款的概率;
(Ⅱ)求的分布列及期望.
[考查目的]本小题主要考查概率和离散型随机变量分布列和数学期望等知识.考查运用概率知识解决实际问题的能力.
[解答过程](Ⅰ)由表示事件购买该商品的3位顾客中至少有1位采用1期付款.
知表示事件购买该商品的3位顾客中无人采用1期付款
,.
(Ⅱ)的可能取值为元,元,元.
,
,
.
的分布列为
(元).
小结:离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.本题考查离散型随机变量分布列和数学期望等概念,考查运用概率知识解决实际问题的能力.
例16.某班有48名学生,在一次考试中统计出平均分为70分,方差为75,后来发现有2名同学的成绩有误,甲实得80分却记为50分,乙实得70分却记为100分,更正后平均分和方差分别是
A.70,25B.70,50C.70,1.04D.65,25
解答过程:易得没有改变,=70,
而s2=[(x12x22…5021002…x482)-482]=75,
s′2=[(x12x22…802702…x482)-482]
=[(75×48482-1250011300)-482]
=75-=75-25=50.
答案:B
考点4抽样方法与总体分布的估计
抽样方法
1.简单随机抽样:设一个总体的个数为N,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样.常用抽签法和随机数表法.
2.系统抽样:当总体中的个数较多时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取1个个体,得到所需要的样本,这种抽样叫做系统抽样(也称为机械抽样).
3.分层抽样:当已知总体由差异明显的几部分组成时,常将总体分成几部分,然后按照各部分所占的比进行抽样,这种抽样叫做分层抽样.
总体分布的估计
由于总体分布通常不易知道,我们往往用样本的频率分布去估计总体的分布,一般地,样本容量越大,这种估计就越精确.
总体分布:总体取值的概率分布规律通常称为总体分布.
当总体中的个体取不同数值很少时,其频率分布表由所取样本的不同数值及相应的频率表示,几何表示就是相应的条形图.
当总体中的个体取值在某个区间上时用频率分布直方图来表示相应样本的频率分布.
总体密度曲线:当样本容量无限增大,分组的组距

典型例题
例17.某工厂生产A、B、C三种不同型号的产品,产品数量之比依次为2:3:5.现用分层抽样方法抽出一个容量为n的样本,样本中A种型号产品有16件.那么此样本的容量n=.
解答过程:A种型号的总体是,则样本容量n=.
例18.一个总体中有100个个体,随机编号0,1,2,…,99,依编号顺序平均分成10个小组,组号依次为1,2,3,…,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为,那么在第组中抽取的号码个位数字与的个位数字相同,若,则在第7组中抽取的号码是.
解答过程:第K组的号码为,,…,,当m=6时,第k组抽取的号的个位数字为mk的个位数字,所以第7组中抽取的号码的个位数字为3,所以抽取号码为63.
例19.考查某校高三年级男生的身高,随机抽取40名高三男生,实测身高数据(单位:cm)如下:
171163163166166168168160168165
171169167169151168170160168174
165168174159167156157164169180
176157162161158164163163167161
⑴作出频率分布表;⑵画出频率分布直方图.
思路启迪:确定组距与组数是解决总体中的个体取不同值较多这类问题的出发点.
解答过程:⑴最低身高为151,最高身高180,其差为180-151=29。确定组距为3,组数为10,列表如下:
⑵频率分布直方图如下:
小结:合理、科学地确定组距和组数,才能准确地制表及绘图,这是用样本的频率分布估计总体分布的基本功.
估计总体分布的基本功。
考点5正态分布与线性回归
1.正态分布的概念及主要性质
(1)正态分布的概念
如果连续型随机变量的概率密度函数为,x其中、为常数,并且0,则称服从正态分布,记为(,).
(2)期望E=μ,方差.
(3)正态分布的性质
正态曲线具有下列性质:
①曲线在x轴上方,并且关于直线x=μ对称.
②曲线在x=μ时处于最高点,由这一点向左右两边延伸时,曲线逐渐降低.
③曲线的对称轴位置由μ确定;曲线的形状由确定,越大,曲线越矮胖;反之越高瘦.
(4)标准正态分布
当=0,=1时服从标准的正态分布,记作(0,1)
(5)两个重要的公式
①,②.
(6)与二者联系.
①若,则;
②若,则.
2.线性回归
简单的说,线性回归就是处理变量与变量之间的线性关系的一种数学方法.
变量和变量之间的关系大致可分为两种类型:确定性的函数关系和不确定的函数关系.不确定性的两个变量之间往往仍有规律可循.回归分析就是处理变量之间的相关关系的一种数量统计方法.它可以提供变量之间相关关系的经验公式.
具体说来,对n个样本数据(),(),…,(),其回归直线方程,或经验公式为:.其中,其中分别为||、||的平均数.
例20.如果随机变量ξ~N(μ,σ2),且Eξ=3,Dξ=1,则P(-1ξ≤1=等于()
A.2Φ(1)-1B.Φ(4)-Φ(2)
C.Φ(2)-Φ(4)D.Φ(-4)-Φ(-2)
解答过程:对正态分布,μ=Eξ=3,σ2=Dξ=1,故P(-1ξ≤1)=Φ(1-3)-Φ(-1-3)=Φ(-2)-Φ(-4)=Φ(4)-Φ(2).
答案:B
例21.将温度调节器放置在贮存着某种液体的容器内,调节器设定在d℃,液体的温度ξ(单位:℃)是一个随机变量,且ξ~N(d,0.52).
(1)若d=90°,则ξ89的概率为;
(2)若要保持液体的温度至少为80℃的概率不低于0.99,则d至少是?(其中若η~N(0,1),则Φ(2)=P(η2)=0.9772,Φ(-2.327)=P(η-2.327)=0.01).
思路启迪:(1)要求P(ξ89)=F(89),
∵ξ~N(d,0.5)不是标准正态分布,而给出的是Φ(2),Φ(-2.327),故需转化为标准正态分布的数值.
(2)转化为标准正态分布下的数值求概率p,再利用p≥0.99,解d.
解答过程:(1)P(ξ89)=F(89)=Φ()=Φ(-2)=1-Φ(2)=1-0.9772=0.0228.
(2)由已知d满足0.99≤P(ξ≥80),
即1-P(ξ80)≥1-0.01,∴P(ξ80)≤0.01.
∴Φ()≤0.01=Φ(-2.327).
∴≤-2.327.
∴d≤81.1635.
故d至少为81.1635.
小结:(1)若ξ~N(0,1),则η=~N(0,1).(2)标准正态分布的密度函数f(x)是偶函数,x0时,f(x)为增函数,x0时,f(x)为减函数.
例22.设,且总体密度曲线的函数表达式为:,x∈R.
(1)则μ,σ是;(2)则及的值是.
思路启迪:根据表示正态曲线函数的结构特征,对照已知函数求出μ和σ.利用一般正态总体与标准正态总体N(0,1)概率间的关系,将一般正态总体划归为标准正态总体来解决.
解答过程:⑴由于,根据一般正态分布的函数表达形式,可知μ=1,,故X~N(1,2).
.

.
小结:通过本例可以看出一般正态分布与标准正态分布间的内在关联.
例23.公共汽车门的高度是按照确保99%以上的成年男子头部不跟车门顶部碰撞设计的,如果某地成年男子的身高ε~N(173,7)(单位:cm),则车门应设计的高度是(精确到1cm)?
思路启迪:由题意可知,求的是车门的最低高度,可设其为xcm,使其总体在不低于x的概率小于1%.
解答过程:设该地区公共汽车车门的最低高度应设为xcm,由题意,需使P(ε≥x)1%.
∵ε~N(173,7),∴。查表得,解得x179.16,即公共汽车门的高度至少应设计为180cm,可确保99%以上的成年男子头部不跟车门顶部碰撞.
【专题训练与高考

一.选择题
1.下面关于离散型随机变量的期望与方差的结论错误的是()
A.期望反映随机变量取值的平均水平,方差反映随机变量取值集中与离散的程度.
B.期望与方差都是一个数值,它们不随试验的结果而变化
C.方差是一个非负数
D.期望是区间[0,1]上的一个数.
2.要了解一批产品的质量,从中抽取200个产品进行检测,则这200个产品的质量是()
A.总体B.总体的一个样本C.个体D.样本容量
01
P
3.已知的分布列为:
设则的值为()
A.5B.C.D.
4.设,,,则n,p的值分别为()
A.18,B.36,C.,36D.18,
5.已知随机变量服从二项分布,,则等于()
A.B.C.D.
6.设随机变量的分布列为,其中k=1,2,3,4,5,则等于()
A.B.C.D.
7.设15000件产品中有1000件废品,从中抽取150件进行检查,则查得废品数的数学期望为()
A.15B.10C.5D.都不对
8.某市政府在人大会上,要从农业、工业、教育系统的代表中抽查对政府工作报告的意见.为了更具有代表性,抽取应采用()
A.抽签法B.随机数表法C.系统抽样法D.分层抽样
9.一台X型号的自动机床在一小时内不需要人照看的概为0.8000,有四台这种型号的自动机床各自独立工作,则在一小时内至多有2台机床需要工人照看的概率是()
A.0.1536B.0.1808C.0.5632D.0.9728
10.某校高三年级195名学生已编号为1,2,3,…195,为了解高三学生的饮食情况,要按1:5的比例抽取一个样本,若采用系统抽样方法进行抽取,其中抽取3名学生的编号可能是()
A.3,24,33B.31,47,147C.133,153,193D.102,132,159
11.同时抛掷4枚均匀硬币80次,设4枚硬币正好出现2枚正面向上,2枚反面向上的次数为,则的数学期望是()A.20B.25C.30D.40
12.已知,且,则P()等于()
A.0.1B.0.2C.0.3D.0.4
13.某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点.公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务情况,记这项调查为②.则完成①、②这两项调查宜采用的抽样方法依次是
A.分层抽样法,系统抽样法B.分层抽样法,简单随机抽样法
C.系统抽样法,分层抽样法D.简单随机抽样法,分层抽样法
14.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用下面的条形图表示,根据条形图可得这50名学生这一天平均每人的课外阅读时间为()
A.0.6hB.0.9hC.1.0hD.1.5h
二.填空题
15.某工厂规定:工人只要生产出一件甲级产品发奖金50元,生产出一件乙级产品发奖金30元,若生产出一件次品则扣奖金20元,某工人生产甲级品的概率为0.6,乙级品的概率为0.3,次品的概率为0.1,则此人生产一件产品的平均奖金为元.
16.同时抛掷两枚相同的均匀硬币,随机变量表示结果中有正面向上,表示结果中没有正面向上,则.
17.甲、乙两种冬小麦试验品种连续5年的平均单位面积产量如下(单位:t/hm2)
品种第1年第2年第3年第4年第5年
甲9.89.910.11010.2
乙9.410.310.89.7
(2)乙至多击中目标2次的概率;
(3)甲恰好比乙多击中目标2次的概率.
【参考答案】
一、1.D2.B3.A4.D5.D6.A7.B8.C9.D10.C11.C12A13.提示:此题为抽样方法的选取问题.当总体中个体较多时宜采用系统抽样;当总体中的个体差异较大时,宜采用分层抽样;当总体中个体较少时,宜采用随机抽样.
依据题意,第①项调查应采用分层抽样法、第②项调查应采用简单随机抽样法.故选B.
答案:B
14.提示:=0.9.
答案:B
二.15.37;16.;17.甲;18.5600;
19.提示:此问题总体中个体的个数较多,因此采用系统抽样.按题目中要求的规则抽取即可.
∵m=6,k=7,mk=13,∴在第7小组中抽取的号码是63.
答案:63
20.提示:不妨设在第1组中随机抽到的号码为x,则在第16组中应抽出的号码为120x.
设第1组抽出的号码为x,则第16组应抽出的号码是8×15x=126,∴x=6.
答案:6
三.21.解:分层抽样应按各层所占的比例从总体中抽取.
∵120∶16∶24=15∶2∶3,又共抽出20人,
∴各层抽取人数分别为20×=15人,20×=2人,20×=3人.
答案:15人、2人、3人.
22.解:(1);;;.
的概率分布如下表
0123
P
(2)乙至多击中目标2次的概率为.
(3)设甲恰好比乙多击中目标2次为事件A,甲恰击中2次且乙恰击中目标0次为事件B,甲恰击中目标3次且乙恰击中目标1次为事件为B,
则,、为互斥事件..
所以甲恰好比乙多击中目标2次的概率