88教案网

你的位置: 教案 > 高中教案 > 导航 > 高考数学(理科)一轮复习合情推理与演绎推理学案附答案

高中生物一轮复习教案

发表时间:2020-12-01

高考数学(理科)一轮复习合情推理与演绎推理学案附答案。

学案37合情推理与演绎推理

导学目标:1.了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用.2.了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理.3.了解合情推理和演绎推理之间的联系和差异.
自主梳理
自我检测
1.(2010山东)观察(x2)′=2x,(x4)′=4x3,(cosx)′=-sinx,由归纳推理可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)
等于()
A.f(x)B.-f(x)C.g(x)D.-g(x)
2.(2010珠海质检)给出下面类比推理命题(其中Q为有理数集,R为实数集,C为复数集):
①“若a,b∈R,则a-b=0a=b”类比推出“若a,b∈C,则a-b=0a=b”;
②“若a,b,c,d∈R,则复数a+bi=c+dia=c,b=d”类比推出“若a,b,c,d∈Q,则a+b2=c+d2a=c,b=d”;
③“若a,b∈R,则a-b0ab”类比推出“若a,b∈C,则a-b0ab”.其中类比结论正确的个数是()
A.0B.1C.2D.3
3.(2009江苏)在平面上,若两个正三角形的边长比为1∶2,则它们的面积比为1∶4,类似地,在空间中,若两个正四面体的棱长比为1∶2,则它们的体积比为________.
4.(2010陕西)观察下列等式:13+23=32,13+23+33=62,13+23+33+43=102,…,根据上述规律,第五个等式为________________________________.
5.(2011苏州月考)一切奇数都不能被2整除,2100+1是奇数,所以2100+1不能被2整除,其演绎推理的“三段论”的形式为___________________________________________.

探究点一归纳推理
例1在数列{an}中,a1=1,an+1=2an2+an,n∈N*,猜想这个数列的通项公式,这个猜想正确吗?请说明理由.
变式迁移1观察:①sin210°+cos240°+sin10°cos40°=34;
②sin26°+cos236°+sin6°cos36°=34.
由上面两题的结构规律,你能否提出一个猜想?并证明你的猜想.

探究点二类比推理
例2(2011银川月考)在平面内,可以用面积法证明下面的结论:
从三角形内部任意一点,向各边引垂线,其长度分别为pa,pb,pc,且相应各边上的高分别为ha,hb,hc,则有paha+pbhb+pchc=1.
请你运用类比的方法将此结论推广到四面体中并证明你的结论.jaB88.com

变式迁移2在Rt△ABC中,若∠C=90°,AC=b,BC=a,则△ABC的外接圆半径r=a2+b22,将此结论类比到空间有_______________________________________________.
探究点三演绎推理
例3在锐角三角形ABC中,AD⊥BC,BE⊥AC,D、E是垂足.求证:AB的中点M到D、E的距离相等.

变式迁移3指出对结论“已知2和3是无理数,证明2+3是无理数”的下述证明是否为“三段论”,证明有错误吗?
证明:∵无理数与无理数的和是无理数,而2与3都是无理数,∴2+3也是无理数.
1.合情推理是指“合乎情理”的推理,数学研究中,得到一个新结论之前,合情推理常常能帮助我们猜测和发现结论;证明一个数学结论之前,合情推理常常能为我们提供证明的思路和方向.合情推理的过程概括为:从具体问题出发―→观察、分析、比较、联想―→归纳、类比―→提出猜想.一般来说,由合情推理所获得的结论,仅仅是一种猜想,其可靠性还需进一步证明.
2.归纳推理与类比推理都属合情推理:(1)归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或由个别事实概括出一般结论的推理,称为归纳推理.它是一种由部分到整体,由个别到一般的推理.(2)类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理,它是一种由特殊到特殊的推理.
3.从一般性的原理出发,推出某个特殊情况下的结论,把这种推理称为演绎推理,也就是由一般到特殊的推理,三段论是演绎推理的一般模式,包括大前提,小前提,结论.
(满分:75分)

一、选择题(每小题5分,共25分)
1.(2011福建厦门华侨中学模拟)定义A*B,B*C,C*D,D*A的运算分别对应下图中的(1)、(2)、(3)、(4),那么下图中的(A)、(B)所对应的运算结果可能是()
A.B*D,A*DB.B*D,A*C
C.B*C,A*DD.C*D,A*D
2.(2011厦门模拟)设f(x)=1+x1-x,又记f1(x)=f(x),fk+1(x)=f(fk(x)),k=1,2,…,则f2010(x)等于()
A.-1xB.xC.x-1x+1D.1+x1-x
3.由代数式的乘法法则类比推导向量的数量积的运算法则:
①“mn=nm”类比得到“ab=ba”;
②“(m+n)t=mt+nt”类比得到“(a+b)c=ac+bc”;
③“(mn)t=m(nt)”类比得到“(ab)c=a(bc)”;
④“t≠0,mt=xtm=x”类比得到“p≠0,ap=xpa=x”;
⑤“|mn|=|m||n|”类比得到“|ab|=|a||b|”;
⑥“acbc=ab”类比得到“acbc=ab”.
以上的式子中,类比得到的结论正确的个数是()
A.1B.2C.3D.4
4.(2009湖北)古希腊人常用小石子在沙滩上摆成各种形状来研究数,比如:
他们研究过图(1)中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似的,称图(2)中的1,4,9,16,…这样的数为正方形数.
下列数中既是三角形数又是正方形数的是()
A.289B.1024C.1225D.1378
5.已知整数的数对如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),…则第60个数对是()
A.(3,8)B.(4,7)
C.(4,8)D.(5,7)
二、填空题(每小题4分,共12分)
6.已知正三角形内切圆的半径是高的13,把这个结论推广到空间正四面体,类似的结论是________________________________________________________________________.
7.(2011广东深圳高级中学模拟)定义一种运算“*”:对于自然数n满足以下运算性质:
8.(2011陕西)观察下列等式
1=1
2+3+4=9
3+4+5+6+7=25
4+5+6+7+8+9+10=49

照此规律,第n个等式为_____________________________________________________.
三、解答题(共38分)
9.(12分)已知数列{an}的前n项和为Sn,a1=-23,且Sn+1Sn+1+2=0(n≥2).计算S1,S2,S3,S4,并猜想Sn的表达式.

10.(12分)(2011杭州调研)已知函数f(x)=-aax+a(a0且a≠1),
(1)证明:函数y=f(x)的图象关于点12,-12对称;
(2)求f(-2)+f(-1)+f(0)+f(1)+f(2)+f(3)的值.
11.(14分)如图1,若射线OM,ON上分别存在点M1,M2与点N1,N2,则=OM1OM2ON1ON2;如图2,若不在同一平面内的射线OP,OQ和OR上分别存在点P1,P2,点Q1,Q2和点R1,R2,则类似的结论是什么?这个结论正确吗?说明理由.

学案37合情推理与演绎推理
自主梳理
归纳推理全部对象部分个别类比推理这些特征
特殊到特殊①一般原理②特殊情况③特殊情况一般特殊
自我检测
1.D[由所给函数及其导数知,偶函数的导函数为奇函数.因此当f(x)是偶函数时,其导函数应为奇函数,故g(-x)=-g(x).]
2.C[①②正确,③错误.因为两个复数如果不全是实数,不能比较大小.]
3.1∶8
解析∵两个正三角形是相似的三角形,∴它们的面积之比是相似比的平方.同理,两个正四面体是两个相似几何体,体积之比为相似比的立方,所以它们的体积比为1∶8.
4.13+23+33+43+53+63=212
解析由前三个式子可以得出如下规律:每个式子等号的左边是从1开始的连续正整数的立方和,且个数依次多1,等号的右边是一个正整数的平方,后一个正整数依次比前一个大3,4,…,因此,第五个等式为13+23+33+43+53+63=212.
5.一切奇数都不能被2整除大前提
2100+1是奇数小前提
所以2100+1不能被2整除结论
课堂活动区
例1解题导引归纳分为完全归纳和不完全归纳,由归纳推理所得的结论虽然未必是可靠的,但它由特殊到一般、由具体到抽象的认识功能,对科学的发现是十分有用的,观察、实验,对有限的资料作归纳整理,提出带规律性的说法是科学研究的最基本的方法之一.
解在{an}中,a1=1,a2=2a12+a1=23,
a3=2a22+a2=12=24,a4=2a32+a3=25,…,
所以猜想{an}的通项公式为an=2n+1.
这个猜想是正确的,证明如下:
因为a1=1,an+1=2an2+an,
所以1an+1=2+an2an=1an+12,
即1an+1-1an=12,所以数列1an是以1a1=1为首项,
12为公差的等差数列,
所以1an=1+(n-1)×12=12n+12,
所以通项公式an=2n+1.
变式迁移1解猜想sin2α+cos2(α+30°)+sinαcos(α+30°)=34.
证明如下:
左边=sin2α+cos(α+30°)[cos(α+30°)+sinα]
=sin2α+32cosα-12sinα32cosα+12sinα
=sin2α+34cos2α-14sin2α=34=右边.
例2解题导引类比推理是根据两个对象有一部分属性类似,推出这两个对象的其他属性亦类似的一种推理方法,例如我们拿分式同分数来类比,平面几何与立体几何中的某些对象类比等等.我们必须清楚类比并不是论证,它可以帮助我们发现真理.类比推理应从具体问题出发,通过观察、分析、联想进行对比、归纳、提出猜想.

类比:从四面体内部任意一点向各面引垂线,其长度分别为pa,pb,pc,pd,且相应各面上的高分别为ha,hb,hc,hd.
则有paha+pbhb+pchc+pdhd=1.
证明如下:
paha=13S△BCDpa13S△BCDha=VP—BCDVA—BCD,
同理有pbhb=VP—CDAVB—CDA,pchc=VP—BDAVC—BDA,pdhd=VP—ABCVD—ABC,
VP—BCD+VP—CDA+VP—BDA+VP—ABC=VA—BCD,
∴paha+pbhb+pchc+pdhd
=VP—BCD+VP—CDA+VP—BDA+VP—ABCVA—BCD=1.
变式迁移2在三棱锥A—BCD中,若AB、AC、AD两两互相垂直,且AB=a,AC=b,AD=c,则此三棱锥的外接球半径R=a2+b2+c22
例3解题导引在演绎推理中,只有前提(大前提、小前提)和推理形式都是正确的,结论才是正确的,否则所得的结论可能就是错误的.推理时,要清楚大前提、小前提及二者之间的逻辑关系.
证明(1)因为有一个内角是直角的三角形是直角三角形,——大前提
在△ABD中,AD⊥BC,即∠ADB=90°,——小前提
所以△ADB是直角三角形.——结论
(2)因为直角三角形斜边上的中线等于斜边的一半,——大前提
而M是Rt△ADB斜边AB的中点,DM是斜边上的中线,——小前提
所以DM=12AB.——结论
同理EM=12AB,所以DM=EM.
变式迁移3解证明是“三段论”模式,证明有错误.证明中大前提使用的论据是“无理数与无理数的和是无理数”,这个论据是假的,因为两个无理数的和不一定是无理数,因此原理的真实性仍无法断定.
课后练习区
1.B[由(1)(2)(3)(4)图得A表示|,B表示□,C表示—,D表示○,故图(A)(B)表示B*D和A*C.]
2.A[计算f2(x)=f1+x1-x=1+1+x1-x1-1+x1-x=-1x,
f3(x)=f-1x=1-1x1+1x=x-1x+1,
f4(x)=1+x-1x+11-x-1x+1=x,f5(x)=f1(x)=1+x1-x,
归纳得f4k+i(x)=fi(x),k∈N*,i=1,2,3,4.
∴f2010(x)=f2(x)=-1x.]
3.B[只有①、②对,其余错误,故选B.]
4.C[设图(1)中数列1,3,6,10,…的通项公式为an,则
a2-a1=2,a3-a2=3,a4-a3=4,…,an-an-1=n.
故an-a1=2+3+4+…+n,
∴an=nn+12.
而图(2)中数列的通项公式为bn=n2,因此所给的选项中只有1225满足a49=49×502=b35=352=1225.]
5.D[观察可知横坐标和纵坐标之和为2的数对有1个,和为3的数对有2个,和为4的数对有3个,和为5的数对有4个,依次类推和为n+1的数对有n个,多个数对的排序是按照横坐标依次增大的顺序来排的,由nn+12=60n(n+1)=120,n∈Z,n=10时,nn+12=55个数对,还差5个数对,且这5个数对的横、纵坐标之和为12,它们依次是(1,11),(2,10),(3,9),(4,8),(5,7),
∴第60个数对是(5,7).]
6.空间正四面体的内切球的半径是高的14
解析利用体积分割可证明.
7.n
8.n+(n+1)+…+(3n-2)=(2n-1)2
解析∵1=12,2+3+4=9=32,3+4+5+6+7=25=52,∴第n个等式为n+(n+1)+…+(3n-2)=(2n-1)2.
9.解当n=1时,S1=a1=-23.(2分)
当n=2时,1S2=-2-S1=-43,
∴S2=-34.(4分)
当n=3时,1S3=-2-S2=-54,
∴S3=-45.(6分)
当n=4时,1S4=-2-S3=-65,
∴S4=-56.(8分)
猜想:Sn=-n+1n+2(n∈N*).(12分)
10.(1)证明函数f(x)的定义域为R,任取一点(x,y),它关于点12,-12对称的点的坐标为(1-x,-1-y).(2分)
由已知得y=-aax+a,
则-1-y=-1+aax+a=-axax+a,(4分)
f(1-x)=-aa1-x+a=-aaax+a
=-aaxa+aax=-axax+a,∴-1-y=f(1-x).
即函数y=f(x)的图象关于点12,-12对称.(6分)
(2)解由(1)有-1-f(x)=f(1-x),
即f(x)+f(1-x)=-1.(9分)
∴f(-2)+f(3)=-1,f(-1)+f(2)=-1,
f(0)+f(1)=-1,
则f(-2)+f(-1)+f(0)+f(1)+f(2)+f(3)=-3.
(12分)
11.解类似的结论为:VO—P1Q1R1VO—P2Q2R2=OP1OP2OQ1OQ2OR1OR2.
(4分)
这个结论是正确的,证明如下:
如图,过R2作R2M2⊥平面P2OQ2于M2,连接OM2.
过R1在平面OR2M2作R1M1∥R2M2交OM2于M1,
则R1M1⊥平面P2OQ2.
由VO—P1Q1R1=13S△P1OQ1R1M1=1312OP1OQ1sin∠P1OQ1R1M1
=16OP1OQ1R1M1sin∠P1OQ1,(8分)
同理,VO—P2Q2R2=16OP2OQ2R2M2sin∠P2OQ2.
所以=OP1OQ1R1M1OP2OQ2R2M2.(10分)
由平面几何知识可得R1M1R2M2=OR1OR2.(12分)
所以=OP1OQ1OR1OP2OQ2OR2.
所以结论正确.(14分)

相关知识

演绎推理学案


第5课时
2.1.1演绎推理(二)
学习目标
正确区分合情推理和演绎推理知道它们的联系和区别,加深对演绎推理的理解和运用。
学习过程
一、学前准备
1.

二、新课导学
◆探究新知(预习教材P30~P33,找出疑惑之处)
问题1:“三段论”可以用符号语言表示为
(1)大前提:_____________________;
(2)小前提:_____________________;
(3)结论:_____________________。
注意:在实际证明过程中,为了叙述简洁,如果大前提是显然,则可以省略。

2、思考并回答下面问题:
因为所有边长都相等的凸多边形是正方形,………………………………大前提
而菱形是所有边长都相等的凸多边形,……………………………………小前提
所以菱形是正方形。…………………结论
(1)上面的推理正确吗?
(2)推理的结论正确吗?为什么?
(3)这个问题说明了什么?

结论:上述推理的形式正确,但大前提是错误的,所以所得的结论是错误的。

总结:

◆应用示例
例1.证明函数在内是增函数。
解:

◆反馈练习
1.演绎推理是以下列哪个为前提,推出某个特殊情况下的结论的推理方法().
A.一般的原理原则;B.特定的命题;
C.一般的命题;D.定理、公式.

2.若函数是奇函数,求证。


三、总结提升
◆本节小结
1.本节学习了哪些内容?
答:

学习评价
一、自我评价
你完成本节导学案的情况为()
A.很好B.较好C.一般D.较差

二、当堂检测
1.下列表述正确的是()。
(1)归纳推理是由部分到整体的推理;
(2)归纳推理是由一般到一般的推理;
(3)演绎推理是由一般到特殊的推理;
(4)类比推理是由特殊到一般的推理;
(5)类比推理是由特殊到特殊的推理。
A、(1)(2)(3)B、(2)(3)(4)
C、(2)(4)(5)D、(1)(3)(5)

2、下面几种推理过程是演绎推理的是()。
A、两条直线平行,同旁内角互补,如果和是两条平行线的同旁内角,则;
B、由平面三角形的性质,推测空间四面体的性质;
C、某高校共有10个班,1班有51人,2班有53人,3班有52人,由此推测各班都超过50人;
D、在数列中,,,由此归纳出的通项公式。

3、课本练习3。

凸多面体面数(F)顶点数(V)棱数(E)
三棱柱569
长方形6812
五棱柱71015
三棱锥446
四棱锥558
五棱锥6610

课后作业
1.设m是实数,求证方程有两个相异的实数根。
2.用三段论证明:三角形内角和等于180°.

演绎推理


演绎推理
一、教材分析
推理是高考的重要的内容,推理包括合情推理与演绎推理,由于解答高考题的过程就是推理的过程,因此本部分内容的考察将会渗透到每一个高考题中,考察推理的基本思想和方法,既可能在选择题中和填空题中出现,也可能在解答题中出现。
二、教学目标
(1)知识与能力:了解演绎推理的含义及特点,会将推理写成三段论的形式
(2)过程与方法:了解合情推理和演绎推理的区别与联系
(3)情感态度价值观:了解演绎推理在数学证明中的重要地位和日常生活中的作用,养成言之有理论证有据的习惯。
三、教学重点难点
教学重点:演绎推理的含义与三段论推理及合情推理和演绎推理的区别与联系
教学难点:演绎推理的应用
四、教学方法:探究法
五、课时安排:1课时
六、教学过程
1.填一填:
①所有的金属都能够导电,铜是金属,所以;
②太阳系的大行星都以椭圆形轨道绕太阳运行,冥王星是太阳系的大行星,因此;
③奇数都不能被2整除,2007是奇数,所以.
2.讨论:上述例子的推理形式与我们学过的合情推理一样吗?

3.小结:
①概念:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为____________.
要点:由_____到_____的推理.
②讨论:演绎推理与合情推理有什么区别?

③思考:“所有的金属都能够导电,铜是金属,所以铜能导电”,它由几部分组成,各部分有什么特点?

小结:“三段论”是演绎推理的一般模式:
第一段:_________________________________________;
第二段:_________________________________________;
第三段:____________________________________________.
④举例:举出一些用“三段论”推理的例子.

例1:证明函数在上是增函数.

例2:在锐角三角形ABC中,,D,E是垂足.求证:AB的中点M到D,E的距离相等.

当堂检测:
讨论:因为指数函数是增函数,是指数函数,则结论是什么?

讨论:演绎推理怎样才能使得结论正确?

比较:合情推理与演绎推理的区别与联系?
课堂小结

课后练习与提高

1.演绎推理是以下列哪个为前提,推出某个特殊情况下的结论的推理方法()
A.一般的原理原则;B.特定的命题;
C.一般的命题;D.定理、公式.
2.“因为对数函数是增函数(大前提),而是对数函数(小前提),所以是增函数(结论).”上面的推理的错误是()
A.大前提错导致结论错;B.小前提错导致结论错;
C.推理形式错导致结论错;D.大前提和小前提都错导致结论错.
3.下面几种推理过程是演绎推理的是()
A.两条直线平行,同旁内角互补,如果∠A和∠B是两条平行直线的同旁内角,则∠A+∠B=180°;B.由平面三角形的性质,推测空间四面体的性质;.
4.补充下列推理的三段论:
(1)因为互为相反数的两个数的和为0,又因为与互为相反数且________________________,所以=8.
(2)因为_____________________________________,又因为是无限不循环小数,所以是无理数.
七、板书设计
八、教学反思

高考数学(理科)一轮复习抛物线学案附答案


学案53抛物线

导学目标:1.掌握抛物线的定义、几何图形和标准方程,知道它们的简单几何性质.2.理解数形结合的思想.
自主梳理
1.抛物线的概念
平面内与一个定点F和一条定直线l(Fl)距离______的点的轨迹叫做抛物线.点F叫做抛物线的__________,直线l叫做抛物线的________.
2.抛物线的标准方程与几何性质
标准方程y2=2px
(p0)y2=-2px
(p0)x2=2py
(p0)x2=-2py
(p0)
p的几何意义:焦点F到准线l的距离
图形

顶点O(0,0)
对称轴y=0x=0
焦点F(p2,0)
F(-p2,0)
F(0,p2)
F(0,-p2)

离心率e=1
准线方程x=-p2
x=p2
y=-p2
y=p2

范围x≥0,
y∈Rx≤0,
y∈Ry≥0,
x∈Ry≤0,
x∈R
开口方向向右向左向上向下

自我检测
1.(2010四川)抛物线y2=8x的焦点到准线的距离是()
A.1B.2C.4D.8
2.若抛物线y2=2px的焦点与椭圆x26+y22=1的右焦点重合,则p的值为()
A.-2B.2C.-4D.4
3.(2011陕西)设抛物线的顶点在原点,准线方程为x=-2,则抛物线的方程是()
A.y2=-8xB.y2=8x
C.y2=-4xD.y2=4x
4.已知抛物线y2=2px(p0)的焦点为F,点P1(x1,y1),P2(x2,y2),P3(x3,y3)在抛物线上,且2x2=x1+x3,则有()
A.|FP1|+|FP2|=|FP3|
B.|FP1|2+|FP2|2=|FP3|2
C.2|FP2|=|FP1|+|FP3|
D.|FP2|2=|FP1||FP3|
5.(2011佛山模拟)已知抛物线方程为y2=2px(p0),过该抛物线焦点F且不与x轴垂直的直线AB交抛物线于A、B两点,过点A、点B分别作AM、BN垂直于抛物线的准线,分别交准线于M、N两点,那么∠MFN必是()
A.锐角B.直角
C.钝角D.以上皆有可能
探究点一抛物线的定义及应用
例1已知抛物线y2=2x的焦点是F,点P是抛物线上的动点,又有点A(3,2),求|PA|+|PF|的最小值,并求出取最小值时P点的坐标.

变式迁移1已知点P在抛物线y2=4x上,那么点P到点Q(2,-1)的距离与点P到抛物线焦点距离之和取得最小值时,点P的坐标为()
A.14,-1B.14,1
C.(1,2)D.(1,-2)
探究点二求抛物线的标准方程
例2(2011芜湖调研)已知抛物线的顶点在原点,焦点在y轴上,抛物线上一点M(m,-3)到焦点的距离为5,求m的值、抛物线方程和准线方程.

变式迁移2根据下列条件求抛物线的标准方程:
(1)抛物线的焦点F是双曲线16x2-9y2=144的左顶点;
(2)过点P(2,-4).

探究点三抛物线的几何性质
例3过抛物线y2=2px的焦点F的直线和抛物线相交于A,B两点,如图所示.
(1)若A,B的纵坐标分别为y1,y2,求证:y1y2=-p2;
(2)若直线AO与抛物线的准线相交于点C,求证:BC∥x轴.

变式迁移3已知AB是抛物线y2=2px(p0)的焦点弦,F为抛物线的焦点,A(x1,y1),B(x2,y2).求证:
(1)x1x2=p24;
(2)1|AF|+1|BF|为定值.

分类讨论思想的应用
例(12分)过抛物线y2=2px(p0)焦点F的直线交抛物线于A、B两点,过B点作其准线的垂线,垂足为D,设O为坐标原点,问:是否存在实数λ,使AO→=λOD→?
多角度审题这是一道探索存在性问题,应先假设存在,设出A、B两点坐标,从而得到D点坐标,再设出直线AB的方程,利用方程组和向量条件求出λ.
【答题模板】
解假设存在实数λ,使AO→=λOD→.
抛物线方程为y2=2px(p0),
则Fp2,0,准线l:x=-p2,
(1)当直线AB的斜率不存在,即AB⊥x轴时,
交点A、B坐标不妨设为:Ap2,p,Bp2,-p.
∵BD⊥l,∴D-p2,-p,
∴AO→=-p2,-p,OD→=-p2,-p,∴存在λ=1使AO→=λOD→.[4分]
(2)当直线AB的斜率存在时,
设直线AB的方程为y=kx-p2(k≠0),
设A(x1,y1),B(x2,y2),则D-p2,y2,x1=y212p,x2=y222p,
由y=kx-p2y2=2px得ky2-2py-kp2=0,∴y1y2=-p2,∴y2=-p2y1,[8分]
AO→=(-x1,-y1)=-y212p,-y1,OD→=-p2,y2=-p2,-p2y1,
假设存在实数λ,使AO→=λOD→,则-y212p=-p2λ-y1=-p2y1λ,解得λ=y21p2,∴存在实数λ=y21p2,使AO→=λOD→.
综上所述,存在实数λ,使AO→=λOD→.[12分]
【突破思维障碍】
由抛物线方程得其焦点坐标和准线方程,按斜率存在和不存在讨论,由直线方程和抛物线方程组成方程组,研究A、D两点坐标关系,求出AO→和OD→的坐标,判断λ是否存在.
【易错点剖析】
解答本题易漏掉讨论直线AB的斜率不存在的情况,出现错误的原因是对直线的点斜式方程认识不足.
1.关于抛物线的定义
要注意点F不在定直线l上,否则轨迹不是抛物线,而是一条直线.
2.关于抛物线的标准方程
抛物线的标准方程有四种不同的形式,这四种标准方程的联系与区别在于:
(1)p的几何意义:参数p是焦点到准线的距离,所以p恒为正数.
(2)方程右边一次项的变量与焦点所在坐标轴的名称相同,一次项系数的符号决定抛物线的开口方向.
3.关于抛物线的几何性质
抛物线的几何性质,只要与椭圆、双曲线加以对照,很容易把握,但由于抛物线的离心率等于1,所以抛物线的焦点弦具有很多重要性质,而且应用广泛.例如:
已知过抛物线y2=2px(p0)的焦点的直线交抛物线于A、B两点,设A(x1,y1),B(x2,y2),则有下列性质:|AB|=x1+x2+p或|AB|=2psin2α(α为AB的倾斜角),y1y2=-p2,x1x2=p24等.
(满分:75分)

一、选择题(每小题5分,共25分)
1.(2011大纲全国)已知抛物线C:y2=4x的焦点为F,直线y=2x-4与C交于A,B两点,则cos∠AFB等于()
A.45B.35
C.-35D.-45
2.(2011湖北)将两个顶点在抛物线y2=2px(p0)上,另一个顶点是此抛物线焦点的正三角形个数记为n,则()
A.n=0B.n=1
C.n=2D.n≥3
3.已知抛物线y2=2px,以过焦点的弦为直径的圆与抛物线准线的位置关系是()
A.相离B.相交C.相切D.不确定
4.(2011泉州月考)已知点A(-2,1),y2=-4x的焦点是F,P是y2=-4x上的点,为使|PA|+|PF|取得最小值,则P点的坐标是()
A.-14,1B.(-2,22)
C.-14,-1D.(-2,-22)
5.设O为坐标原点,F为抛物线y2=4x的焦点,A为抛物线上一点,若OA→AF→=-4,则点A的坐标为()
A.(2,±2)B.(1,±2)
C.(1,2)D.(2,2)
二、填空题(每小题4分,共12分)
6.(2011重庆)设圆C位于抛物线y2=2x与直线x=3所围成的封闭区域(包含边界)内,则圆C的半径能取到的最大值为________.
7.(2011济宁期末)已知A、B是抛物线x2=4y上的两点,线段AB的中点为M(2,2),则|AB|=________.
8.(2010浙江)设抛物线y2=2px(p0)的焦点为F,点A(0,2).若线段FA的中点B在抛物线上,则B到该抛物线准线的距离为________.
三、解答题(共38分)
9.(12分)已知顶点在原点,焦点在x轴上的抛物线截直线y=2x+1所得的弦长为15,求抛物线方程.

10.(12分)(2011韶关模拟)已知抛物线C:x2=8y.AB是抛物线C的动弦,且AB过F(0,2),分别以A、B为切点作轨迹C的切线,设两切线交点为Q,证明:AQ⊥BQ.

11.(14分)(2011济南模拟)已知定点F(0,1)和直线l1:y=-1,过定点F与直线l1相切的动圆圆心为点C.
(1)求动点C的轨迹方程;
(2)过点F的直线l2交轨迹C于两点P、Q,交直线l1于点R,求RP→RQ→的最小值.

学案53抛物线
自主梳理
1.相等焦点准线
自我检测
1.C
2.B[因为抛物线的准线方程为x=-2,所以p2=2,所以p=4,所以抛物线的方程是y2=8x.所以选B.]
3.B4.C5.B
课堂活动区
例1解题导引重视定义在解题中的应用,灵活地进行抛物线上的点到焦点的距离与到准线距离的等价转化,是解决抛物线焦点弦有关问题的重要途径.

将x=3代入抛物线方程
y2=2x,得y=±6.
∵62,∴A在抛物线内部.
设抛物线上点P到准线l:
x=-12的距离为d,由定义知
|PA|+|PF|=|PA|+d,
当PA⊥l时,|PA|+d最小,最小值为72,
即|PA|+|PF|的最小值为72,
此时P点纵坐标为2,代入y2=2x,得x=2,
∴点P坐标为(2,2).
变式迁移1A[
点P到抛物线焦点的距离等于点P到抛物线准线的距离,如图,|PF|+|PQ|=|PS|+|PQ|,故最小值在S,P,Q三点共线时取得,此时P,Q的纵坐标都是-1,点P的坐标为14,-1.]
例2解题导引(1)求抛物线方程时,若由已知条件可知所求曲线是抛物线,一般用待定系数法.若由已知条件可知所求曲线的动点的轨迹,一般用轨迹法;
(2)待定系数法求抛物线方程时既要定位(即确定抛物线开口方向),又要定量(即确定参数p的值).解题关键是定位,最好结合图形确定方程适合哪种形式,避免漏解;
(3)解决抛物线相关问题时,要善于用定义解题,即把|PF|转化为点P到准线的距离,这种“化斜为直”的转化方法非常有效,要注意领会和运用.
解方法一设抛物线方程为
x2=-2py(p0),
则焦点为F0,-p2,准线方程为y=p2.
∵M(m,-3)在抛物线上,且|MF|=5,
∴m2=6p,m2+-3+p22=5,解得p=4,m=±26.
∴抛物线方程为x2=-8y,m=±26,
准线方程为y=2.
方法二如图所示,
设抛物线方程为x2=-2py(p0),
则焦点F0,-p2,
准线l:y=p2,作MN⊥l,垂足为N.
则|MN|=|MF|=5,而|MN|=3+p2,
∴3+p2=5,∴p=4.∴抛物线方程为x2=-8y,
准线方程为y=2.由m2=(-8)×(-3),得m=±26.
变式迁移2解(1)双曲线方程化为x29-y216=1,
左顶点为(-3,0),由题意设抛物线方程为y2=-2px(p0)且-p2=-3,∴p=6.∴方程为y2=-12x.
(2)由于P(2,-4)在第四象限且对称轴为坐标轴,可设方程为y2=mx(m0)或x2=ny(n0),代入P点坐标求得m=8,n=-1,
∴所求抛物线方程为y2=8x或x2=-y.
例3解题导引解决焦点弦问题时,抛物线的定义有着广泛的应用,而且还应注意焦点弦的几何性质.焦点弦有以下重要性质(AB为焦点弦,以y2=2px(p0)为例):
①y1y2=-p2,x1x2=p24;
②|AB|=x1+x2+p.
证明(1)方法一由抛物线的方程可得焦点坐标为Fp2,0.设过焦点F的直线交抛物线于A,B两点的坐标分别为(x1,y1)、(x2,y2).
①当斜率存在时,过焦点的直线方程可设为
y=kx-p2,由y=kx-p2,y2=2px,
消去x,得ky2-2py-kp2=0.(*)
当k=0时,方程(*)只有一解,∴k≠0,
由韦达定理,得y1y2=-p2;
②当斜率不存在时,得两交点坐标为
p2,p,p2,-p,∴y1y2=-p2.
综合两种情况,总有y1y2=-p2.
方法二由抛物线方程可得焦点Fp2,0,设直线AB的方程为x=ky+p2,并设A(x1,y1),B(x2,y2),
则A、B坐标满足x=ky+p2,y2=2px,
消去x,可得y2=2pky+p2,
整理,得y2-2pky-p2=0,∴y1y2=-p2.
(2)直线AC的方程为y=y1x1x,
∴点C坐标为-p2,-py12x1,yC=-py12x1=-p2y12px1.
∵点A(x1,y1)在抛物线上,∴y21=2px1.
又由(1)知,y1y2=-p2,∴yC=y1y2y1y21=y2,∴BC∥x轴.
变式迁移3证明(1)∵y2=2px(p0)的焦点Fp2,0,设直线方程为y=kx-p2(k≠0),
由y=kx-p2y2=2px,消去x,得ky2-2py-kp2=0.
∴y1y2=-p2,x1x2=y1y224p2=p24,
当k不存在时,直线方程为x=p2,这时x1x2=p24.
因此,x1x2=p24恒成立.
(2)1|AF|+1|BF|=1x1+p2+1x2+p2
=x1+x2+px1x2+p2x1+x2+p24.
又∵x1x2=p24,代入上式得1|AF|+1|BF|=2p=常数,
所以1|AF|+1|BF|为定值.
课后练习区
1.D[方法一由y=2x-4,y2=4x,得x=1,y=-2或x=4,y=4.
令B(1,-2),A(4,4),又F(1,0),
∴由两点间距离公式得|BF|=2,|AF|=5,|AB|=35.
∴cos∠AFB=|BF|2+|AF|2-|AB|22|BF||AF|=4+25-452×2×5
=-45.
方法二由方法一得A(4,4),B(1,-2),F(1,0),
∴FA→=(3,4),FB→=(0,-2),
∴|FA→|=32+42=5,|FB→|=2.
∴cos∠AFB=FA→FB→|FA→||FB→|=3×0+4×-25×2=-45.]
2.C[
如图所示,A,B两点关于x轴对称,F点坐标为(p2,0),设A(m,2pm)(m0),则由抛物线定义,
|AF|=|AA1|,
即m+p2=|AF|.
又|AF|=|AB|=22pm,
∴m+p2=22pm,整理,得m2-7pm+p24=0,①
∴Δ=(-7p)2-4×p24=48p20,
∴方程①有两相异实根,记为m1,m2,且m1+m2=7p0,m1m2=p240,
∴m10,m20,∴n=2.]
3.C
4.A[过P作PK⊥l(l为抛物线的准线)于K,则|PF|=|PK|,
∴|PA|+|PF|=|PA|+|PK|.
∴当P点的纵坐标与A点的纵坐标相同时,|PA|+|PK|最小,此时P点的纵坐标为1,把y=1代入y2=-4x,得x=-14,即当P点的坐标为-14,1时,|PA|+|PF|最小.]
5.B
6.6-1
解析如图所示,若圆C的半径取到最大值,需圆与抛物线及直线x=3同时相切,设圆心的坐标为(a,0)(a3),则圆的方程为(x-a)2+y2=(3-a)2,与抛物线方程y2=2x联立得x2+(2-2a)x+6a-9=0,由判别式Δ=(2-2a)2-4(6a-9)=0,得a=4-6,故此时半径为3-(4-6)=6-1.
7.42
解析由题意可设AB的方程为y=kx+m,与抛物线方程联立得x2-4kx-4m=0,线段AB中点坐标为(2,2),x1+x2=4k=4,得k=1.
又∵y1+y2=k(x1+x2)+2m=4,
∴m=0.从而直线AB:y=x,|AB|=2|OM|=42.
8.324
解析抛物线的焦点F的坐标为p2,0,线段FA的中点B的坐标为p4,1,代入抛物线方程得1=2p×p4,解得p=2,故点B的坐标为24,1,故点B到该抛物线准线的距离为24+22=324.
9.解设直线和抛物线交于点A(x1,y1),B(x2,y2),
(1)当抛物线开口向右时,设抛物线方程为y2=2px(p0),则y2=2pxy=2x+1,消去y得,
4x2-(2p-4)x+1=0,
∴x1+x2=p-22,x1x2=14,(4分)
∴|AB|=1+k2|x1-x2|
=5x1+x22-4x1x2
=5p-222-4×14=15,(7分)
则p24-p=3,p2-4p-12=0,解得p=6(p=-2舍去),
抛物线方程为y2=12x.(9分)
(2)当抛物线开口向左时,设抛物线方程为y2=-2px(p0),仿(1)不难求出p=2,
此时抛物线方程为y2=-4x.(11分)
综上可得,
所求的抛物线方程为y2=-4x或y2=12x.(12分)
10.证明因为直线AB与x轴不垂直,
设直线AB的方程为y=kx+2,A(x1,y1),B(x2,y2).
由y=kx+2,y=18x2,
可得x2-8kx-16=0,x1+x2=8k,x1x2=-16.(4分)
抛物线方程为y=18x2,求导得y′=14x.(7分)
所以过抛物线上A、B两点的切线斜率分别是
k1=14x1,k2=14x2,k1k2=14x114x2
=116x1x2=-1.(10分)
所以AQ⊥BQ.(12分)
11.解(1)由题设点C到点F的距离等于它到l1的距离,
所以点C的轨迹是以F为焦点,l1为准线的抛物线,
∴所求轨迹的方程为x2=4y.(5分)
(2)由题意直线l2的方程为y=kx+1,与抛物线方程联立消去y得x2-4kx-4=0.
记P(x1,y1),Q(x2,y2),则x1+x2=4k,x1x2=-4.(8分)
因为直线PQ的斜率k≠0,易得点R的坐标为-2k,-1.(9分)
RP→RQ→=x1+2k,y1+1x2+2k,y2+1
=x1+2kx2+2k+(kx1+2)(kx2+2)
=(1+k2)x1x2+2k+2k(x1+x2)+4k2+4
=-4(1+k2)+4k2k+2k+4k2+4
=4k2+1k2+8,(11分)
∵k2+1k2≥2,当且仅当k2=1时取到等号.
RP→RQ→≥4×2+8=16,即RP→RQ→的最小值为16.(14分)

高考数学(理科)一轮复习圆的方程学案(附答案)


学案49圆的方程

导学目标:1.掌握确定圆的几何要素.2.掌握圆的标准方程与一般方程.3.初步了解用代数方法处理几何问题的思想.
自主梳理
1.圆的定义
在平面内,到________的距离等于________的点的________叫圆.
2.确定一个圆最基本的要素是________和________.
3.圆的标准方程
(x-a)2+(y-b)2=r2(r0),其中________为圆心,____为半径.
4.圆的一般方程
x2+y2+Dx+Ey+F=0表示圆的充要条件是__________________,其中圆心为___________________,半径r=____________________________.
5.确定圆的方程的方法和步骤
确定圆的方程主要方法是待定系数法,大致步骤为:
(1)________________________________________________________________________;
(2)________________________________________________________________________;
(3)________________________________________________________________________.
6.点与圆的位置关系
点和圆的位置关系有三种.
圆的标准方程(x-a)2+(y-b)2=r2,点M(x0,y0),
(1)点在圆上:(x0-a)2+(y0-b)2____r2;
(2)点在圆外:(x0-a)2+(y0-b)2____r2;
(3)点在圆内:(x0-a)2+(y0-b)2____r2.
自我检测
1.方程x2+y2+4mx-2y+5m=0表示圆的条件是()
A.14m1B.m1
C.m14D.m14或m1
2.(2011南平调研)圆心在y轴上,半径为1,且过点(1,2)的圆的方程是()
A.x2+(y-2)2=1
B.x2+(y+2)2=1
C.(x-1)2+(y-3)2=1
D.x2+(y-3)2=1
3.点P(2,-1)为圆(x-1)2+y2=25的弦AB的中点,则直线AB的方程是()
A.x-y-3=0B.2x+y-3=0
C.x+y-1=0D.2x-y-5=0
4.已知点(0,0)在圆:x2+y2+ax+ay+2a2+a-1=0外,则a的取值范围是________________.
5.(2011安庆月考)过圆x2+y2=4外一点P(4,2)作圆的切线,切点为A、B,则△APB的外接圆方程为________.
探究点一求圆的方程
例1求经过点A(-2,-4),且与直线l:x+3y-26=0相切于点B(8,6)的圆的方程.

变式迁移1根据下列条件,求圆的方程.
(1)与圆O:x2+y2=4相外切于点P(-1,3),且半径为4的圆的方程;
(2)圆心在原点且圆周被直线3x+4y+15=0分成1∶2两部分的圆的方程.

探究点二圆的几何性质的应用
例2(2011滁州模拟)已知圆x2+y2+x-6y+m=0和直线x+2y-3=0交于P,Q两点,且OP⊥OQ(O为坐标原点),求该圆的圆心坐标及半径.

变式迁移2
如图,已知圆心坐标为(3,1)的圆M与x轴及直线y=3x分别相切于A、B两点,另一圆N与圆M外切且与x轴及直线y=3x分别相切于C、D两点.
(1)求圆M和圆N的方程;
(2)过点B作直线MN的平行线l,求直线l被圆N截得的弦的长度.

探究点三与圆有关的最值问题
例3已知实数x、y满足方程x2+y2-4x+1=0.
(1)求y-x的最大值和最小值;
(2)求x2+y2的最大值和最小值.

变式迁移3如果实数x,y满足方程(x-3)2+(y-3)2=6,求yx的最大值与最小值.

1.求圆的标准方程就是求出圆心的坐标与圆的半径,借助弦心距、弦、半径之间的关系计算可大大简化计算的过程与难度.
2.点与圆的位置关系有三种情形:点在圆内、点在圆上、点在圆外,其判断方法是看点到圆心的距离d与圆半径r的关系.dr时,点在圆内;d=r时,点在圆上;dr时,点在圆外.
3.本节主要的数学思想方法有:数形结合思想、方程思想.
(满分:75分)

一、选择题(每小题5分,共25分)
1.(2011重庆)在圆x2+y2-2x-6y=0内,过点E(0,1)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为()
A.52B.102
C.152D.202
2.(2011合肥期末)方程x2+y2+ax+2ay+2a2+a-1=0表示圆,则a的取值范围是()
A.a-2或a23B.-23a0
C.-2a0D.-2a23
3.圆x2+y2+2x-4y+1=0关于直线2ax-by+2=0(a、b∈R)对称,则ab的取值范围是()
A.-∞,14B.0,14
C.-14,0D.-∞,14
4.已知点P(2,1)在圆C:x2+y2+ax-2y+b=0上,点P关于直线x+y-1=0的对称点也在圆C上,则实数a,b的值为()
A.a=-3,b=3B.a=0,b=-3
C.a=-1,b=-1D.a=-2,b=1
5.(2011三明模拟)已知两点A(-2,0),B(0,2),点C是圆x2+y2-2x=0上任意一点,则△ABC面积的最小值是()
A.3-2B.3+2
C.3-22D.3-22

二、填空题(每小题4分,共12分)
6.(2010天津)已知圆C的圆心是直线x-y+1=0与x轴的交点,且圆C与直线x+y+3=0相切,则圆C的方程为________________.
7.圆心在直线2x-3y-1=0上的圆与x轴交于A(1,0)、B(3,0)两点,则圆的方程为______________.
8.设直线ax-y+3=0与圆(x-1)2+(y-2)2=4相交于A、B两点,且弦AB的长为23,则a=________.
三、解答题(共38分)
9.(12分)根据下列条件,求圆的方程:
(1)经过A(6,5)、B(0,1)两点,并且圆心C在直线3x+10y+9=0上;
(2)经过P(-2,4)、Q(3,-1)两点,并且在x轴上截得的弦长等于6.

10.(12分)(2011舟山模拟)已知点(x,y)在圆(x-2)2+(y+3)2=1上.
(1)求x+y的最大值和最小值;
(2)求yx的最大值和最小值;
(3)求x2+y2+2x-4y+5的最大值和最小值.
11.(14分)如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度|AB|=20米,拱高|OP|=4米,每隔4米需用一支柱支撑,求支柱A2P2的高度(精确到0.01米)(825≈28.72).

学案49圆的方程
自主梳理
1.定点定长集合2.圆心半径3.(a,b)r
4.D2+E2-4F0-D2,-E2D2+E2-4F2
5.(1)根据题意,选择标准方程或一般方程(2)根据条件列出关于a,b,r或D、E、F的方程组(3)解出a、b、r或D、E、F,代入标准方程或一般方程6.(1)=(2)(3)
自我检测
1.D2.A3.A
4.(-1-73,-1)∪(12,-1+73)
5.(x-2)2+(y-1)2=5
课堂活动区
例1解题导引(1)一可以利用圆的一般式方程,通过转化三个独立条件,得到有关三个待定字母的关系式求解;二可以利用圆的方程的标准形式,由条件确定圆心和半径.
(2)一般地,求圆的方程时,当条件中给出的是圆上若干点的坐标,较适合用一般式,通过解三元方程组求待定系数;当条件中给出的是圆心坐标或圆心在某直线上、圆的切线方程、圆的弦长等条件,适合用标准式.
解方法一设圆心为C,
所求圆的方程为x2+y2+Dx+Ey+F=0,
则圆心C-D2,-E2.∴kCB=6+E28+D2.
由kCBkl=-1,
∴6+E28+D2-13=-1.①
又有(-2)2+(-4)2-2D-4E+F=0,②
又82+62+8D+6E+F=0.③
解①②③,可得D=-11,E=3,F=-30.
∴所求圆的方程为x2+y2-11x+3y-30=0.
方法二设圆的圆心为C,则CB⊥l,从而可得CB所在直线的方程为y-6=3(x-8),即3x-y-18=0.①
由A(-2,-4),B(8,6),得AB的中点坐标为(3,1).
又kAB=6+48+2=1,
∴AB的垂直平分线的方程为y-1=-(x-3),
即x+y-4=0.②
由①②联立后,解得x=112,y=-32.即圆心坐标为112,-32.
∴所求圆的半径r=112-82+-32-62=1252.
∴所求圆的方程为x-1122+y+322=1252.
变式迁移1解(1)设所求圆的圆心Q的坐标为(a,b),圆Q的方程为(x-a)2+(y-b)2=42,又∵OQ=6,
∴联立方程0-a2+0-b2=62-1-a2+3-b2=16,
解得a=-3,b=33,
所以所求圆的方程为(x+3)2+(y-33)2=16.
(2)
如图,因为圆周被直线3x+4y+15=0分成1∶2两部分,所以∠AOB=120°,而圆心(0,0)到直线3x+4y+15=0的距离d=1532+42=3,在△AOB中,可求得OA=6.
所以所求圆的方程为x2+y2=36.
例2解题导引(1)在解决与圆有关的问题中,借助于圆的几何性质,往往会使得思路简捷明了,简化思路,简便运算.
(2)本题利用方程思想求m值,即“列出m的方程”求m值.
解方法一将x=3-2y,
代入方程x2+y2+x-6y+m=0,
得5y2-20y+12+m=0.
设P(x1,y1),Q(x2,y2),则y1、y2满足条件:
y1+y2=4,y1y2=12+m5.
∵OP⊥OQ,∴x1x2+y1y2=0.
而x1=3-2y1,x2=3-2y2.
∴x1x2=9-6(y1+y2)+4y1y2.
∴9-6(y1+y2)+5y1y2=0,
∴9-6×4+5×12+m5=0,
∴m=3,此时1+36-3×40,圆心坐标为-12,3,半径r=52.
方法二
如图所示,
设弦PQ中点为M,
∵O1M⊥PQ,
∴kO1M=2.
又圆心坐标为-12,3,
∴O1M的方程为y-3=2x+12,即y=2x+4.
由方程组y=2x+4,x+2y-3=0,解得M的坐标为(-1,2).
则以PQ为直径的圆可设为(x+1)2+(y-2)2=r2.
∵OP⊥OQ,∴点O在以PQ为直径的圆上.
∴(0+1)2+(0-2)2=r2,即r2=5,MQ2=r2.
在Rt△O1MQ中,O1M2+MQ2=O1Q2.
∴-12+12+(3-2)2+5=1+-62-4m4.
∴m=3.∴半径为52,圆心为-12,3.
变式迁移2解(1)∵M的坐标为(3,1),∴M到x轴的距离为1,即圆M的半径为1,
则圆M的方程为(x-3)2+(y-1)2=1.
设圆N的半径为r,
连接MA,NC,OM,
则MA⊥x轴,NC⊥x轴,
由题意知:M,N点都在∠COD的平分线上,
∴O,M,N三点共线.
由Rt△OAM∽Rt△OCN可知,
|OM|∶|ON|=|MA|∶|NC|,即23+r=1rr=3,
则OC=33,则圆N的方程为(x-33)2+(y-3)2=9.
(2)由对称性可知,所求的弦长等于过A点与MN平行的直线被圆N截得的弦的长度,
此弦的方程是y=33(x-3),即x-3y-3=0,
圆心N到该直线的距离d=32,
则弦长为2r2-d2=33.
例3解题导引与圆有关的最值问题,常见的有以下几种类型:
(1)形如μ=y-bx-a形式的最值问题,可转化为动直线斜率的最值问题;(2)形如t=ax+by形式的最值问题,可转化为动直线截距的最值问题;(3)形如(x-a)2+(y-b)2形式的最值问题,可转化为动点到定点的距离的平方的最值问题.
解(1)y-x可看作是直线y=x+b在y轴上的截距,当直线y=x+b与圆相切时,纵截距b取得最大值或最小值,此时|2-0+b|2=3,解得b=-2±6.
所以y-x的最大值为-2+6,最小值为-2-6.
(2)x2+y2表示圆上的一点与原点距离的平方,由平面几何知识知,在原点与圆心连线与圆的两个交点处取得最大值和最小值.
又圆心到原点的距离为2-02+0-02=2,
所以x2+y2的最大值是(2+3)2=7+43,
x2+y2的最小值是(2-3)2=7-43.
变式迁移3解设P(x,y),
则P点的轨迹就是已知圆C:(x-3)2+(y-3)2=6.
而yx的几何意义就是直线OP的斜率,
设yx=k,则直线OP的方程为y=kx.
当直线OP与圆相切时,斜率取最值.
因为点C到直线y=kx的距离d=|3k-3|k2+1,
所以当|3k-3|k2+1=6,
即k=3±22时,直线OP与圆相切.
即yx的最大值为3+22,最小值为3-22.
课后练习区
1.B[圆的方程化为标准形式为(x-1)2+(y-3)2=10,由圆的性质可知最长弦|AC|=210,最短弦BD恰以E(0,1)为中心,设点F为其圆心,坐标为(1,3).
故EF=5,∴BD=210-52=25,
∴S四边形ABCD=12ACBD=102.]
2.D3.A4.B5.A
6.(x+1)2+y2=27.(x-2)2+(y-1)2=28.0
9.解(1)∵AB的中垂线方程为3x+2y-15=0,
由3x+2y-15=0,3x+10y+9=0,解得x=7,y=-3.(3分)
∴圆心为C(7,-3).又|CB|=65,
故所求圆的方程为(x-7)2+(y+3)2=65.(6分)
(2)设圆的方程为x2+y2+Dx+Ey+F=0,将P、Q点的坐标分别代入得2D-4E-F=20,3D-E+F=-10.①②
(8分)
又令y=0,得x2+Dx+F=0,③
由|x1-x2|=6有D2-4F=36.④
由①②④解得D=-2,E=-4,F=-8或D=-6,E=-8,F=0.
故所求圆的方程为x2+y2-2x-4y-8=0,或x2+y2-6x-8y=0.(12分)
10.解(1)设t=x+y,则y=-x+t,t可视为直线y=-x+t的纵截距,所以x+y的最大值和最小值就是直线与圆有公共点时直线纵截距的最大值和最小值,即直线与圆相切时的纵截距.
由直线与圆相切,得圆心到直线的距离等于半径,
即|2+-3-t|2=1,解得t=2-1或t=-2-1,
所以x+y的最大值为2-1,
最小值为-2-1.(4分)
(2)yx可视为点(x,y)与原点连线的斜率,yx的最大值和最小值就是过原点的直线与该圆有公共点时斜率的最大值和最小值,即直线与圆相切时的斜率.
设过原点的直线方程为y=kx,由直线与圆相切,得圆心到直线的距离等于半径,即|2k--3|1+k2=1,
解得k=-2+233或k=-2-233,
所以yx的最大值为-2+233,
最小值为-2-233.(8分)
(3)x2+y2+2x-4y+5,
即[x--1]2+y-22,其最值可视为点(x,y)到定点(-1,2)的距离的最值,可转化为圆心(2,-3)到定点(-1,2)的距离与半径的和或差.
又因为圆心到定点(-1,2)的距离为34,所以x2+y2+2x-4y+5的最大值为34+1,最小值为34-1.(12分)
11.解建立如图所示的坐标系,设该圆拱所在圆的方程为x2+y2+Dx+Ey+F=0,由于圆心在y轴上,所以D=0,那么方程即为x2+y2+Ey+F=0.(3分)
下面用待定系数法来确定E、F的值.
因为P、B都在圆上,所以它们的坐标(0,4)、(10,0)都是这个圆的方程的解,
于是有方程组42+4E+F=0,102+F=0,(7分)
解得F=-100,E=21.
∴这个圆的方程是x2+y2+21y-100=0.(10分)
把点P2的横坐标x=-2代入这个圆的方程,
得(-2)2+y2+21y-100=0,y2+21y-96=0.
∵P2的纵坐标y0,故应取正值,
∴y=-21+212+4×962≈3.86(米).
所以支柱A2P2的高度约为3.86米.(14分)